
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics

D. Linnemann,1,* H. Strobel,1 W. Muessel,1 J. Schulz,1 R. J. Lewis-Swan,2 K. V. Kheruntsyan,2 and M. K. Oberthaler1
1Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
2The University of Queensland, School of Mathematics and Physics, Brisbane, Queensland 4072, Australia

(Received 24 February 2016; revised manuscript received 9 May 2016; published 28 June 2016)

We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that
disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-
Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can
also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced
measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation
and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the
quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the
spectrum of useful entangled states for applied quantum technologies.
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Nonlinear dynamics is the basis of generating non-
classical states of many particles. These entangled states
are capable of improving a large variety of operations, e.g.,
computational tasks [1], communication, and measure-
ments [2]. Unlocking their full potential for quantum
technologies requires both the generation and detection
at the fundamental quantum limit. The generation of such
highly entangled states with many particles has witnessed
tremendous advances [3,4]. However, to fully exploit this
quantum resource, the complete correlations on the single
particle level need to be accessed, which still limits current
experiments.
To address this challenge, nonlinear readout schemes

have been proposed [5–8]. Most of these employ a time
inversion sequence. For this the nonlinear evolution that is
used to produce the entangled state is inverted and
reapplied for readout. If the state remains unperturbed,
the second period of nonlinear evolution counteracts the
first. This time-reversed readout disentangles the probe
state, such that the known separable initial state is recov-
ered. This reversibility is nonperfect if the state is changed
in between, similar to an incomplete Loschmidt-Echo [9].
By this sensitive mechanism, minute state perturbations are
mapped onto readily discernable quantities.
Experimentally, we use spin-changing collisions [10] in

a mesoscopic spinor Bose-Einstein condensate. This non-
linear mechanism is the atomic analogue of parametric
amplification, which is the textbook example of entangled
state generation in quantum optics. At the same time, both
the sign and the strength of the nonlinear coupling are
experimentally adjustable, which makes this system ideally
suited for realizing time reversal readout schemes.
Spin exchange is performed in an effective three-level

system within the spin F ¼ 2 manifold of 87Rb. For this,
the external degrees of freedom are frozen out such
that dynamics is restricted to the spin degree of freedom.

We start with a pure jF ¼ 2; mF ¼ 0i condensate (pump
mode). Population in anymF ≠ 0 state is carefully cleaned.
During spin mixing, atoms of the pump mode are coher-
ently and pairwise scattered into the signal j↑i≡ j2; 1i and
idler j↓i≡ j2;−1i mode, which we refer to as side modes
(see Fig. 1). For small population transfers from the highly
populated pump mode, the spin-mixing dynamics is gov-
erned by the Hamiltonian H ¼ ℏκâ†↑â

†
↓ þ H:c:, where â†↑

(â†↓) denotes the creation operator for the signal (idler)
mode, ℏ is the reduced Planck constant, and κ is the
effective nonlinear coupling strength.
The coupling κ ¼ gN0 is related to the microscopic

nonlinearity g, arising from coherent collisional interactions
and is enhanced by the number of atoms N0 in the pump
mode. In this undepleted pump approximation, the pump
mode is treated classically and serves as an unlimited
particle resource for parametric amplification of the side
modes which bears no dynamics of its own. We work
within the physical F ¼ 2 manifold because its associated
nonlinearity g is 1 order of magnitude larger than for F ¼ 1.
Spurious processes out of the effective three level system
are energetically suppressed by the quadratic Zeeman shift
at a magnetic field of 0.9 G.
The key feature of this three-mode implementation is

that the nonlinear Hamiltonian can be tailored by control-
ling the phase and amplitude of this highly populated pump
mode [11–13]: The effective nonlinear coupling strength κ
is inverted by imprinting a phase shift of 2φ0 ¼ π, i.e.,
κ → e−i2φ0κ ¼ −κ, while its magnitude can be adjusted by
the number of pump atoms.
We can therefore experimentally realize a scheme that is

