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Abstrad. We pment an exact quantum Matment of inhacavity parametric four-wave mixing 
accompanied by self- and cross-phase modulation effects. A steady-state solution of the Fokker- 
Planck equation in a generalized P-represenation isfound for a generated signal mode. A 
general expression for arbitrary moments of the signal field operators is obtained and qualitative 
effects caused by non-linear treatment of quantum fluctuations are discussed. The behaviour of 
the exact steady-state intensity, as well as of the secandader correlation function and of the 
photon number Ruclualions of the signal mode, is studied. A sub-Poissonian photon statistic is 
found in the above-threshold region and a critical increase in  the photon number fluctuations 
is shown in the h’a.nsition region For the case Of relatively small non-linemities Charackdstic 
pmperties of the threshold behaviour are discussed in the case of large non-lineaxities. 

1. Introduction 

Current research on non-linea phenomena in quantum optics is known to be of fundamental 
and practical importance. Quantum optical non-linear systems are usually described within 
the framework of stochastic equations of motion for the field amplitudes with the use of a 
linearization procedure about the stable steady-state classical solutions. Such an approach 
was applied to studies of  basic non-linear optical processes including intracavity four- 
wave mixing [1,2], sub- and second-harmonic generation 11,361, and optical bistability 
[7] (see also [8-111 and references therein). It made it possible~ to find in a semiclassical 
approximation the amplitudes of generated modes of a radiation field, to carry out a stability 
analysis and to find the operating regimes, as well as to study the effects of quantum 
fluctuations in the lowest approximation. However, the linearized theories have a limited 
range of applications: in particular, they are not valid in the regions of critical (threshold, 
tuming, etc) points, where the quantum fluctuations increase dramatically. 

An exact treatment of quantum fluctuations can be achieved via a solution of the 
Fokker-Planck equation for quasiprobability distribution functions. This approach gives the 
possibility of refining the results of linearized theories quantitatively, as well as predicting 
new qualitative phenomena for several non-linear optical systems [4,7,12]. However, the 
derivation of a quasiprobability distribution function is a difficult problem, which is~actualIy 
equivalent to derivation of the density operator for the system. 

In this paper we study an intracavity parametric interaction in a X”-medium, and 
we show that non-linear treatment of the quantum fluctuations is successful. We present 
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an exact quantum theory for the realistic model of four-wave mixing, which incorporates 
the effects of self-phase modulation and cross-phase modulation. These phase modulation 
effects would normally arise in a  medium. However, they are usually neglected. Our 
aim is to find an exact steady-state solution of the Fo&er-Planck equation for a generalized 
P-representation. Using this solution we calculate the operator moments for the generated 
signal field and study the behaviour of the signal field intensity, as well as of the second- 
order correlation function and of the photon number fluctuations. 

The paper is organized as follows. ~ In section 2 the model Hamiltonian is written and 
some of the previously obtained [13] semiclassical results are presented for convenience and 
for further comparison. In section 3 an exact steady-state solution of the Fokker-Planck 
equation in a generalized P-representation is derived and a general expression is obtained 
for arbitrary moments of the signal-mode amplitude operators. In sections 4 and 5 the results 
of calculation of the signal-mode intensity and of the second-order correlation function are 
presented and discussed. 
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2. The model Hamiltonian and semiclassical results 

The system under consideration consists of a  medium placed in a single-mode ring 
cavity with resonant frequency U, and damping co&tant y .  The non-linear medium is 
pumped by two copropagating monochromatic light beams of different frequencies w~ and 
w2. As a result of four-wave mixing (m) paramettic interaction the pump fields excite an 
intracavity signal mode wc. The exact phase matching consideration determines a frequency 
WO = &(wl +wz)(wo = ws), which will appear (see section 3) as a rotating frame frequency 
for the signal field. In the general case we allow for a cavity detuning A = q - w,. The 
01 and wz frequencies are considered to be located away from the cavity resonance, i.e. the 
cavity is transparent for the pump beams, which makes the single-pass effects in the pumps 
irrelevant. In this case we can neglect the pump depletion and treat the complex amplitudes 
El and E2 of the pump fields as fixed classical constants. 

