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Abstract. We present a quantum theory of an optical four-wave mixing oscillator under 
pumping by two laser fields of different frequencies. Our analysis includes all the physical 
processes that are relevant in the parametric limit of interaction in a medium with cubic 
non-linearity: four-wave mixing, self- and cross-phase modulation. Dynamical aspects of 
stable above-threshold generation of an intracavity signal mode, the bistability and 
squeezing phenomena are studied. 

1. Introduction 

Four-wave mixing (RUM) in a cavity is one of the basic processes in quantum optics, 
resulting in the generation of non-classical light. In general, this process is caused by 
the third-order susceptibility $’) and consists of the transformation of two photons of 
the pump modes with frequencies U,, wz into a pair of photons of two signal modes 
with frequencies w3, 04, such that w , + o z = w 3 f 0 4 .  In most theoretical and experi- 
mental works (see [I-41 and references therein) the case of degenerate pump modes 
(0, = w 3  and non-degenerate signal modes (w3#w4) has been considered in order to 
obtain light possessing quantum features. 

A scheme of intracavity FWM with non-degenerate pumps (u,#wz) and degenerate 
signals (03=u4-oo) has been analysed theoretically in [5-71. The interest in such a 
FWM scheme is connected with the possibility of stable above-threshold generation of 
intense one-mode squeezed-light beams (at all three intracavity mode frequencies wo, 
w,, oz) with non-zero mean amplitudes. The advantages and peculiarities of this FWM 
scheme are caused by the absence of the phase diffusion effect. We recall that phase 
diffusion in the above-threshold RUM with degenerate pumps and non-degenerate 
signals leads to some difficulties in quantum fluctuation analysis itself and, in 
particular, to the vanishing of the mean amplitudes of generated signal modes. The 
analysis presented in [5-71 ignores, however, the phase modulation effects which 
would normally arise in a parametric limit of interaction in a x(3) medium. 

In the present paper we consider another scheme of FWM with non-degenerate 
pumps and degenerate signals. We include in our model all the physical processes that 
are relevant in the limit: four-wave mixing, self-phase modulation and cross-phase 
modulation. The model is simplified however in that we consider a single-mode cavity 
tuned to the signal field frequency wo = (wl + 4 1 2 ,  while the frequencies of the pump 
fields o1 and wz are considered to be away from the cavity resonance, i.e. the cavity is 
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transparent for the pump beams. This makes the single-pass effects in the pumps 
irrelevant, and we can thus neglect the pump depletion. The undepleted pump 
approximation can be employed also if we consider nearly collinear wavefactor 
matching conditions in which the propagation directions of the pump beams are 
slightly tilted with respect to the cavity axis. Note that our analysis is related to the 
ring cavity configur-ation. The parametric generation in a similar FWM scheme, 
however, with counterpropagating pumps and linear cavity has been realized experi- 
mentally in [4]. 

The analysis presented here concerns both semiclassical and quantum-statistical 
features of the generated signal mode. The semiclassical analysis includes the 
dynamical aspects of stable above-threshold generation and the bistability phenome- 
non (section 2). The quantum analysis (section 3) is related to the phase and intensity 
fluctuations and to the study of the squeezing effect in the above-threshold regime of 
generation. 
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2. Equations of motion, steady states and stability analysis 

The non-linear system under consideration consists of a x(3) medium placed in a 
single-mode ring cavity with resonant frequency 0,. The medium is pumped by two 
pump fields of different' frequencies o1 and o, which lie away from the cavity 
resonance. The four-wave mixing (FWM) interaction results in the excitation of the 
intracavity signal mode whose rotating frame frequency oo = (ul + 02)/2 (see below) is 
determined by exact consideration of the phase matching and is assumed to be close to 
0,. We also assume that the pump fields travel through the medium only once, which 
makes the single-pass effects in the pumps irrelevant. In this case we can neglect the 
pump depletion and treat the amplitudes El and Ez of the pump fields as fixed 
constants. Including the phase modulation effects into the consideration and account- 
ing for the decay of the cavity mode we write the model Hamiltonian in the rotating 
wave approximation as follows: 