divided into three building blocks: Entangled state prepa-
ration, interrogation, and nonlinear time reversal for read-
out [Fig. 1(a)]. A characteristic quantity of the emerging
entangled state is the fluctuation of Nþ ¼ N↑ þ N↓, where
N↑ (N↓) denotes the amplified atom number in the
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respective mode. Figure 1(b) shows a measured time trace
of the variance ðΔNþÞ2 during this sequence. The inde-
pendently characterized detection noise has been sub-
tracted. During the first evolution (here up to t1 ¼ 8 ms)
it grows drastically, indicating the generation of a highly
entangled state. Following this, we allow for interrogation
during which we inhibit spurious spin mixing. For this the
pump atoms are transferred to jF ¼ 1; mF ¼ 0i using a
microwave π pulse that is much faster than the spin
exchange. Thereby the spin-mixing dynamics is halted
and the pump is energetically shifted effectively by 100 Hz
[14]. We exploit this energy shift to imprint a dynamical
phase of 2φ0 ¼ π onto the pump mode that changes the
sign of the spin-changing collisions Hamiltonian [11]. This
phase accumulation takes ∼2 ms. We then rapidly transfer
the pump atoms back to jF ¼ 2; mF ¼ 0i and continue
spin-changing collisions with identical coupling strength.
We find a pronounced minimum of the variance close to
matched times of spin exchange, t1 ≈ t2 as expected for this
nonlinear time reversal sequence. The observed remaining
variance in the minimum corresponds to ∼0.6 atom per
side mode on average.
We now detail our first building block, which is the

generation of the probe state. From a fundamental point of
view, quantum-enhanced sensing relies on having entangle-
ment at the probe stage—introducing entanglement solely
after interrogation cannot yield increased sensitivity [2].

As we start spin-changing collisions with initially empty side
modes, the process is analogous to optical parametric down-
conversion, where amplifying vacuum fluctuations [15,16]
produces the paradigmatic two-mode squeezed vacuum
state [17–19]. This entangled state is described by
jΨi ¼ P∞

n¼0

ffiffiffiffiffiffi
pn

p jni↑jni↓, i.e., a coherent superposition
of twin-Fock states. Within the undepleted pump approxi-
mation the weights pn are thermal-like, pn ¼ hN↑in=
ð1þ hN↑iÞnþ1, where hN↑i ¼ hN↓i ¼ sinh2ðgN0tÞ is the
mean atom number in either side mode after evolution time t.
Because of the pairwise scattering during spin exchange,
ideally both side modes are perfectly correlated, N− ¼
N↓ − N↑ ¼ 0. The side-mode sum Nþ, however, features
distinctive excess number fluctuations with corresponding
variances of ðΔNþÞ2 ¼ hNþiðhNþi þ 2Þ, which are much
larger than the Poissonian noise level hNþi.
To experimentally characterize this generated state and

its broad distribution, we repeat the experiment typically a
few thousand times. This is facilitated by simultaneously
preparing up to 30 independent condensates in a one-
dimensional optical lattice potential. Atom numbers are
detected via state and lattice site resolved absorption
imaging with an uncertainty of �4 atoms [20]. A typical
raw image is shown in Fig. 1(c). For quantitative analysis
we postselect on total atom numbers in the range of 380–
430 atoms, corresponding to the initial pump population
N0, in order to restrict the nonlinear coupling strength κ.

