RAPID COMMUNICATIONS

Quantum correlated twin atomic beams via photodissociation of a molecular
Bose-Einstein condensate
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We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of
strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum
squeezing in their relative numbers.
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The successful production of Bose-Einstein condensatesiodulation. In the following analysis, we first analyze a sim-
(BEC) has led to measurements indicating that BECs havelified theory of a uniform, nondepleted molecular conden-
coherence properties similar to lasers. This suggests that tlsate, then include the effects of molecular trapping, deple-
next stage in obtaining precision measurements in atom ogion, phase diffusion and atomic losses.
tics is the production of atom beams with sub-Poissonian The quantum-field-theory effective Hamiltonian for the
atom statistics—as has been widely demonstrated in photorgtomic (,) and molecular ¥ ,) fields, taken for simplicity
ics applications. Indeed, there is already some indirect evigg he confined to one space dimension, is
dence of atom-number squeezing, but experiments and theo-
retical proposals to date have focused on trapped condensates. - PN < ta
and phase-sensitive measuremdris3]. A possible route H_Hkin+f dx Z Vi(x)‘yi‘l’fr; Ui Wi W,
towards more robust phase-insensitive applications of atomic
squeezing is to produce quantum correlated atom laser X() s e oy
beams in which the correlations are directly built in the sta- - T[e WoWi—e W Ty, @
tistics of the particle numbers, as in parametric down-
conversion in quan}um optidd]. Quantum correlated Or eN- yith the commutation relatiop¥, (x,t), W1 (x’,t)]= &, 8(x
tangled photon pairs from parametric down-conversion are _, - L :
one of the most powerful resources of quantum optics, an@X )'. Here Hy, standg fqr the.usgal Kinetic energy term,
our motivation here originates from the intriguing prospect i(x) is the trap _potentla(mcludlng '”te”ﬁa' e”erg'QSF’n
of possessing matter-waveanalog of this resource. As well :.47#“"}1/ (Amy) is the atom-atom coupling constant in one
as the immediate possibility of improved atomic interferom-d'mens'on' Wh?“'*“l Is the massa IS the three-dlmensmngl
etry, an exciting prospect would be the development of newp Wave scattering length, andl is the confinement area in

tests of quantum measurement theory for massive particletgeI tralnsverlse ldlrec(tjmn, IWItT stlmllar re_smilts Epr the
with spacelike separations, since all previous tests usingi©/écule-molecule and molecule-atdwave interactions.

down-conversion methods were restricted to massless phd 1€ term proportional tq(t) describes a coherent process
tons. of molecule-atom conversion via either one- or two-photon

In this paper we propose a robust scheme for achieving?@man photodissociation, wherg(t) is the coupling con-
strong quantum correlations between two counterpropagatingi@nt refated to the transition matrix elementind the am-
atomic beams, relying on the process of photodissociation dflitude(s) of the photodissociation ladey which have an
a molecular Bose-Einstein condensate. Experiments toward¥erall frequency(difference o. _ _
production of molecular condensatgs 6], together with a The time dependence f(t) controls the duration of dis-
number of theoretical studies of coupled atomic-moleculaBociation process and will be set kdt) = xo6(t) 6(t;—t),
BEC systems are the subject of much intense activity ayhere ¢ is a step function. Th.IS means that the dissociation
presen{7-9]. We anticipate that the formation of a molecu- ¢&n be stopped after a short-time intertsafollowed by free
lar BEC is a matter of time, and consider it as the S»[(,Jlrtmgevolutlon of the atomic field. Startlng from a pure molecglar
point for a twin atomic beam experiment with relative atom-condensate, the molecular field can be initially described
number fluctuations reduced below the level predicted bysemiclassically, via its initial coherent amplitud,(x,0)
either thermal or coherefPoissonianstatistics. The method ={W¥,(x,0)). We assumen,(x)=|¥,(x,0)|? is the initial
automatically yields two counterpropagating beams througtmolecular BEC density in a harmonic trap in the Thomas-
momentum conservation, and is robust against changes in tleermi limit, with the axial half-lengttx.
mode structure, coupling constants, or even absorptive The atoms are assumed to be untrapped longitudinally
losses, provided they are small. (they may be in aitm=0 magnetic sublevglyet confined