H=ho,a+a+~hx(a2ETE:e'(Y~+Y3f+a+2E 1 2  E e-i(mi+oll)t ) 
+thpz+2az + ~ x ( ( E , ( ~  + (E2(z)a+a+ (a+r + ar+). (9 

Here U+ and a are the boson creation annihilation operators for the signal mode, xis  
the coupling constant proportional to the third-order susceptibility xc3). The lirst term 
in equation (1) is the free part of the Hamiltonian, the second term is responsible for 
the FWM interaction, the third and the fourth terms describe the self-phase modulation 
and the cross-phase modulation respectively. The fifth term accounts for the coupling 
of the cavity mode with the reservoir, where r and r'+ are the reservoir operators 
which will give rise to the cavity damping constant y. 

Following the standard procedures (see, e.g., [8,9]) and transforming to the frame 
rotating at the oo = (wl + 4 1 2  frequency 

we obtain from equation (1) the following interaction picture master equation for the 
density operator p of the signal mode 

a(t)-+a exp(-iooi) a ' ( t )  -+ a+ exp(ioot), (2) 

- = i A [ u ' a , p ] - - ( E ~ E ~ [ a 2 , p ] + E l E ~ [ a + 2 , p ] ) - q [ u * Z a 2 , p ]  ap iX ix 
a t  2 

-ix(IE,l2+ IEzlZ)[a+a, p ]  +y(2apu+ -pa fa -n+ap) .  (3) 
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Here A=wo-wc is the cavity detuning and we have neglected the thermal fluctua- 
tions. 

Then we may transform this operator master equation into a c-number 
Fokker-Planck equation in a generalized P-representation [9,10] with independent 
complex field variables a and a+, which correspond to slowly varying operators a and 
U+. The Fokker-Planck equation derived is equivalent to the following set of 
stochastic differential equations: 

d a  .x 
_= - ya+i[A-x(IEllZ+ 1Ez12)]a-i- a+aZ-i,yEIEza+ + R ( i )  dt 2 

(4b) 
-= da+ - ~ a + - i [ A - ~ ( ~ E , ~ Z + ~ E z ~ Z ) J a + + i ~ a a i Z + i x E T E ~ a + R + ( t )  X 
dt 

where R and R+ are Gaussian noise terms which have the following non-zero 
correlators 

(R( t )R( f ) )=  -iX(El&++az)6(t- t') 

(R+( t )R+( f ) )  =iX(ETEf+ +a+*)d(t- t'). 
We note that the It0 form (see, e.g., [9, 111) of the equations has been utilized here. 
However the difference between the It0 and Stratonovich calculus [9] gives an 
additional term i(,y/4)a in equation ( 4 2 )  (and a term -i(,y/4)ai in equation (46) 
respectively) which can be neglected in the approximation of strong pumps ~ E l , z ~ z S  1. 

The further analysis of non-linear system described by equation (4) is based on the 
linearized treatment of quantum fluctuations. The linearization is carried out about 
the steady-state semiclassical solutions a, and a: (a: =a:) obtained from equation 
(4) by setting the time derivatives to zero and by ignoring the noise terms. For validity 
of this method it is necessary that the steady states be stable with respect to small 
fluctuations 

6a(t)=a(r)-a, 6a+(f)=a+(t)-a:. 

The linearization of equation (4) leads to the following equations for 6a and 6a+: 

where the drift matrix A is 

I/o-ihet+ixla$ f ix(ElEz+a$2) 
. . . . . . . . . .~.. . . . .  :............. 
-ix(ETEf+a:'/2) : y,+iA.,-i~la~lZ 

(7) 

Ad= A - x(lE,l'+ lE21*), and the non-zero correlators of the noise terms Ro and RZ are 
determined by equation (5) with zero subscripts indicating that a and a+ are replaced 
by a, and %+ respectively. 

The steady-state solutions of equation (4) are stable if the real parts of the 
eigenvalues of the drift matrix A are positive. This condition can easily be checked by 
the Hurwitz criterion [12]. Solving equation (4) for the steady states and carrying out 
the stability analysis we obtain the following results. 