In addition to the parametric FWM we take into account the phase modulation effects. 
This is achieved naturally by consideration of the full  interaction Hamiltonian: 

H ~ , ,  (1) 

where at and a are creation and annihilation operators for the signal mode w,. Taking 
into account the phasematching condition w1 + w2 = 2w, and employing the rotating- 
wave approximation, we then neglect in (1) d l  fast oscillating terms, namely the terms 
containing exponents of the type exp(fi(o, - W L , ~ ) )  and exp(fi(w1 - wz)).  This implies 
in fact that we assume a fulfillment of the following conditions: Iw, - 01.21 > 1 % ~ -  w,l, 
(w1 - 021 >> (WO - wcI. Thus the interaction Hamiltonian, which governs the evolution of 
the a+ and a operators, becomes 

Hint =$,y(a2E;E;ei2A'+ a+zEIE2e-i2Ar ) +  ~ A ~ a + ~ a ~ + h x ( I E 1 1 ~ +  IEzlZ)n+a (2) 

where x is the resulting coupling constant, proportional to the third-order susceptibility 
~ ( ~ 1 ,  and A = wo - wc is the cavity detuning. The first term in (2) is responsible for 
the parametric FWM coupling, while the second and the third terms describe processes of 
self-phase modulation and cross-phase modulation, respectively. 

Accounting for decay of the cavity mode we write the full Hamiltonian of the system 
as follows 

XD)(a+eiw + q,iw + E;,iw)2(ae-iw + ~ l e - i w  + Eze-"r)2 

N = ho,a+a + finL + a+r far+. (3) 
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Fwre 1. The normalized cavity output intensity of the signal field &/4yZ)louL plotted against 
the intensity p m e t e r  J = ( x / y ) l  of the p u p  fields ford = 3 (a) and d = 5 (b). Curves (1) 
represent Ule semiclassical result (the broken parts of the cuwes are related to the unstable 
solution), while curves (2) represent the exact quanhlm-mechanical result and they are plotted 
for S = 0.025. 

Here the first term is the free part of the Hamiltonian, and the last two terms describe the 
coupling of the signal mode with the reservoir, where r and r+ are reservoir operators 
giving rise to the cavity damping constant y .  

This system in the linear approximation for quantum fluctuations was studied in [I31 on 
the basis of Langevin equations of motion for stochastic field amplitudes. In that paper the 
stability analysis was carried out for the steady-state semiclassical solutions and the system, 
was shown to produce squeezed light in the abovethreshold regime of generation. Note 
that in the undepleted pump approximation, stable above-threshold generation of the signal 
field becomes possible only due to inclusion of the self-phase modulation in the model. 
We list below some of the semiclassical results needed for the following considerations and 
comparisons. 

The semiclassical result for stable steady-state intensity (in units of photon number per 
unit time) of the signal field at the output of a single-ended cavity in the above-threshold 
generation regime is 1131 

Here l1.z = JE1,zlZ are the intensities of the pump fields (in photon number units), and the 
well h o w n  input-output formalism [14] has been used. 

In the case of equal pump intensities ( I I  = IZ I )  the stability domains for above- 
threshold generation are determined by the following relations 

I A  c I c 1, for & < A / y  c 2 ( 5 4  
and 

y / ~  < I c Is for A / y  z 2. 

