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Quantum correlated twin atomic beams via photodissociation of a molecular
Bose-Einstein condensate
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We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of
strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum
squeezing in their relative numbers.
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The successful production of Bose-Einstein condens
~BEC! has led to measurements indicating that BECs h
coherence properties similar to lasers. This suggests tha
next stage in obtaining precision measurements in atom
tics is the production of atom beams with sub-Poisson
atom statistics—as has been widely demonstrated in pho
ics applications. Indeed, there is already some indirect
dence of atom-number squeezing, but experiments and t
retical proposals to date have focused on trapped conden
and phase-sensitive measurements@1–3#. A possible route
towards more robust phase-insensitive applications of ato
squeezing is to produce quantum correlated atom la
beams in which the correlations are directly built in the s
tistics of the particle numbers, as in parametric dow
conversion in quantum optics@4#. Quantum correlated or en
tangled photon pairs from parametric down-conversion
one of the most powerful resources of quantum optics,
our motivation here originates from the intriguing prospe
of possessing amatter-waveanalog of this resource. As we
as the immediate possibility of improved atomic interfero
etry, an exciting prospect would be the development of n
tests of quantum measurement theory for massive part
with spacelike separations, since all previous tests us
down-conversion methods were restricted to massless
tons.

In this paper we propose a robust scheme for achiev
strong quantum correlations between two counterpropaga
atomic beams, relying on the process of photodissociatio
a molecular Bose-Einstein condensate. Experiments tow
production of molecular condensates@5,6#, together with a
number of theoretical studies of coupled atomic-molecu
BEC systems are the subject of much intense activity
present@7–9#. We anticipate that the formation of a molec
lar BEC is a matter of time, and consider it as the start
point for a twin atomic beam experiment with relative ato
number fluctuations reduced below the level predicted
either thermal or coherent~Poissonian! statistics. The method
automatically yields two counterpropagating beams thro
momentum conservation, and is robust against changes i
mode structure, coupling constants, or even absorp
losses, provided they are small.

An important feature of our proposal is that it does n
rely on atomic interferometry or local oscillators to gener
the resulting correlations, which makes it more practical th
recent related proposals@2,3#. In addition, the presen
scheme is not susceptible to phase noise from self-ph
1050-2947/2002/66~3!/031602~4!/$20.00 66 0316
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modulation. In the following analysis, we first analyze a si
plified theory of a uniform, nondepleted molecular conde
sate, then include the effects of molecular trapping, dep
tion, phase diffusion and atomic losses.

The quantum-field-theory effective Hamiltonian for th
atomic (Ĉ1) and molecular (Ĉ2) fields, taken for simplicity
to be confined to one space dimension, is

Ĥ5Ĥkin1E dxH(
i

Vi~x!Ĉ i
†Ĉ i1(

i> j
Ui j Ĉ i

†Ĉ j
†Ĉ jĈ i

2 i
x~ t !

2
@eivtĈ2

†Ĉ1
22e2 ivtĈ2Ĉ1

†2#J , ~1!

with the commutation relation@Ĉ i(x,t),Ĉ j
†(x8,t)#5d i j d(x

2x8). Here Ĥkin stands for the usual kinetic energy term
Vi(x) is the trap potential~including internal energies!, U11
.4p\a1 /(Am1) is the atom-atom coupling constant in on
dimension, wherem1 is the mass,a is the three-dimensiona
S-wave scattering length, andA is the confinement area in
the transverse direction, with similar results for th
molecule-molecule and molecule-atomS-wave interactions.
The term proportional tox(t) describes a coherent proce
of molecule-atom conversion via either one- or two-phot
~Raman! photodissociation, wherex(t) is the coupling con-
stant related to the transition matrix element~s! and the am-
plitude~s! of the photodissociation laser~s! which have an
overall frequency~difference! v.

The time dependence ofx(t) controls the duration of dis-
sociation process and will be set tox(t)5x0u(t)u(t12t),
whereu is a step function. This means that the dissociat
can be stopped after a short-time intervalt1 followed by free
evolution of the atomic field. Starting from a pure molecu
condensate, the molecular field can be initially describ
semiclassically, via its initial coherent amplitudeC2(x,0)
5^Ĉ2(x,0)&. We assumen2(x)5uC2(x,0)u2 is the initial
molecular BEC density in a harmonic trap in the Thoma
Fermi limit, with the axial half-lengthx0.