One of the semiclassical steady-state solutions of equation (4) is a trivial solution 
ao=O which describes, in particular, the below-threshold regime of spontaneous 
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generation of the signal mode. The stability condition of this solution is 
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The inequality (8) determines the stability domains and the boundaries (like, for 
instance, the generation threshold) for dimensionless parameters ( X / ~ ) I E , ~ ~ / *  and A / y ,  
at which the solution a, = 0 becomes unstable (see below). In particular, this solution 
is stable for arbitrary values of detuning parameter Alyin the case (~/y)21E,12~Ez12C1. 
In the reverse case it is stable in the regions 

A X  
Y Y  ->-(lE1I2+ 1E212) + ~ ~ X I Y ) z I ~ l l z I E z ~ -  1 

and 

6-2 (IE,12+ lE*I') - V(X,#\E, 1ZlE21' - 1. 
Y Y  

In order to analyse the steady states with non-zero amplitude ao#O it is more 
convenient to transform to the intensity (in photon number units) and phase variables 

. 1  
2i 

q=--ln(a/a+). n=a+a 

The corresponding equations of motion become 

dn 
-= - 2yn + 2 x m 2  n sin ?y +f. dt 

(9b) 
X ? = A  - ~ ( l ,  +I2)  - - n-  zm2 cos ?y +fq dt 2 

where we introduce the intensities Zk (k= 1,2) and phases qk of the pump fields 
Ex = fl exp(iqk) and use the following notation: ?y = qr + qz -2q. 

In equation (9) the noise terms are 
fn = Ra+ + R'a (loa) 

R R+ 
f =__- 

2 i a  2ia+' 

The semiclassical steady-state solutions no and qo (ao= exp(iqo)) of equation 
(9) are determined by the following expressions 

*)-2y * ~ ( z l + 1 2 ) ~ V ( ~ / y ) ~ l l z 2 - l  , 1 & _- [--- 
X Y Y  

Y 
sin(ql+q2-2qo)=- 

X m ;  
The stability analysis, carried out on the basis of corresponding linearized equa- 

tions (see equation (19)), shows that thesolution with the minus sign inequation (Ha) 
is unstable. The stable above-threshold generation of the signal mode is described by 
the solution with the plus sign in equation (lla). 
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The intensity l '~"=(a~~,aouJ of the signal mode at the output of a single-ported 
cavity can be calculated with use of the well known input-output formalism of Collett 
and Gardiner [13], in which the cavity output field operator a,, is connected with the 
cavity in ut field 4" and with the intracavity operator a by the following relation 
amt= P 2ya-a.. Taking into account that the signal mode is initially in a vacuum 
state ((ain) = (aiu.) = 0) and using the correspondence between the normally ordered 
operator averages and the averages for c-number stochastic amplitudes a+ and a [lo], 
we obtain for the case of the steady-state solution n c ' :  

In accordance with the linear approximation the contribution of the spontaneous 
noise has been ignored here. Thus the result (12) corresponds to the semiclassical 
theory. In the case of the steady-state solution a,=O the corresponding semiclassical 
cavity output intensity is I " ' =  0. 

Now we shall give the results of~analysis of the stability conditions in the above- 
threshold regime. ~~ 

2.1. Case of equal pump intensities 

In the case of equal intensities of the pump fields I, =12=1 the stability domains for 
the steady-state solution n c )  are determined in explicit form by the following 
inequalities: 

I A  < I  < l a  for'b%<Aly<2 (13a) 

y l x < l < l a  for Aly>2. (13b) 

and 

Here 

is the threshold value of I, obtained with use of equation (8). The quantity 

corresponds to the value of the intensity I, beyond which the stability condition is 
fulfilled for the zero-amplitude solution a,=O. At this point the system returns from 
the above-threshold generation with non-zero mean amplitude to the stable gene- 
ration at the spontaneous noise level. 

The behaviour of the cavity output intensity I""' depending on the pump field 
intensity I is represented in figure l(a). The full curves correspond to the stable 
steady-state solutions, while the broken curve describes the unstable solution nb-) (see 
equation (lla)). We see, in particular, that in accordance with equation (13b) and as a 
consequence of the inequality %&<IA the phenomenon of optical bistability occurs in 
our non-linear system for A/y>2. 
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Figurel. cavity output intensity versus the intensities of the pump fields. (U )  m e  
I,=12=Iwith Aly=5;  (b)casei,fI~with(dy)I,=3and Aly=5 .  