An important feature of our proposal is that it does nottransverselythey may be in a transverse optical trago that
rely on atomic interferometry or local oscillators to generatethe atomic field can effectively be treated as a free one-
the resulting correlations, which makes it more practical thardimensional field, initially in a vacuum state. One-
recent related proposalg2,3]. In addition, the present dimensional trapping of condensates has been achieved ex-
scheme is not susceptible to phase noise from self-phaggerimentally[10], so this is not unrealistic. In what follows,
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we will neglect the atom-atom collisions for SlmpIICIty, OW- where we expana/l(é‘:, 7—) in terms of Sing|e_mode annihila-

ing to the fact that we restrict ourselves to short interaction[i 5 _< 2 iq¢ _ ;

. . . ) ; -~ lion operators ,7)=Zq84(7) eI, whereq=dyk is a
times during which the atomic density does not grow to h|ghd_ p_ | Ya(&,7)=2q ‘EIS;) ) \I[ g 4=
values, so that the self-interaction term proportionalltg ~ ° Imensioniess momentum. € glngAe-moAs operalpsst-

can be neglected. In addition, we choose the absolute valdgfy the usual commutation relatiofigy(7),a,, (7)]= éqq -

of the detuning/A| to be always nonzero and much larger The corresponding Heisenberg equations of motion have the
than the magnitude a8, ¥ }¥,) so that the atom-molecule ollowing solution:

Swave scattering is negligible too. The detunitgV,(0)

—[Va(Xo)+ @]/2, where Va(xg)=V5(0)+Uyn,(0), is a4(7)=Aq(7)ag(0) +By(1)al 4(0),
proportional to the energy mismatch between the atomic and
molecular fields. éiq(r) =By T)éq(O)+A§(7)éiq(0), ©)

The system has a direct analogy with traveling-wave para-
metric down-conversion in nonlinear opti€sl]. Here the \here
role of x, is played by a nonlinear crystal with second-order

susceptibilityy(?), and a finite interaction time is analogous Aqy(7)=cost{gy) —iNgsinh(gq7)/gq,
to the crystal length. =v 7, in the direction of propagation,
wherev is the group velocity of the fundamentéhigher Bq(7) =g sinh(gqn)/gq, (4)

frequency beam. The detuning is analogous to the optical

phase mismatch, while the atomic kinetic energy is analoyith Nq=0%+ 5, andg,=(g>—\2)* Solutions of this type

gous to dispersion. _ _ . to the classical counterpart of the operator equations are well
To proceed with .the analysis we |n2troduce a characteristignown in optics[11], while in quantum optics the operator

length scalel, and time scalé,=2m;dg/%. Next, transform  gquations in the context of squeezing of nonlinear propagat-

to dimensionless fields, in rotating frames: ing fields were studied in Ref12].
- . {[Vo(xc)+ 01172 Knowledge of the initial state of the atomic field, which is
da(€,7) = dg W (x, ez ’ the vacuum state witl,(0)|0)=0, allows us to calculate
N N " any operator moments at time The parameteg, is the
o £,1)=doW o(x,1)eV2L0), gain coefficient; if real, it causes a growing correlated output

i i i for the momentum componeqt while if imaginary it leads
whereé=x/d, and r=t/t, are the dimensionless coordinate {4 oscillations.

and time. We also introduce dimensionless detuning For example, the particle number distribution in momen-

= Aty and couplingx(t) = x(t)ty//d,. L ~tooan _R2 _
The Heisenberg equations of motion for the field opera-tum gpacez IS given bYaq(r)aq(T)> Bq(.T)' For <0, the
o . function B has two distinct global maxima locatedval-
tors, in dimensionless form are g S
ues where\ ;= 0. This gives the two most probable momen-
tum valuesqo=t\/|7|, corresponding to a zereffective

R )
Iul&,1) _i? ¥ —i 8+ ki, phase mismatch terngf+ ), providedd<0. The total av-

aT 0&2 S e /Ty .
erage number of atom(®( 7)) =X 4(aq(7)aq(7)) is given by
W) PP .1, A .
T Tz g ikl @ (R(m)=2] (9/gq) sintF (g7, (5)
together with the Hermitian conjugate equations. We havevhich grows exponentially wittr.
introduced an effective  potential v,(&)=[V,(£do) To analyze correlations and reAIative numAber squeezing,
—V,(&odo) Jto+ Ui ik, Whereu=U ty/dy, for notational ~We define particle number operatd¥s (1) andN, (7) con-
simplicity. taining only negative or positive momentum components, re-

To gain some insight into the underlying physics of Cor-spectively,N_(+)(T)=Eq<0(q>o)é£(r)éq(r). We next con-
related atomic beams, we first consider an idealized and angider the normalized variancé(7) of the particle number
lytically solvable model corresponding to an undepleted angjitference [N,(r)— N+(7')], which—in the normally or-
uniform molecular condensate at densi(0) that fills the  gered form—is given by
entire space from-1/2 to 1/2, with periodic boundary con-
ditions at —1/2 and /2. The atom-molecule coupling _ . SR V2 z <
= Xo is assumed to be constant during the whole evolution V(N=1+CIAN-=NOFH NN, ©
time from O tor. In this case the coherent amplitude of the
molecular field can be absorbed into an effective gain con
stantg= x¢\/n,(0)d, (Where ko= xoto/\do), which we as- ) N N
sume without loss of generality to be real and positive. ~ tUm correlations betweeN . andN, .