FIG. 1. Disentangling with nonlinear time reversal. (a) Our nonlinear readout scheme exploits a time reversal sequence. For this, the
Hamiltonian H used for entangled state generation is inverted and reapplied for readout. Interrogation takes place in between both
periods of nonlinear dynamics. (b) Time trace of the characteristic variance of Nþ ¼ N↑ þ N↓ during entangled state generation,
interrogation, and time reversal. The initial drastic increase in variance is revoked by nonlinear evolution under the time inverted
generation process. A pronounced minimum is found close to matched times, t1 ¼ t2. (c) Spin-changing collisions in a Bose-Einstein
condensate are used as the nonlinear process. Atom numbers are detected by high resolution absorption imaging after Stern-Gerlach
separation. A typical absorption image with counting regions indicated by ellipses is shown. (d) The side-mode population exhibits
characteristic thermal-like fluctuations, approaching the variance of the entangled two-mode squeezed vacuum state (diagonal). Results
of a truncated Wigner simulation (dashed) and the expected variance of a coherent state (gray) are shown for comparison. (e) Variance of
the side-mode population before (red diamonds) and after (blue) time reversal sequence for the matched case of two equal durations of
nonlinear dynamics. We find reversion to the initial vacuum state for a wide range of effective evolution times. The red line is a fit to the
expected behavior in undepleted pump approximation.
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We experimentally confirm in Fig. 1(d) that the variance
of Nþ approaches the extreme value (solid black line)
specific to the two-mode squeezed vacuum state. We find
perfect agreement for evolution times up to ≈12 ms. For
larger evolution times, pump depletion limits the variance
growth, such that the analogy to optical parametric ampli-
fication eventually does not hold any more. This effect is
well captured by a numerical simulation based on the
truncated Wigner method (dashed).
Optimal reversibility of the spin-mixing process is

achieved for short evolution times or small total atom
numbers such that pump depletion is negligible. In
Fig. 1(e), we systematically vary the spin-mixing non-
linearity by shifting the postselection window (50 atoms)
on total atom number and adjusting the evolution time t of
the spin exchange, which gives rise to an effective evolution
time of N0t. After the nonlinear time reversal sequence
(blue) we find good reversion to the initial vacuum state for
a wide range of parameters. The red diamonds show the
sum variance immediately before time reversal.
The intrinsic phase dependence of the entangling

Hamiltonian makes the entire scheme predestined for
quantum-enhanced interferometry, where entangled states
are employed to measure a phase shift more efficiently than
classically allowed [2]. In linear interferometry with
classical probe states, the precision in measuring a phase
difference φ− between two modes j↑i and j↓i is bound by
the standard quantum limit (SQL). The resulting phase
sensitivity is given by ðΔφ−Þ2 ≥ hNþi−1, where hNþi ¼
hN↑i þ hN↓i denotes the mean total atom number in both
modes [21,22]. This limit can be overcome by exploiting
the highly entangled two-mode squeezed vacuum as the
input state, allowing phase estimation at the fundamental
Heisenberg limit, ðΔφ−Þ2 ¼ ½hNþiðhNþi þ 2Þ�−1 [21,22].
This precision can be reached by measuring the parity [23]
that necessitates single particle resolution. When having
access to the global mean value only, a phase-dependent
signal cannot be retrieved at all.
In this work, we demonstrate that by using a nonlinear

readout, the quantum resource can be harnessed by ana-
lyzing merely mean values. While number fluctuations of
N− are necessary for a probe state to be sensitive to a phase
difference φ− [2], sensitivity to φ↑ þ φ↓ requires fluctua-
tions of Nþ, as inherent to the two-mode squeezed
vacuum state.
Phase accumulation during interrogation changes the

probe state according to jΨi ¼ P∞
n¼0

ffiffiffiffiffiffi
pn

p
einðφ↑þφ↓Þ

jni↑jni↓. This can be captured by modified mode operators
for the consecutive spin-changing collisions period: a†↑ →
eiφ↑a†↑ (and similarly for a†↓). Thus, the second Hamiltonian
evolution is characterized by a nonlinear coupling strength
κ → e−iφκ, where φ ¼ 2φ0 − ðφ↑ þ φ↓Þ is called the
spinor phase. The initial evolution is reversed, H → −H
if the well-controlled phase shift φ0 of the pump mode
satisfies 2φ0 ¼ π þ φ↑ þ φ↓. Therefore, by determining φ0