2.2. Cme of unequal pump intensities 

Consider also the case of unequal pump field intensities I,#& within the conditions 
when the intensity I2 (for definiteness) is kept constant, while the intensity Il  is 
continuously changed. In this case the threshold value of I, is 

and the stability domains are 

where 

The dependence of the cavity output intensity I""' on the pump intensity I ,  for k e d  
values of l2 and A / y  is represented in figure l(b). Note that the bistable behaviour of 
1""' on I,  is in a qualitative accord with the experimental result obtained in 141. 

In conclusion of this section we point ont the role which the phase modulation 
effects play in the behaviour of the system. Without the incorporation of the self- 
phase modulation effect into our model the equation of motion for the signal mode 
amplitude would be the same as that of the pure degenerate NVM and degenerate 
parametric oscillator in the undepleted pump approximation (see, e.g., [l, 141). Here 
the usual cavity detuning parameter A should be formally replaced by an effective 
cavity detuning Aer= A -X(IE,/'+ I&/'), which reflects the influence of the cross-phase 
modulation effect. In these non-linear systems the only stable steady-state solution is a 
zero-amplitude solution a,,= 0, which describes the below-threshold regime of gene- 
ration. The stable above-threshold regime with ao#O, occuring in the behaviour of 
our. non-hear system, becomes possible due to the inclusion of the self-phase 
modulation effect into the consideration. The influence of the cross-phase modulation 
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on the non-linear dynamics of the system is reflected in the vanishing of the signal 
mode intensity well above threshold. Really, since. the usual cavity detuning A is 
replaced by Aet in the equations of motion, the increase of the pump field intensities 
Il,2=IE,,21Z leads to the decrease of the effective cavity detuning. This implies that 
with increase of Z,,z the system is carried to the off-resonance operation regime (with 
respect to the cavity resonance 03 and the signal mode generation vanishes. 

We note also that the intluence of the cross- and self-phase modulation effects for 
parametric FWM with degenerate pumps and non-degenerate signals has been analysed 
in [2]. 

3. Quantum fluctuations and squeezing above threshold 

Now let us tum to the analysis of quantum fluctuations of the signal mode and to the 
problem of squeezing in the above-threshold regime. Introducing small deviations 
&z(t)=n(t)-n!+’ and Sq(t)=q(t)-qo from the stable steady states and using 
equation (9) we obtain the following linearized equations of motion 

o ! 4 , y m n 6 + )  cos *a an f l ( Q  ...; ................ 
x12 : 2 x m Z  sin *a f%) I) + ( 1 ’ (19) 

d 
dt 

where ~ a = q l + q 2 - 2 q o  and the value of cos& which corresponds to the stable 
solution nh+), is 

The correlators of the noise termsfl andfi, obtained with the use of equations (5) and 
(1% are 

C f ~ ( t l f ~ ( t ’ ) ) = z ~ n ~ ) s ( t - t ’ )  (204 
I ,  

(20b) 

( 2 W  

r 
(f;(t)f;(t‘)) = -2n6+‘w - t ’ )  

Cf%O.f~(~‘))= [ x ( ~ I  + Zz) - AIW-1‘). 
In order to reveal the possibility of reduction of quantum fluctuations below the 

shot-noise level in the quadrature component operator XB=a exp(-iG) + a+ exp(i@, 
we shall calculate first the corresponding variance 

V(8) = l + ( : ( A ~ ) z : ) .  (21) 
Here AX4= X9- (Xa), i? is an arbitrary phase angle defined by the phase of the local 
oscillator, :: denotes the normal ordering of operators, and the squeezed noise 
reduction occurs if V(i?) < 1. 

Using the correspondence between normally ordered averages for the operators 
a+, .a and averages for the c-number stochastic amplitudes a+, a we obtain, in the 
lowest order in small fluctuations, 
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1 
no 

~(8) = 1 +4nb+)(6q2) sin2(d-qo) + T ( 6 n 2 )  cos2(d-qo) + Z ( d n d q )  sin(2d-2qo). 