The atoms are assumed to be untrapped longitudin
~they may be in anm50 magnetic sublevel! yet confined
transversely~they may be in a transverse optical trap!, so that
the atomic field can effectively be treated as a free o
dimensional field, initially in a vacuum state. On
dimensional trapping of condensates has been achieved
perimentally@10#, so this is not unrealistic. In what follows
©2002 The American Physical Society02-1
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we will neglect the atom-atom collisions for simplicity, ow
ing to the fact that we restrict ourselves to short interact
times during which the atomic density does not grow to h
values, so that the self-interaction term proportional toU11
can be neglected. In addition, we choose the absolute v
of the detuninguDu to be always nonzero and much larg
than the magnitude ofU12̂ Ĉ2

†Ĉ2& so that the atom-molecul
S-wave scattering is negligible too. The detuningD5V1(0)
2@V2(x0)1v#/2, where V2(x0)5V2(0)1U22n2(0), is
proportional to the energy mismatch between the atomic
molecular fields.

The system has a direct analogy with traveling-wave pa
metric down-conversion in nonlinear optics@11#. Here the
role of x0 is played by a nonlinear crystal with second-ord
susceptibilityx (2), and a finite interaction time is analogou
to the crystal lengthL5vt1 in the direction of propagation
where v is the group velocity of the fundamental~higher
frequency! beam. The detuningD is analogous to the optica
phase mismatch, while the atomic kinetic energy is ana
gous to dispersion.

To proceed with the analysis we introduce a characteri
length scaled0 and time scalet052m1d0

2/\. Next, transform
to dimensionless fields, in rotating frames:

ĉ1~j,t!5Ad0Ĉ1~x,t !ei [V2(x0)1v] t/2,

ĉ2~j,t!5Ad0Ĉ2~x,t !eiV2(x0)t,

wherej5x/d0 andt5t/t0 are the dimensionless coordina
and time. We also introduce dimensionless detuningd
5Dt0 and couplingk(t)5x(t)t0 /Ad0.

The Heisenberg equations of motion for the field ope
tors, in dimensionless form are

]ĉ1~j,t!

]t
5 i

]2ĉ1

]j2
2 idĉ11kĉ2ĉ1

† ,

]ĉ2~j,t!

]t
5

i

2

]2ĉ

]j2
2 i v̂2~j!ĉ22

1

2
kĉ1

2 , ~2!

together with the Hermitian conjugate equations. We h
introduced an effective potential v̂2(j)5@V2(jd0)
2V2(j0d0)#t01uĉ2

†ĉ2, whereu5U22t0 /d0, for notational
simplicity.

To gain some insight into the underlying physics of co
related atomic beams, we first consider an idealized and
lytically solvable model corresponding to an undepleted a
uniform molecular condensate at densityn2(0) that fills the
entire space from2 l /2 to l /2, with periodic boundary con
ditions at 2 l /2 and l /2. The atom-molecule couplingx
5x0 is assumed to be constant during the whole evolut
time from 0 tot. In this case the coherent amplitude of t
molecular field can be absorbed into an effective gain c
stantg5k0An2(0)d0 ~wherek05x0t0 /Ad0), which we as-
sume without loss of generality to be real and positive.

Solutions to the resulting linear set of equations of mot
for the atomic field are easily found in momentum spa
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where we expandĉ1(j,t) in terms of single-mode annihila
tion operators:ĉ1(j,t)5(qâq(t)eiqj/Al , whereq5d0k is a
dimensionless momentum. The single-mode operatorsâq sat-
isfy the usual commutation relations@ âq(t),âq8

† (t)#5dqq8 .
The corresponding Heisenberg equations of motion have
following solution:

âq~t!5Aq~t!âq~0!1Bq~t!â2q
† ~0!,

â2q
† ~t!5Bq~t!âq~0!1Aq* ~t!â2q

† ~0!, ~3!

where

Aq~t!5cosh~gqt!2 ilqsinh~gqt!/gq ,

Bq~t!5g sinh~gqt!/gq , ~4!

with lq[q21d, andgq5(g22lq
2)1/2. Solutions of this type

to the classical counterpart of the operator equations are
known in optics@11#, while in quantum optics the operato
equations in the context of squeezing of nonlinear propa
ing fields were studied in Ref.@12#.

Knowledge of the initial state of the atomic field, which
the vacuum state withâq(0)u0&50, allows us to calculate
any operator moments at timet. The parametergq is the
gain coefficient; if real, it causes a growing correlated out
for the momentum componentq, while if imaginary it leads
to oscillations.