for which full time reversibility is reached, the unknown
phase φ↑ þ φ↓ can be determined.
The general phase dependence of hNþi is the basis of

the so-called SU(1,1) interferometer [24]. This has been
proposed in the framework of nonlinear optics, where it
was realized recently [25] with a bright seed in one side
mode. Here, using an atomic system [26] [see Fig. 2(a)] we
explore the regime of unseeded side modes leading to
maximally entangled probe states [27].
To characterize the phase dependence we continuously

change the pump phase in between two equal periods of
spin-changing collisions (7 ms each). The probe state inside
the interferometer is accessed by omitting the final spin
mixing. Its atom number distribution is shown in Fig. 2(b)
(red) featuring a mean atom number of hNinsideþ i ¼
2.8� 0.2. All stated errors are statistical and are 1 s.d.
Without accumulated phase (φ ≈ 0), the interferometer’s
output corresponds to an overall spin mixing for twice the

FIG. 2. Interferometry based on (dis-) entangling nonlinear
dynamics. (a) Schematic representation of an optical SU(1,1)
interferometer and its realization in atom optics. This scheme
takes advantage of the entanglement-enabled deamplification of
fluctuations by time inversion of parametric amplification (PA).
(b) Typical experimental population histograms of Nþ (black
lines are fits to a thermal distribution convolved with our
detection noise) for different spinor phase shifts φ applied within
the active interferometer. The blue histograms are recorded at the
output, while the red one is obtained by omitting the final spin-
mixing period. The dark colored bins depict the corresponding
mean values, which are plotted in the lower panel (zoom-in into
the gray shaded area), revealing the interferometry fringe. The
horizontal dark red line denotes the average probe atom number
of hNinsideþ i ¼ 2.8� 0.2 inside the interferometer.
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initial period, with the population of the probe state inside
the interferometer being further amplified by a factor
of ≈7. Compared to the ideal amplification factor of
2ðhNinsideþ i þ 2Þ ≈ 9.5, this is reduced due to pump
depletion. For phases close to φ ¼ π, time reversal yields
a state with strongly reduced mean atom number. Each phase
setting features the expected broad, non-Gaussian number
distribution representative of the two-mode squeezed
vacuum state. Remarkably, the corresponding mean values
(dark colored bins) give rise to an interferometry fringe
(lower panel).
The nonlinear time reversal maps the phase information

onto the collective quantity hNþi. Thus, the phase sensi-
tivity of the entire device can be accessed by Gaussian error
propagation given by ðΔφÞ2 ¼ ðΔNþÞ2=jdhNþi=dφj2
where only readily obtainable quantities enter.
Our experimental result is shown in Fig. 3(a): Over the

full range of phases (inset) we find good agreement to
the analytical undepleted-pump theory (dashed line).
Specifically at the most sensitive working point of the
SU(1,1) interferometer, the fringe minimum, a phase sensi-
tivity at the Heisenberg limit is predicted [24,26,28] (dashed
line). This is a consequence of both the increased slope of the
signal due to the intrinsic amplification and the deamplified
quantum-correlated noise at the minimum [29,30].
We determine the slope of the signal dhNþi=dφ by a

sinusoidal fit [solid line Fig. 3(b)] to the interferometer’s
output in close vicinity to the fringe minimum. By this we
avoid underestimating the slope due to pump depletion,
which affects only the maximum of the fringe. For the
phase sensitivity [Fig. 3(a)] at the fringe minimum, a
diverging signal is experimentally inevitable since non-
perfect reversibility implies nonvanishing noise but zero
slope of the signal. Nevertheless, we find the optimal
regime with quantum-enhanced performance in close
vicinity of the fringe minimum. The standard quantum
limit ðΔφÞ2 ¼ hNinsideþ i−1 [24,25], and the corresponding
Heisenberg limit ðΔφÞ2 ¼ ½hNinsideþ iðhNinsideþ i þ 2Þ�−1, are
determined by directly measuring the mean side-mode
population inside the SU(1,1) interferometer.
Our observed variance is shown in Fig. 3(c) and reveals