(22) 
From equations (19), (20) one can obtain the following results for the intensity and 

phase fluctuation correlators 

Here and below we use the following notations 

The fact that the intensity and phase fluctuations of the signal mode are mutually 
correlated (equation (25)) is another peculiar property of our non-linear system. We 
recall that such a correlation does not occur in the previously formulated models of 
FWM, which do not take into account the phase modulation effects (see, e.g., [l, 3,5]). 
This fact leads, in particular, to the variance V(d) being minimized at a phase angled 
which differs in general from the case of pure phase fluctuations (d= yo+z/2) or of 
pure amplitude fluctuations (d=qo). Nevertheless the results (22)-(24) show that in 
the cases of pure phase or pure amplitude fluctuations the squeezed noise reduction is 
sufficiently high and the intracavity squeezing may reach -50% for appropriate values 
of the parameters Aly and ( X / Y ) I ~ , ~ .  

Really, for the case of phase fluctuations, which corresponds to the choice 
8=yo+z/2, we have 

and the phase squeezing occurs for J,+J2-d>0. The maximal 50% squeezing is 
reached in the limit where nC)+O. 

In the case d=qo, i.e. in the case of amplitude fluctuations, the corresponding 
variance is 

(d - J ,  - J 2 ) w -  1 
2 m ( d  - J1 -J2 + m)' (27) 

(6n2) 
V(8= qo) = 1 + (+)= 1 - 

n0 

The amplitude squeezing occurs for d - J ,  - J2 > l/w and may reach -50% for 
large values of the detuning parameter d= Aly9.l and for 

It should be pointed out that the negativeness of the correlation function of 
intensity fluctuations (6n2) is manifested also in the non-classical effect of photon 
antibunching via the second-order correlation function g@(O) = (a*a+aa)/(a'a)z. The 
correlation function g(*)(O) in the lowest order in quantum fluctuations is 

1. 
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However this antibunching effect (g("(O)<l) is small in accordance with the 
condition of validity of the linearization procedure, i.e. with the condition of small 
fluctuations (dn') (nt;")'. 

Now we shall present the results on squeezing in the spectrum of quadrature 
component fluctuations for the cavity output signal field 

S(8, w )  = 1 +2y d t e ' " ' ( : A ~ ( t ) A ~ ( t + t ) : ) .  (29) I': 
The unity in the right-hand side of equation (29) corresponds to the shot-noise level. 
As the output field is a broadband continuum around the carrier frequency ma, the 
squeezed noise reduction (S(w, 8) < 1) may occur in a certain frequency band. 

 the result for the squeezing spectrum in the case of phase fuctuations 
(8 = rpo + d 2 )  is 

S(q,+n/2. w )  = 1 + 8yn$+)(6rp(-o)6q(w)} 

Here the correlator {drp(-o)6rp(w)) has been calculated with use of the 
Fourier-transformed version of equation (19). 

A graphical representation of the phase squeezing spectrum S(qa+z/2,  w )  in the 
case of equal pump intensities I, = 1'- I and for particular values of the parameters 
d =  A/y and J =  (x/y)I is given in figure 2(a). We note that the squeezing occurs at the 
sideband frequencies located symmetrically about the zero frequency. The depen- 
dence of the spectrum value S(rp,+z/2, wOpJ (wopz is the optimal frequency, for which 
the phase squeezing is maximal) on the intensity parameter of the pump field J is 
plotted in figure 2(6). We see that a nearly perfect (100%) phase squeezing is realized 
forI=I,. 