For example, the particle number distribution in mome
tum space is given bŷâq

†(t)âq(t)&5Bq
2(t). For d,0, the

functionBq
2 has two distinct global maxima located atq val-

ues wherelq50. This gives the two most probable mome
tum valuesq056Audu, corresponding to a zeroeffective
phase mismatch term (q21d), providedd,0. The total av-
erage number of atoms^N̂(t)&5(q^âq

†(t)âq(t)& is given by

^N̂~t!&5(
q

~g/gq!2sinh2~gqt!, ~5!

which grows exponentially witht.
To analyze correlations and relative number squeez

we define particle number operatorsN̂2(t) andN̂1(t) con-
taining only negative or positive momentum components,
spectively,N̂2(1)(t)5(q,0(q.0)âq

†(t)âq(t). We next con-
sider the normalized varianceV(t) of the particle number
difference @N̂2(t)2N̂1(t)#, which—in the normally or-
dered form—is given by

V~t!511^:@D~N̂22N̂1!#2:&/~^N̂2&1^N̂1&!, ~6!

where DX̂[X̂2^X̂&, and V(t),1 implies squeezing of
fluctuations below the coherent level—which is due to qu
tum correlations betweenN̂2 and N̂1 .

Calculating^:(N̂6)2:& and ^N̂2N̂1&, and using the fact
that Bq

22uAqu2521, gives
2-2
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V~t!511 (
q.0

Bq
2~Bq

22uAqu2!/ (
q.0

Bq
250, ~7!

implying perfect ~100%! squeezing in the particle numbe
difference, at least in this idealized calculation.

We now turn to the analysis of a more realistic nonu
form case and include the molecular field depletion, as
scribed by the original coupled operator equations for
fields, Eqs.~2!. These are solved numerically using equiv
lent stochastic (c-number! differential equations in the
positive-P representation@13#, where we additionally in-
clude a coupling to an atomic loss reservoir to describe p
sible linear losses at a rateg,

]c1

]t
5 i

]2c1

]j2
2~g1 id!c11kc2c1

11Akc2h1 ,

]c1
1

]t
52 i

]2c1
1

]j2
2~g2 id!c1

11kc2
1c1Akc2h1

1 ,

]c2

]t
5

i

2

]2c2

]j2
2 iv~j,t!c22

k

2
c1

21A2 iuc2h2 ,

]c2
1

]t
52

i

2

]2c2
1

]j2
1 iv~j,t!c2

12
k

2
c1

121Aiuc2
1h2

1 .

~8!

Herec i andc i
1 are complex stochastic fields correspondin

respectively, to the operatorsĉ i and ĉ i
† , v(j,t)5@V2(jd0)

2V2(j0d0)#t01uc2c2
1 represents the effective potentia

andh i h i
1 are four real independent delta-correlated Gau

ian noise terms:̂h i(j,t)h j (j8,t8)&5^h i
1(j,t)h j

1(j8,t8)&
5d i j d(j2j8)d(t2t8).

We consider molecules as an initial coherent field cor
sponding to Thomas-Fermi inverted parabola for the mole
lar density. In this case, assuming thatc2(j,0) is real, we
have c2(j,0)5Ad0n2(j), where n2(x)5n2(0)@1
2(j/j0)2#u(j02uju). The molecular condensate axial ha
length is denoted viaj0, which is determined by the tra
geometry, and we assume repulsive molecule-molecule in
actions. The time duration for the molecule-atom convers
is controlled viak(t)5k0u(t12t), so thatk(t)50 for t
.t1. Once the dissociation is stopped, we continue the e
lution of the resulting atomic field in free space to allo
spatial separation of the modes with positive and negativq
values.

For spatially separated components, we can introduc
pair of particle number operators,

N̂2(1)~t!5E
2 l /2(0)

0(l /2)

ĉ1
†~j,t!ĉ1~j,t!dj. ~9!

Next, we define the normalized varianceV(t) of the particle
number difference@N̂2(t)2N̂1(t)# as before@see Eq.~6!#,
and evaluate the average values numerically using
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positive-P Eqs.~8! and the standard correspondence betw
the normally ordered operator averages and thec-number
stochastic averages@13#.

The results forV(t), the total number of atoms in the tw
beamsN1(t)5^N̂2(t)&1^N̂1(t)&, and the density distribu-
tion n1(j,t)5^ĉ1

†(j,t)ĉ1(j,t)& are represented in Fig. 1
for parameters that are reasonable in present experiments
including a linear atomic loss term as discussed below.

The initial growth of the fluctuations in the atom numb
difference, during the time interval when the atom-molec
coupling is switched on, is due to the fact that the quantit
^N2(t)& and^N1(t)& each include atoms traveling in oppo
site directions inside the molecular BEC region. The dens
distribution in coordinate space at this stage is single pea
due to the fact that it contains amplified contributions fro
both momentum components. The fundamental correla
of opposite momentum components is therefore not vis
in the atomic density initially. Once, however, the interacti
is switched off and the correlated atom pairs fly apart with
further parametric amplification, there is a double-peak
distribution, and we see a rapid reduction of the varian
below the coherent level,V(t),1.

