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The spectral, correlation, and noise properties of squeezed light generated as a result of 
intracavity four-wave mixing (FWM) above threshold under the influence of two pump fields 
of different frequencies are studied. The effects of quantum fluctuations in the intensity 
spectra and the spectra of intensity fluctuations of the cavity-output modes of radiation, as well 
as the two-time correlation functions of fluctuations of the photon numbers and phases 
of the intracavity modes, are considered. Spectra of fluctuations of the difference and sum of 
the quadrature components of pairs of correlated modes as applied to measurement of 
the quantum noise level by the twin-homodyning method are studied. As a result, squeezing 
of fluctuations in the difference and sum of the quadratures, which determine the phase 
and amplitude fluctuations, respectively, is found. It is shown that the squeezing effects in these 
cases are caused by a positive correlation between the phase fluctuations of the modes, 
or by a negative correlation between their intensity fluctuations. 

1. INTRODUCTION 

One direction taken recently by optical studies which 
deserves special attention is the theoretical analysis and 
experimental realization of efficient schemes for producing 
strong optical fields in quantum states, in particular 
squeezed light. In optical circuits based on the interaction 
of electromagnetic modes in a nonlinear medium in a cav- 
ity this problem often rests on the possibility of analyzing 
the quantum fluctuations and the effects of mode correla- 
tions in the above-threshold generation regime. Up to the 
present time this analysis has been carried out in most 
detail for processes such as nondegenerate parametric gen- 
eration of light and four-wave mixing in a monochromatic 
pump field (see, e.g., Refs. 1-6 and the earlier work cited 
there). The results relate in particular to the spectra of 
squeezed fluctuations of two-mode quadrature 
~ o m ~ o n e n t s , " ~  fluctuations in the sum or difference of the 
inten~ities,"~'~-~ and to the phase sums of the radiation 
fields of two correlated modes. 

Kryuchkyan and ~ h e r u n t s ~ a n ' ~ " ~  have proposed a 
difference scheme for obtaining intense nonclassical light, 
based on four-wave mixing in an optical cavity subjected to 
two laser fields with different frequencies. In this process 
the two pump modes with frequencies w, and w2 lead to the 
formation of a signal mode with frequency oo such that 
w, + w2 = 2w0. The main advantage of this process in com- 
parison with nondegenerate parametric light generation 
and four-wave mixing is that it is possible to produce in- 
tense single-mode squeezed light near the frequencies of 
each of the modes wo, o l ,  and o2 in the above-threshold 
regime. This means that the proposed scheme is a possible 
way to produce a laser without population inversion for 
squeezed light. The process also gives rise to a different 
nonclassical effect, the suppression of quantum fluctuations 
in the sum of the intensities of the wl and w2 modes below 
the corresponding vacuum level. l2 

This work is a continuation of our previous s t u d i e ~ l ~ ' ~  
and is aimed at further investigating the properties of non- 
classical light in four-wave mixing in two laser fields. In 
this paper two sets of questions are treated. In one of them, 
which relates to the "conventional" design of experiments, 
nonclassical effects in optical spectra are studied. With this 
in mind we have calculated the intensity spectra (Sec. 3) 
and the spectra of the intensity fluctuations (Sec. 4) for 
each of the modes wo, o l ,  and w2 at the output from the 
cavity. We show that the intensity spectra together with a 
&function peak corresponding to the coherent part of the 
radiation contain all the spectrally broadened incoherent 
parts produced by the quantum fluctuations of the photon 
number and phases of the three modes. When the time 
correlations of these fluctuations have an oscillatory nature 
the incoherent part of the spectrum acquires a structure 
with four peaks. Under these same conditions, however, 
the intensity fluctuation spectra have two peaks. 

Another set of questions relates to the treatment of the 
quantum-statistical properties of light due to correlations 
in phase and amplitude or intensity between the modes mi 
and w, (i, j =0,1,2). We have investigated the suppression 
of the quantum fluctuations of the sum or difference of 
phase-dependent quadrature components for pairs of cor- 
related modes oi,wj below the corresponding vacuum level 
(Secs. 5-8). These questions are considered in connection 
with the recently devised twin-homodyning experimental 
scheme with two reference waves (see, e.g., Refs. 13 and 
14). 

It is appropriate now to mention the fundamental 
properties of four-wave mixing in two laser fields which 
stem from the new results in the present work. One of these 
is that in the above-threshold regime, on account of the 
absence of phase diffusion, the quantum-statistical averages 
of the amplitudes of the light fields at the output from the 
cavity near each of the frequencies oj have definite phases 
and are nonzero. It follows, in particular, that single-mode 
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squeezed coherent states arise in this process. In the 
scheme for measuring the fluctuations of the sum or dif- 
ference of the field quadratures, this property implies that 
for certain fixed ratios of the phases of the fields and ref- 
erence waves these fluctuations will be manifested either 
through phase fluctuations or intensity fluctuations of the 
modes. 