the expected shape within the undepleted pump approxi-
mation, characterized by a flattened variance around its
minimum.We find quantitative agreement when taking into
account the nonperfect reversibility by including a variance
offset of a two-mode squeezed vacuum state with mean
occupation number of 0.65� 0.05 atoms per mode on top
of the independently characterized detection noise (dotted
line). This occupation number is consistent with the
observed minimum in panel (b), which suggests that
nonideal reversibility rather than technical noise limits
the performance. To infer the phase sensitivity, only the
detection noise is subtracted, leading to the data points and
the solid line in panel (a). Ideally, for reaching larger
absolute phase sensitivities at the fringe minimum the side-
mode population inside the interferometer can be increased

as long as the nonlinear Hamiltonian remains reversible,
which is strictly true only within the undepleted pump
limit.
Our findings point towards a new direction of accessing

nonclassical resources for quantum metrology, employing
highly controlled nonlinear dynamics for readout.
Specifically, the aspect that entanglement generated by
nonlinear dynamics is best readout by time reversal [31]
opens up a new class of entangled states to be

FIG. 3. Quantum-enhanced phase sensitivity with nonlinear
readout. (a) The phase sensitivity is experimentally extracted by
Gaussian error propagation on hNþi. The standard quantum limit
(gray horizontal bar) is surpassed in close vicinity of phase
φ ¼ π. At phase π the sensitivity diverges due to the vanishing
slope of the signal. The undepleted-pump theory (dashed) addi-
tionally taking into account the nonperfect reversibility is shown
as a solid line. The observed phase sensitivity agrees with the
theoretical model of an active SU(1,1) interferometer over 2
orders of magnitude (inset). (b) Mean side-mode population hNþi
in vicinity of the fringe minimum. The signal’s derivative is
determined by the sinusoidal fit. (c) Variance of Nþ at the
interferometer output. Our detection noise of 33.5� 1.3 is
indicated by the horizontal dotted line and subtracted for
determining the phase sensitivity. Good agreement to the un-
depleted-pump theory is found when considering the nonperfect
reversibility by including an offset (black line).
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experimentally accessible even in the many-particle limit
of strongly correlated quantum systems. We envision the
time reversal as a modular and powerful tool for entangled
state characterization and exploitation in the continuous
variable regime, where efficient linear detection schemes
remain challenging.
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EXPERIMENTAL SETUP

Our experiments start with a Bose-Einstein condensate
of 87Rb in the |F = 1,mF = −1〉 hyperfine ground state
at a magnetic field of B = 0.9G. It is trapped in a one-
dimensional optical lattice (5.5 µm spacing, ωl = 2π ×
660Hz) superimposed with a harmonic trap (ωt = 2π ×
440Hz) for transversal confinement. The individual lattice
sites contain 200–500 atoms, tightly confined such that
the dynamics happens in the internal degree of freedom.
Since tunneling is negligible, the 30 populated lattice
sites are independent and used to increase the statistical
sample size.

STATE PREPARATION

We transfer the atoms from the initial state to |1, 0〉 by
two resonant microwave (≈ 6.8GHz) π-pulses. Spurious
atoms in mF 6= 0 states are expelled by a strong magnetic
field gradient at reduced depth of the optical potential.
We then transfer the pure |1, 0〉 condensate to |2, 0〉 by a
fast (46 µs) microwave π-pulse. This π-pulse is also used
within the experimental sequence for “shelving” the pump
atoms.

DETECTION

After the experimental sequence we transfer the pump
atoms from |2, 0〉 to |1, 0〉 to switch off the nonlinear cou-
pling. State and lattice site resolved absorption imaging is
used after Stern-Gerlach separation and 1ms time of flight.
The components |1, 0〉 and |2,±1〉 are imaged simultane-
ously. The detection noise is determined by interleaved
control measurements, where the atoms remain in |1, 0〉
after mF cleaning. Extracting the background signal
for each mF = ±1 component (same elliptical regions
as in Fig. 1c) we find a Gaussian distribution of width
σ ≈ 4 atoms centered at ≈ 0.3 atoms. The background
offset might be caused by a slight tilt of the magnetic
field direction between the Stern-Gerlach pulses used for
cleaning and analysis and is subtracted for all data in the
manuscript.