The physical reason for the correlation is momentum c
servation, which requires that each emitted atom withq.0
be accompanied by a partner atom havingq,0. In order to
conserve energy, this pairing only occurs ford,0, which
allows the potential energy in the molecule to be conver
to atomic kinetic energy for selected modes withq values
aroundq056Audu.

As the scheme relies on conservation laws for its ope
tion, it should be insensitive to the exact mode structu
Clearly, quasi-one-dimensional~1D! traps are preferable fo
reasons of directionality, but we expect similar results eve
there is no transverse trap, provided that the molecules
confined in a high aspect-ratio~cigar-shaped! trap to allow
gain guiding of the atoms.

FIG. 1. Atomic densityn1(j,t), total number of atomsN1(t),
and the integrated varianceV(t), for 40 000 trajectory averages an
for: d525.0173104, u51.8, k0584, andg55 . The dimension-
less dissociation time in this simulation ist15831024. With the
choice of the length scaled0530m m and the mass of a87Rb atom,
we obtain the time scalet052.446 s, so thatt50.011 corresponds
to the total time windowt.27 ms, while the dissociation timet1

scales tot1.2 ms.
2-3
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Investigations of losses show that these have a mini
effect on squeezing, provided the atoms that are lost are
a fraction of the atoms produced. For example, including
atomic loss term at a rateg/2510, corresponding to the los
of ;10% of atoms during the free evolution time interva
gives V.0.07 att50.011 as shown in Fig. 1. This corre
sponds to a rather high (;93%) degree of squeezing belo
the coherent level. Additional effects may occur when th
is an atomic potential, or when there is a strong ato
molecule scattering, but this has very little effect on sque
ing whenudu@uuau, if ua is the scaled effective atomic po
tential.

The parameter values of Fig. 1 are derived using a len
scale ofd0530 mm taken to be equal to the molecular co
densate axial half-lengthRx , so that Rx[x05d0 and j0
51. We assume that the molecular BEC is formed in
highly elongated trap and at densities that satisfy the co
tions for the crossover from 3D to 1D~see, e.g., Ref.@10#!.
Assuming that the molecule-molecule scattering lengtha2 is
of the same order of magnitude as the scattering lengt
87Rb atoms, we takea25a155.4 nm. We also take the mo
lecular BEC linear density at the trap centern2(0)53.7
3107 m21 and an aspect ratio of 100. This implies that t
condensate transverse radius isR'50.3 mm, so that the 3D
peak density is about 3.2731019 m23. The initial total num-
ber of molecules isN251.483103. Using the value ofR' to
scale out the transverse confinement (A→pR'

2 ), we can
next estimate the one-dimensional values ofUi j andx0. The
1D value ofx0 is obtained according tox05x (3D)/ApR'

2 ,
where we takex (3D)5231027 m1/2/s @7#. The molecular
condensate half-length of 30mm corresponds to the tra
. A

in

V.

ev
-
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axial oscillation frequencyvx/2p54.1 Hz, where vx

5A2\U22n2(0)/(m2x0
2). We chooseD522.0513104 s21,

thus assuring that the the atom-moleculeS-wave scattering is

negligible in this calculation sinceuDu@uU12u^Ĉ2
†Ĉ2&,

whereU12 is estimated usinga12.29.25 nm@5#. The final
values of the parametersd, u, andk0 that we arrive at are
specified in the figure caption, together with the releva
time scales.

In summary, we have shown that photodissociation o
molecular BEC can provide a simple yet robust scheme
quantum squeezing of relative number fluctuations in t
counterpropagating atomic beams. The effects of molec
condensate trapping and depletion, molecular self-ph
modulation, and atomic absorption have all been included
our calculations. Our method does require high efficien
atom counting techniques@14#, which are currently the sub
ject of intensive activity.

Applications may emerge from the use of these quantu
entangled twin beams to produce a single beam with a w
defined particle number, which can be achieved by a dest
tive measurement on the partner beam. While this should
readily observable, even more subtle experiments may
feasible in future, including possible demonstrations
Einstein-Podolsky-Rosen correlations or Bell inequalit
@15# in matter-wave quadratures. Such experiments wo
open the way to novel tests of quantum mechanics for m
roscopic numbers of massive particles.

The authors gratefully acknowledge the ARC for the su
port of this work, and Professor A. Ben-Reuven for use
discussions.
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