Here 

where 1, is the threshold value of I .  In the region below the generation threshold ( I  < [ A ) ,  
as well as above I, ,  the stability condition is fulfilled only for a zero-amplitude steady- 
state solution, i.e. the signal field excitation exists at the spontaneous noise level, hence the 
semiclassical value of the output intensity is Io"' = 0. 
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The signal field output intensity Put is plotted against the pump intensity in figure 1. 
The displayed output intensity is essentially bistable in the region of pump intensity from 
y/x to la and for detuning A > 2y. With increasing detuning parameter A / y  the value 
of I,, and hence the bistability region, increases. Note that vanishing of the signal field 
intensity above ZB (in the case A/y > a) is caused by the cross-phase modulation effect. 
The cross-phase modulation is reflected in the fact that in the equations of motion the usual 
cavity detuning A is replaced by an effective cavity detuning Ad = A - x(IE1 Iz + [E2]*) 
(see equations (11)). This implies that an increase in the pump field intensities Z1.2 = IE1,212 
leads to a decrease in Aef. As a consequence, the system is carried to the off-resonance 
operation regime (with respect to the cavity resonance we) and the signal-mode generation 
vanishes. 

It should be pointed out that the linearization procedure about semiclassical steady 
states is valid if the qqantum fluctuations are small. It is clear from the results of [13] that 
the condition of negligible fluctuations along with the requirement for large mean photon 
numbers of the signal mode are satisfied if x / y  << 1, i.e. for relatively small non-linearities. 

Note that almost identical non-linear systems which can be described by an interaction 
Hamiltonian similar to (2) were studied in [15,16] in relation to tunnelling and classical 
amplitude squeezing. The similarity of our model to the model presented in'[15] consists 
in consideration of the parametric driving (with the resulting coupling constant k - x @ ) E ,  
where x@) is the second-order susceptibility and E the amplitude of driving field, or 
k - x ( ~ ) E ~ E ~  in OUT case) combined with Ker.interaction in the form of self-phase 
modulation. In addition, our model includes the cross-phase modulation effect. However, 
the main difference of our model from the mentioned models is that in [E, 161 the 
effects of dissipation for the signal mode and the quantum  fluctuations are not included 
in consideration. It is obvious that if we neglect the cavity damping, the corresponding 
steady-state solution for the amplitude (intensity) and the phase of the signal mode will 
not be stable with respect to fluctuations. In addition, the inclusion of the cavity detuning 
and of the cross-phase modulation affects the specific form of the steady-state solution and 
leads, in particular, to the appearance of bistability and to the vanishing of the signal mode 
intensity well above threshold, respectively. 

3. Quasiprobability distribution and field moments 

We follow the standard procedures (see, for example, [17,18]) to eliminate the reservoir 
operators and to obtain a master equation for the density operator p of the signal mode. 
This is readily achieved in an interaction picture relative to the WO frequency, so that the 
free Hamiltonian, which determines the interaction picture operator evolution, is 

Ho = T2woa'a. (7) 
Thus the interaction picture operators have a time evolution determined by the following 
transformation to the rotating frame 

a(t) = a exp(-io,t) + a exp(-iWt) 
a+@) = a+ exp(io,t) --f a+exp(ioot). 

The resulting master equation in the Markovian approximation and in the interaction pichue 
is 

2 = iA[u+a, p] - $iX(EfE;[az, p] + E I E Z [ U + ~ ,  pl) - $ix[a+2a2, p] 
at 

-ix([E11'+ IEz[2)[a+a, PI + y ( k p a +  - pa+a -a+np). (9) 
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Here we have assumed that the reservoir temperature satisfies the condition kT << f ioo,  
hence we neglect thermal fluctuations. 

Equation (9) is then ?asily transformed into a Fokker-Planck equation for the 
quasiprobability distribution function in the complex [ 18,191 P-representation: 

where (or, or+) - (011, az), and, as usual, a summation over the repeating subscripts 
p, v = 1 , 2  is assumed. The drift terms in (IO) are 

AI = yor -$A -~x(IEII' + [E2I2)]a + fixor+ly2 + i x E l E y ~ +  (114 
A z = y o r + + i [ A - ~ ( I E ~ 1 ~ + [ E ~ I ~ ) ] o r + -  $i,yoror+2-ixETE;a (116) 

and the diffusion matrix is 

We note a multiplicative character of the noise terms, i.e. the amplitude dependence of the 
diffusion coefficients. At the same time we see that these noise terms grow with increasing 
non-linearity parameter x. 