At the phase angle B=rp,, determining the amplitude fluctuations, we obtain for 

- 3 l . 0  __ 
,'< il.ol 

'"1 < N' 
e~ 
' - 0 . 5  
4 

Ll Zi 

\ 

5- 0. 5 
4 - 

0 
-8 -4 0 4 E ' .  1 2 3 4 

41 
W h  

Figuret. (a) Squeezing spectrum S(plo+n/2, w )  versus mly for Aly=5 ,  (x ly) I=3 
(broken w e ) ,  (x/y)I=4.8 (fullcurve). (b)  DependenceofS(pl,+R/Z,m,,,)on(X/y)Ifor 
A/y=S.  
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Figure3. Squeezing spectrum S(%, o) versus o l y  for (x l y ) I= l . l ,  Aly=5 (full curve); 
( x / y ) I = Z ,  AYy=5 (broken curve); (Yy)I=2,  A./y=20 (dottedcurve). 

the squeezing spectrum 

16J1J2 + 32(d -J1 - J z ) m -  32 - 4(w/y)’ 
(31) =I- 

[4(d -J , -J2+  VJJZ- 1)VJJZ- 1 - ( o J / ~ ) ~ ] * +  4(0/y)” 

Examples of the curves for the squeezing spectrum (31) are given in figure 3 for the 
case Il = I*= 1. It is seen that a nearly perfect amplitude squeezing occurs for values of 
the pump intensity parameter J close to the unity. To obtain large’amplitude 
squeezing for higher pump intensities it is necesary to increase the detuning parameter 
d .  

It should be noted that the results on experimental measurements of the noise on 
the quadrature component in a similar FWM configuration have been presented in 141. 
However, the squeezed noise reduction has not been achieved in this experiment. 
This is not so surprising because, as follows from our analysis, the squeezing depends 
strongly on a proper choice of the values of the parameters o l y ,  A/y and (x/y)I,,> 

Finally we turn to the behaviour of the quadrature component fluctuations for the 
case of the steady-state solution a,=O in the corresponding stability domains, i.e. in 
the regimes below threshold and well above threshold. In this case, in accordance with 
the linearized approximation, the self-phase modulation terms in equations (4a) and 
(4b) (the third terms) give no contribution in the final linearized equations for the 
signal-mode amplitude fluctuations 6a and 6a’ (see equations (6), (7)). These 
linearized equations turn out to be similar to those of the pure degenerate FWM and of 
the degenerate parametric oscillator in the below-threshold regime [l, 141. The 
calculation of the corresponding squeezing spectrum gives a result coinciding with 
equation (47) of [l], in which the parameters v, y2 and rz must be replaced by 
v-+XEIEz, yz+y, jj2-+y-iAef, where Ad=A-~(IE112+IE21z). It should be borne in 
mind, however, that in our non-linear system the stability domain for the solution 
a, = 0 is not restricted by the below-threshold regime. This solution, under appropri- 
ate values of the parameters ( x / ~ ) I , , ~  and A/y, becomes stable also well above 
threshold. Therefore equation (47) of 111, being applied to our non-linear system, 
describes the squeezing effect not only below the generation threshold, but also above 
threshold. The particular behaviour of the maximally squeezed quadrature compo- 
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nent fluctuations in dependence on the parameters of the system can be analysed 
numerically. 

4. Conclusions 

In conclusion we have presented a quantum analysis of a model of intracavity four- 
wave mixing, for which the effects of self-phase modulation and cross-phase modula- 
tion were taken into account. These effects are important in the parametric limit of 
the interaction in the x(3) medium, however they are usually neglected. We have 
shown that they have an essential influence on the non-linear dynamics and on the 
quantum statistical properties of generated signal field. 

In particular, the semiclassical steady-state solutions and the stability analysis 
show that the self-phase modulation is responsible for the appearance of the stable 
above-threshold regime of generation with non-zero amplitude of the signal field. The 
stabilization of the zero amplitude solution well above threshold is the result of the 
cross-phase modulation which determines the effective cavity detuning Aef= A - 
X([E,I2+ IEz[*) and carries the system away from the resonance operation. A bistable 
behaviour of the signal intensity versus the pump intensities has also been predicted 
for appropriate values of the detuning parameter A / y .  

The analysis of quantum statistical properties of the signal field has been carried 
out for the above-threshold generation regime within the framework of a linear 
treatment of quantum fluctuations. This analysis shows that the signal field posseses 
non-classical features. In particular, the possibility of phase squeezing as well as of 
amplitude squeezing is predicted for appropriate values of the parameters A / y  and 
( ~ / y ) 1 , , ~ .  The photon antibunching effect for the signal field is shown as well. 
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