Solutions to the resulting linear set of equations of motion ~ Calculating({:(N.)?:) and(N_N,), and using the fact
for the atomic field are easily found in momentum spaceihatB§—|Aq|2= —1, gives
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where AX=X—(X), and V(7)<1 implies squeezing of
fluctuations below the coherent level—which is due to quan-
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V(n=1+ X BY(Bi-|A*)/ X Bi=0,  (7) 100 I
q>0 q>0 -
. . - . . Z 50
implying perfect(100% squeezing in the particle number
difference, at least in this idealized calculation. 0
We now turn to the analysis of a more realistic nonuni- 0 15031 10

form case and include the molecular field depletion, as de-
scribed by the original coupled operator equations for the
fields, Egs.(2). These are solved numerically using equiva-
lent stochastic ¢-numbej differential equations in the >2
positiveP representatiorf13], where we additionally in- |-t
clude a coupling to an atomic loss reservoir to describe pos- 0

sible linear losses at a rate 0 1%31 10
Py, . 521//1 . N FIG. 1. Atomic densityn,(&,7), total number of atomsl,(7),
il Py —(y+i0) 1+ kipaipy ki1, and the integrated variand4 7), for 40 000 trajectory averages and
for: 6= —5.017x10%, u=1.8, k=84, andy=5 . The dimension-
less dissociation time in this simulation 1§=8X 10" 4. With the
by N choice of the length scati, =30 x m and the mass of ¥Rb atom,

_ : + + +
o = Py —(y=i0) ¢y +ripy g+ ~riham, we obtain the time scallg=2.446 s, so that=0.011 corresponds
to the total time windowt=27 ms, while the dissociation tims;
scales tat;=2 ms.

d i 9° K
% =5 l'/;z —iv(& 1) ih— > <//§+ N=iusn,, positiveP Egs.(8) and the standard correspondence between
T 3 the normally ordered operator averages and dfreimber
stochastic averagg43].
Iy i 9%y The results fol(7), the total number of atoms in the two

= Fiv(Em) i = 5 i g g X < ity distri
ar 2 92 Y2 o9 272 - beamle(r)=<[\l_(r)>j-<N+(r)>, and the density distribu-
(8  tion ny(&,7)=(J1(& 1) h1(£,7)) are represented in Fig. 1,
for parameters that are reasonable in present experiments and
Herey; andy; are complex stochastic fields corresponding,including a linear atomic loss term as discussed below.

respectively, to the operatot and i, v(&,7)=[V,(&do) The initial growth of the fluctuations in the atom number
—V,(&do) Tto+ Uty represents the effective potential, difference, during the time interval when the atom-molecule
and 7, 7' are four real independent delta-correlated Gauss%ﬁ“?t?? ;Sn jzvllltc?i)(; ?ag,cﬁ i?}‘éﬁj;?g;;?g:gjéms icr]]ugggges
H H ’ I\ — + + ’ ’ — -
ilr(\si?g(lze_ tge,r)rg(siz,g)r) n(& 7)) = (i (1) (61.7) site directions i;sidg the molecular BEC region. The density
We consider molecules as an initial coherent field correJiStrioution in coordinate space at this stage is single peaked,
due to the fact that it contains amplified contributions from

sponding to Thomas-Fermi inverfced parabolaf_orthe mOIeCUboth momentum components. The fundamental correlation
lar density. In this case, assuming that(£,0) is real, we )

R - of opposite momentum components is therefore not visible
ha(vgg )deo((gg’O)_|§|;jOt]l'zh(eg)rholet\:lrjrlgion(;]ezﬁ)é;;engi?azl[ ilalf in the atomic density initially. Once, however, the interaction
- 0 o 1&1)- -

| his d dvi hich is d ined by th is switched off and the correlated atom pairs fly apart without
ength is denoted vido, whic IS determined Dy the trap g, e parametric amplification, there is a double-peaked
geometry, and we assume repulsive molecule-molecule inte