The variables or and a+ in equation (10) are independent complex stochastic c-numbers 
which correspond to the slowly varying operators a and a+ such that normally ordered 
operator moments are obtained via 

(,+mdn) =. s, L, dru dor+or"or+" P(a, a+) (13) 

where C and C' are appropriate integration paths for a and or+ in the individual (or,,& 
complex planes. 

The steady-state solution of equation (10) can be found using the method of potential 
equations [7,20]. This yields 

 or, or+) = ~ ( 0 1 '  + 2~~ ~ ~ ) ~ ( a + ~  + ZE;E;)~'  exp(2oru+) 

A = -1 - ZA/X +z(IE,[2 + 1 ~ ~ 1 ~ )  - 2iy/x 

(14) 

(15) 

where 

and N is the normalization constant. 

definition of the betafunction [21] 
Using the solution (14) and noting that the integrals in (13) are identical to those in the 

for odd a 
2isin(nb)B ( F , b + l ) ~  for evena (16) 

where C is an eight-shaped contour encircling the points t = f l ,  we obtain for all the 
normally-ordered moments of the signal field operators: 

(a+"a") = M,, J M w ~  (17) 

2 
+ n +  

2 1) B (. + 1, 
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4. Exact steady-state intensity 

Using the general results (17) and (18), and transforming the betafunctions to 
gammafunctions (B(x,  y )  = r ( x ) r ( y ) / r ( x + y ) ) ,  we write down the steady-state intensity 
of the cavity output signal field 

(19) 

G Y KIyuchkyan et ul 

Io"' = 2y(ata) = 2yMi1/M&, 

O0 - 1 + (51 + Jz - d  - 8)' 
1 ( J I  JzY' M' - 

fl;z;[l + (51 + Jz - d  - 36 +2k6)2] 
(20)  

Here we have used the moments M k ,  which differ from the M,, by a constant factor 

and we have defined 

We present here the results of numerical calculations for the case of equal pump 
intensities I ,  = I2 = I .  The normalized output intensity of the signal field is plotted 
in figure 1 as a function of the pump intensity parameter J = ( x / y ) I  for different values 
of the detuning parameter d = A / y .  An increase in d leads to extension of the generation 
region, where the output intensity differs essentially from zero, as well as to an increase 
in the maximal value of the signal intensity and to an increase in the threshold values of 
the pump intensity. Note also that with increasing the relative non-linearity parameter 8, 
the intensity of the signal mode in the threshold region increases more smoothly, i.e. the 
transition region becomes broader. 

The absence of hysteresis-cycle behaviour of the exact quantum mechanical mean 
intensity, which takes into account quantum fluctuations and has a strictly statistical sense, 
is a result of well known studies on optical bistability (see, for example, 1221 and references 
therein) and, of course, is a fact of general character. Correspondingly, in a quantum 
statistical treatment it is more adequate to speak of metastable states connected with a 
probability (quasiprobability) disnibution function (or with a generalized potential) instead 
of stable semiclassical steady states. In this case in order to describe the bistability 
phenomenon in more detail one must deal with a transient behaviour and with the approach 
of a particular non-linear system to a steady state from a statistical viewpoint. As a result, 
one can speak of characteristic transition times (or quantum tunnelling times) between the 
metastable states and one can estimate these times in order to ensure the reliability of a 
bistable device on the usual laboratory time scales. This problem, however, needs special 
consideration for our non-linear system and its solution is beyond the framework of the 
present paper. 