HAMILTONIAN

The Hamiltonian of a spin-1 condensate in single spatial
mode approximation can be split into three contributions,
H = HSCC +Hel +HB [32].

The spin-changing collisions are described by HSCC =
~g(â0â0â

†
↓â
†
↑ + h.c.). For short evolution times the large

pump mode remains undepleted and its operator â0 can
be substituted by the c-number

√
N0e−iϑ with ϑ being

the pump phase. We choose ϑ = 0 in the main text.
Then HSCC takes the form of parametric amplification.
The second term, Hel = ~g(N0− 1/2)(N↑+N↓) describes
the collisional shifts arising due to s-wave scattering of
the three involved modes. HB = ~qB2(N↑ + N↓) with
q = 2π×72Hz/G2 contains the magnetic field dependence:
Spin-changing collisions are magnetically insensitive to
first order and only affected by the quadratic Zeeman
effect that shifts the states of

(
F =2
F =1

)
according to ∆E =(+

−
)
(4−m2

F )~qB2.

EFFECTIVE SPIN-1 SYSTEM

We use an effective three-level system within the physi-
cal F = 2 manifold, encompassing mF = 0,±1, which is
effectively described by the spin-1 Hamiltonian. Its asso-
ciated coupling strength gN0 ≈ 2π× 20Hz is one order of
magnitude larger than for F = 1. Spurious processes out
of the three-level system, e. g. 2×|2,±1〉 ↔ |2,±2〉+|2, 0〉
or 2×|2, 0〉 ↔ |2, 2〉+ |2,−2〉 are energetically suppressed
by the magnetic field shift and have a smaller coupling
strength [33].
The 1/e-lifetime of the large pump mode in |2, 0〉 is

200ms due to spin relaxation, while the small populations
in the side modes have a lifetime exceeding 1 s.

MICROWAVE DRESSING

To fulfill the spin-mixing energy resonance 2× |2, 0〉 ↔
|2, 1〉 + |2,−1〉, i.e., to compensate the energy shift of
Hel+HB , we use microwave dressing [34] 2π×110 kHz blue
detuned to the |1, 0〉 ↔ |2, 0〉 transition. The resonant
Rabi frequency of this magnetically insensitive transition
is Ω = 2π× 5 kHz and is stabilized by a power servo-loop.
To precisely match the energies we record SU(1,1) inter-
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Figure S1. Timing diagram. Microwave pulses used for state preparation and energy level shifting (dressing) are indicated in
the upper panel. The lower panels show the energy levels at each stage with the linear Zeeman shift subtracted.

ferometry fringes for both, different microwave dressing
detunings and durations of spin exchange. These fringes
are sensitive to the spinor phase accumulation during the
spin-changing collisions, ϕpulse. Since the term Hel yields
a dynamical phase mismatch (since it depends on the atom
number in the side modes) its compensation works best
for short times within the undepleted pump approxima-
tion. The microwave dressing is optimized such that this
spinor phase accumulation stays small, ϕpulse ≈ 10◦, for
the experimentally relevant evolution times of 6− 10ms.

VARIANCE OF THE TWO-MODE SQUEEZED
VACUUM STATE

Within the undepleted-pump approximation, each ini-
tially empty side mode population grows nonlinearly
with corresponding number fluctuations of (∆N↓)2 =
〈N↓〉 (〈N↓〉 + 1) and similarly for N↑. Due to the co-
variance of N↑ and N↓, the variance of N+ is twice
larger than the combined level of fluctuations, (∆N+)2 =
2((∆N↑)2 + (∆N↓)2) = 〈N+〉 (〈N+〉 + 2). Error bars of
variances are estimated by jackknife resampling.