For comparison let us recall that in nondegenerate 
parametric light generation and four-wave mixing in the 
above-threshold regime only the sum of the phases of the 
signal and parasitic modes is determined, while the phases 
of each of these modes separately are determined through 
the diffusion of the phase differen~e.',~,'~ This fact restricts 
the possibility of studying phase-dependent nonclassical ef- 
fects for these systems, e.g., single-mode squeezed states. In 
addition, this implies that fluctuations of the sum or dif- 
ference of the components in quadrature are determined by 
the contributions of the phase fluctuations and mode in- 
tensities simultaneously for any choice of the reference 
wave~.l '~ 

As a consequence, in the present work the following 
quantum fluctuation suppression effects are found. For the 
case in which the phase fluctuations of the fields dominate, 
we find that fluctuations of the quadrature difference be- 
tween the pump modes wl and w2 are squeezed, along with 
those between the wo signal mode and both of the other 
modes wl and w2 (Secs. 5 and 7). This effect is close to 
100% squeezing and is a consequence of the strong positive 
correlation between the phase fluctuations of the modes. 

When the amplitude fluctuations dominate, squeezing 
occurs for the sum of the quadrature components. This is 
caused by the negative correlation between the intensity 
fluctuations of these modes (Sec. 8). 

2. NONLINEAR SYSTEM AND LINEARIZED EQUATIONS OF 
MOTION 

This system is based on the following phenomenolog- 
ical model of parametric four-wave interaction in a cavity 
acted on by two laser fields. The nonlinear medium, de- 
scribed by the third-order susceptibility X(3), is in an an- 
nular cavity with eigenfrequencies coo ,w , ,w2. Collinear 
mixing takes place with pump modes wl and o2 and signal 
modes with frequency coo such that ol +oz=2wo, together 
with the resonance condition k, + k2 = 2ko between the 
wave vectors of the modes. The pump modes are perturbed 
by two external coherent fields with frequencies wl and w2 
such that the mode wo is excited spontaneously. Attenua- 
tion of the three modes on account of the cavity mirror is 
taken into account, and for simplicity we neglect the de- 
tuning of the cavity. This system can be described by the 
Hamiltonian 

where af ,aj are the creation and annihilation operators of 
the three modes w, (j=0,1,2) in the cavity, x/2 is the 
effective coupling constant, are the complex ampli- 
tudes of the perturbing fields in the cavity, and the reser- 
voir operators J?f , r ,  describe the damping of the modes 
wj in the cavity with damping rates or cavity linewidths y, 
respectively. ' ) 

In our previous work" we used the Fokker-Planck 
method developed by Drummond and ~ardiner" in the 
positive P representation to derive random equations of 
motion for the c-number functions af , a j  corresponding to 
the slowly varying time-dependent operators af ,aj, and 
equations for the quantities 

describing the intensities (in units of photon number) and 
phases of the modes o,. The remaining analysis of the 
quantum fluctuation effects of the radiation modes in the 
above-threshold regime is carried out by linearizing the 
equations of motion for the quantity nj(t) and $,(t) by 
introducing small perturbations (fluctuations) 

about the corresponding time-independent quantities nq 
and $7. 

The systems of linearized stochastic equations of mo- 
tion for the Fourier components Snj(o), &$,(o) of the 
fluctuations Sn,(t) in the intensity and &$,(t) in the 
phases for the modes wj in matrix form finally becomelo 

Here the matrices A and 2 are equal to 

27' -Yo -Yo 1.: Y o  

Ydto Ydto 
7 -0 
n2 2n2 

I is the unit matrix, y= yl = y2 is the cavity width, assumed 
to have the same value for the pump modes o1 and w2, and 
6n, a$, F, and f denote column vectors of the form 
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x= (xo,xI ,x2) T. The quantities Fj and f j  are zero-mean 
Gaussian noise terms and the following nonzero autocor- 
relations: 

(Fo(w)Fo(o')) =2yon#(w+wf), 

We note also that the results given here and in what 
follows reflect the case of equal amplitudes and arbitrary 
phases for the perturbing fields: El,2 = E exp (i@1,2). 

We also introduce the results (needed in what follows) 
for the quantities n: and $: in the above-threshold gener- 
ation regime for EE E/Eth > 1, where Eth= y( y&) 1/2 is 

the threshold value of the amplitudes E of the perturbing 
fields. In this regime we must distinguish two types of 
stationary solution. 

The first of these is stable in the range 1 < E < 2 and 
.takes the form 

0 0 n:=2y(~-- I ) / ~ ,  nl=n2= ydx,  (9) 

*:=($;+$;)/2, $?=@1, $;=@2, (10) 

where @l,2 are the phases of the perturbing fields 
The other solutions are stable in the region E > 2 and 

have bistable behavior: 

n: = 2 y/x, (11) 

Here the stationary values of the phases $: are the same for 
the solutions ( 1 la)  and ( 1 lb) and are identical with ( 10). 