5. Second-order correlation function 

The normalized second-order correlation function is defined as 
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where M&, and Mi, are given by equations (20) and (21) and the second-order moment 
M& takes the form 

~' The result of numerical calculation of the correlation function (24) is plotted against the 
pump intensity parameter J = ( x / y ) Z  (for 21 = l z  Z )  in figure 2. It is readily seen that 
below the critical transition region the correlation function shows superbunching behaviour. 
This feature is caused by pair creation of the signal mode photons in the FWM process. With 
increasing parameter J the correlation function decreases, however in the critical threshold 
region g@)(O) has a sharp peak indicating a critical increase in the quantum fluctuations: 
g@)(O) = 1 f (: (An)' :)/(n)' >> 1 ,  where (: (An)* :) is the normally-ordered dispersion 
of photon number fluctuations, (n) = (a+a) is the mean photon number. This peak is well 
localized for small values of the parameter 6 = x / 4 y ,  however it becomes both smaller and 
broader as the relative non-linearity x / y  increases and it disappears for x / y  - 1 .  Hence 
the characteristic threshold behaviour, defined by a drastic increase in the photon number 
fluctuations in the transition region, disappears in the case of strong non-linearities: As can 
be seen from equation (12) for diffusion coefficients, such a behaviour corresponds to a 
dramatic increase in the role of quantum noise. 

In the above-threshold region, where the signal field intensity grows substantially, the 
self-phase modulation effect becomes essential and the correlation falls, becoming smaller 
than unity, although remaining close to it. This implies a minor non-classical effect of 
photon antibunching. Note that such behaviour is in qualitative agreement with the result 
obtained in [7] for the process of pure self-phase modulation in a coherently driven cavity. 
In terms of the Fano parameter 

(26) 

this leads to sub-Poissonian photon statistics when a reduction of photon number fluctuations 
below the coherent level ( F  c 1) occurs. For example, in the case of d = 5 and 6 = 0.01 
the minimal value of the Fano factor is F 5 0.82,~ and this value decreases slightly with 
decreasing 6 ( F  = 0.67 in the case 6 = 0.001). In contrast, as 6 increases~the Fano factor 
becomes F - 1 and the sub-Poissonian statistics disappear. 

With further increase in the pump intensity parameter J the antibunching effect 
disappears and it is replaced by photon bunching (g"(0) 1). This behaviour is related 
to the fact, that, far above threshold ( I  > Z B ) ,  the system returns to the generation.regime 
at the spontaneous noise level. 

F = ( (An)') / (n)  = 1 + (n)(g") - 1) 

6. Summary 

An exact quantum treatment is presented here for the parametric four-wave mixing 
interaction of &o pump fields of different frequencies with an intracavity signal mode 
of degenerate frequency (01 + 02 + 20,). The model considered incorporates self- and 
cross-phase modulation effects of the signal~mode, which would normally arise in a ~ 0 ) -  
medium. 

An exact steady-state solution of the Fokker-Planck equation for the quasiprobability 
P-function w& obtained. ,This solution allowed us to write down an analytic expression 
for arbitrary moments of the signal field operators. The behaviour of the exact steady-state 
intensity and quantum-statistical properties of the signal field were studied in detail. 
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Figure 2 The second-order comelarion function ~~'(0) plotted against J = ( x / y ) I :  (U) 

6 = 0.025, the full curve w w p o n d s  to d = 5. while the broken curve corresponds to d = 3; 
(b) S = 0.04 and d = 5. 

The dependence of the signal field intensity on the x/y dimensionless parameter of 
non-linearity shows a broadening of the transition region in the case of large non-linearities 
( x / y  - l), in contrast to the x/y << 1 case, when the intensity grows drastically. At the 
same time, the behaviour of the second-order correlation function and of the photon number 
fluctuations in this transition region shows a well localized sharp peak in the case of small 
non-linearities ( x / y  << 1). Localization of this peak can be identified with a threshold in 
the quantum statistical treatment. However, this characteristic peak becomes smaller and 
broader as ~ / y  increases, and it disappears for x / y  - 1. 

Above the transition region, where the signal field intensity grows substantially, the 
photon statistics displays antibunching and sub-Poissonian behaviour. With a further 
increase in the pump intensity the system returns to the regime of generation at the 
spontaneous noise level. and the second-order correlation function shows photon bunching. 
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