PHASE IMPRINTING

To efficiently halt spin mixing, we transfer the pump
atoms to |1, 0〉 and stop microwave dressing. Without
this shelving of the pump, off-resonant spin mixing would
continue in F = 2 albeit microwave dressing is not applied.
In contrast, in F = 1 off-resonant spin mixing is negligible.
During this time, the phase 2ϕ0 of the pump mode

|1, 0〉 evolves at a rate of 4qB2 ≈ 2π × 240Hz compared
to the side modes |2,±1〉 due to the magnetic field. The

collisional shift of the pump, gN0 ≈ 2π × 20Hz, reduces
this rate to ω = 2π × 200Hz.

After a holding time of 0−5ms the pump is transferred
back to |2, 0〉 for the second spin-mixing period.

PHASE SENSITIVITY

Within the undepleted-pump approximation the fringe
is given by 〈N+〉 = V (1 + cosϕ) where V =
〈N inside

+ 〉 (〈N inside
+ 〉 + 2). Here, the phase is ϕ = ωt +

2ϕpulse with t being the interrogation time. The associated
variance is flattened around the dark fringe: (∆N+)2 =
2V (1 + cosϕ) + [V (1 + cosϕ)]2. The expected phase
sensitivity is given by (∆ϕ)2 = (∆N+)2/|d 〈N+〉 /dϕ|2 =

1
1−cos ϕ

[ 2
V + (1 + cosϕ)

]
[26].

COMPARISON TO LINEAR DETECTION
SCHEMES

In Fig. S2 we compare the phase sensitivities of different
interferometry scenarios when imperfect detection is taken
into account. For this, a probe state with the same mean
atom number of 2.8 as in the manuscript is considered.

When using the two-mode squeezed vacuum state as the
input for a Ramsey sequence, the Heisenberg limit (lower
horizontal gray line) can be attained by parity detection
[23]. However, already small detection deficiencies reduce
the sensitivity appreciably (blue dashed line). Detection
noise of σ2 = 0.1 atoms2 reduces the single-shot sensitiv-
ity from the Heisenberg limit to the Standard Quantum
Limit (SQL, upper gray line). For this calculation the
ideal number distribution of one component is convolved
with a Gaussian of variance σ2. The black dotted line
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Figure S2. Dependence of the phase sensitivity on detection
infidelities for different interferometry schemes. A probe state
with mean atom number 2.8 is used in all cases. The two gray
horizontal lines show the corresponding SQL and Heisenberg
limit, respectively. The phase sensitivity of a Ramsey-sequence
using a classical probe state is shown in black (dotted). Using
the entangled two-mode squeezed vacuum state at its input
allows reaching the Heisenberg limit. However, for linear
detection the parity needs to be detected, which is highly
susceptible to detection noise (blue dashed). The nonlinear
detection strategy employed in this manuscript is shown as
the solid red line. It features high phase sensitivities while
being robust towards detection noise.

shows the outcome of a Ramsey sequence employing a
classical coherent state as probe. Here, the readout is
the mean atom number difference which is robust against
detection noise. However, because no entangled probe
is used, the phase sensitivity is poorer than the SQL.
Our nonlinear detection scheme (red solid line) maps the
phase-dependence of the highly entangled probe state
onto the mean atom number. It therefore allows reach-
ing high phase sensitivities below the SQL even in the
presence of detection noise.

TRUNCATED WIGNER SIMULATION

We model the spin-changing collisions of the effective
three-level model using the truncated Wigner method
(TWM) [35–37]. The pump mode is represented initially
by a coherent state, while the side modes are taken to
be initially vacuum. Two-body loss is incorporated in
the TWM, and we use loss coefficients extracted from
experimental relaxation lifetimes [38]. The parameters of
the Hamiltonian are determined by a fit to the observed
time evolution of 〈N+〉.
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