X . . ""CHistribution, and we see a rapid reduction of the variance
actions. The time duration for the molecule-atom CONVersion 1o the coherent leve\/(7)<1
is controlled viar(7) =ro0(71~ 7), so thatk(r)=0 for 7 The physical reason for the correlation is momentum con-
=>7,. Once the dissociation is stopped, we continue the evogeation “which requires that each emitted atom \gith
lution of the resulting atomic field in free space to allow

. X . - " be accompanied by a partner atom havisg0. In order to
spatial separation of the modes with positive and negative conserve energy, this pairing only occurs @0, which

values. ) , allows the potential energy in the molecule to be converted
For spat'lally separated components, we can introduce b atomic kinetic energy for selected modes wittvalues
pair of particle number operators, aroundgy= = [J|
o=*]d|.

A o) A ~ As the scheme relies on conservation laws for its opera-
N—(+)(T)=f PL(E7) (€, 7)dE. (9)  tion, it should be insensitive to the exact mode structure.
—1/12(0) Clearly, quasi-one-dimensionélD) traps are preferable for
_ ) ) ) reasons of directionality, but we expect similar results even if
Next, we define the normalized varianggr) of the particle  there is no transverse trap, provided that the molecules are
number differencéN_(7) —N_(7)] as befordsee Eq(6)], confined in a high aspect-ratiigar-shapedtrap to allow
and evaluate the average values numerically using thgain guiding of the atoms.
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Investigations of losses show that these have a minimaxial oscillation frequencyw,/27=4.1 Hz, where wy
effect on squeezing, provided the atoms that are lost are only ¢2ﬁU22n2(0)/(m2xS). We choose\ = —2.051x 10* s,
a fraction of the atoms produced. For example, including aRhys assuring that the the atom-molecBiwave scattering is
atomic loss term at a ra_tﬂ2= 10, correspondlng to the loss negligible in this calculation sinch|>|U12|<‘ifg\i'2>,
of ~10% of atoms during the free evolution time interval, . . . ,

whereU, is estimated usin@;,=—9.25 nm[5]. The final

givesV=0.07 at7=0.011 as shown in Fig. 1. This corre- | f th t dxn that i t
sponds to a rather high<(93%) degree of squeezing below Y2'U€S OTIN€ parame oF% U ando ihat we arrive a are

the coherent level. Additional effects may occur when therePecified in the figure caption, together with the relevant
is an atomic potential, or when there is a strong atom{ime scales. o
molecule scattering, but this has very little effect on squeez- N summary, we have shown that photodissociation of a
ing when|8|>|uy|, if u, is the scaled effective atomic po- molecular BEC can provide a simple yet robust_sche_me for
tential. quantum squeezing of relative number fluctuations in two
The parameter values of Fig. 1 are derived using a lengtfounterpropagating atomic beamg. The effects of molecular
scale ofdy=30 «m taken to be equal to the molecular con- condensate trapping and depletion, molecular self-phase

densate axial half-lengtiR,, so thatR,=x,=dy and &,

=1. We assume that the molecular BEC is formed in &

modulation, and atomic absorption have all been included in
ur calculations. Our method does require high efficiency

highly elongated trap and at densities that satisfy the condi@tom counting techniqueid4], which are currently the sub-

tions for the crossover from 3D to 1(3ee, e.g., Ref10]).
Assuming that the molecule-molecule scattering leragtls
of the same order of magnitude as the scattering length
8Rb atoms, we taka,=a,;=>5.4 nm. We also take the mo-
lecular BEC linear density at the trap centes(0)=3.7
x 10" m~ ! and an aspect ratio of 100. This implies that the
condensate transverse radiusiis=0.3 um, so that the 3D
peak density is about 3.2710'° m~3. The initial total num-
ber of molecules idN,=1.48x 10°. Using the value oR, to
scale out the transverse confinemeAt— wa), we can
next estimate the one-dimensional valuet)gfandy,. The
1D value of y, is obtained according tgo= x°/\/7R?,
where we takey®*®=2x10"7 m¥%s [7]. The molecular
condensate half-length of 3pm corresponds to the trap

ject of intensive activity.

Applications may emerge from the use of these quantum-
ntangled twin beams to produce a single beam with a well-
efined particle number, which can be achieved by a destruc-

tive measurement on the partner beam. While this should be
readily observable, even more subtle experiments may be
feasible in future, including possible demonstrations of

Einstein-Podolsky-Rosen correlations or Bell inequalities

[15] in matter-wave quadratures. Such experiments would
open the way to novel tests of quantum mechanics for mac-
roscopic numbers of massive particles.
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