The values E= 1, 2 are instability points of the system, 
since the time-independent solutions there are unstable. 

3. INTENSITY SPECTRA AND CORRELATION FUNCTIONS 
OF THE FLUCTUATIONS 

Let us consider the spectra of the light intensity at the 
output of the cavity near each of the modes mi. These are 
given by the expression 

d~ exp[i(w-%)TI (bf (t)b,(t+r)), 

(12) 

where b, are the field amplitude operators at the output 
from the cavity near w,. For the case we are considering, 
in which the input and output radiation are obtained at one 
of the mirrors of the annular cavity, they are related to the 
corresponding operators cj at input and the operators a, as 
follows (see, e.g., Ref. 19): 

bj= &aj--cj, (j=0,1,2), 

where the corresponding commutators are 

[b;(t),bf ( t ' ) ]  = [c;(t),c; (t')] =SijS(t-t' ). 

The next stage of the calculations using Eqs. ( 12) and 
( 13) is carried out using the c ~ r r e s ~ o n d e n c e ' ~ * ~ ~  between 
the normal-ordered averages of the operators af ,a, and 
the averages in the P representation of the numerical func- 
tions a f  ,a,, along with the S-correlation properties of the 
noise terms. After elementary manipulations we find to 
lowest order in the fluctuations 

Here we have written R = o -  wj and b: are the coherent 
component of the field amplitudes at the output of the 
cavity, equal to 

b:= &oa!:, byt2= &ayP2- (~1,2), (15) 
0 0 1/2 where a,= (n,) exp(i$:). 

Thus, the intensity spectra near the frequencies w =oj 
contain a narrow S-function peak corresponding to the co- 
herent contribution. The integrated intensities of the peaks 
or the average photon numbers per unit time of each mode 
at the output of the cavity, calculated in the semiclassical 
approximation using Eqs. (9) and (1 1) in the range 
1 <e<2,  are 

and in the region E >  2 are equal to 

The spectral broadening is due to the quantum fluctu- 
ations of the radiation field, and in lowest order is deter- 
mined by the correlation functions of the second-order 
fluctuations of the photon number and phases of the 
modes wj . 

We turn now to the evaluation of these quantities. Us- 
ing the solutions of Eqs. (4) and the noise correlations (7), 
we find after some algebraic manipulations 
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In these expressions the quantity d(R), defined as the 
determinant of the matrix A-iQI, is equal to 

d ( n )  = Idet(A-iaI) 12/(?y6) 

%(to a NJo) b 

=4[r(a/yo)2-2q-p12+ ( ~ / ~ ~ ) ~ [ ~ ( ~ / y ~ ) ~  

+q-2rp- 112, (19) 

where we have used the notation 

100- 

50- 

The parameters 41.2, p, and q are different in the generation 
regimes ( 1 ) and (2), where they are respectively equal to 

FIG. 1. a) Intensity spectrum No(o)  of the signal 
40 - mode as a function of (o-wo)/yo for ~=2 .2 ,  

d l'l r=0.1 (solid); ~ = 2 . 2 ,  r=0.02 (dashed); and 
II II 
I I  I I 

~ = 3 ,  r=0.02 (chain curve). b) Spectra of the 

I \  I I  intensity Nk(w), (k=  1,2) for the pump modes o, 
I \  l l  and w2 as a function of (w-wk)/y. The spectral 
I I  I I  curves coincide in the region 1 < E < 2, where 

for the solutions ( 1 la) and 

q 1 , 2 = 2 / ( E 2 - 2 7 ~ ~ )  

I \  I \  I -n2 0 holds, and differ from one another in the 
region ~ > 2 ,  where ny#n! holds. The curves 

0 shown for the region E > 2 correspond to a pump 
wave which drops off in intensity, with the param- 

-30 -20 -I0 O lo  20 30 - '  -'" O O" l 5  eters E= 1.8, r=0.01 (dashed); r=2.2, r=O.ol 
(0-00 ) / x )  ( 0  wl: )ly 

(solid); and ~ = 6 ,  r=0.01 (chain curve). 

for the solutions ( 1 lb), where for both cases ( 1 la)  and 
( 1 lb) we have 

p=~'-2,  q=1, ( ~ > 2 ) .  (23) 

Note also that at "zero" frequency, the quantity d(0) 
is equal to 

i.e., at the frequencies w=o, and at the instability points 
E= 1,2, the averages ( 18) diverge, the magnitude of the 
quantum fluctuations grows without bound, and the results 
of the linearized theory become inapplicable. 

The averages to second order in the phase fluctuations, 
which, as shown in Ref. 10, determine the minimum spec- 
tra for squeezing of the quadrature components of the 
modes o,, are2) 

where 

and d(0) =4.s2 throughout the entire above-threshold re- 
gion E > 1. 

We mention here the results of studying the intensities 
Nj(o)  of the modes wj in the absence of the coherent 
components -- S(w - mi). Analysis of Eqs. ( 14), ( 18), 
( 19), (25), and (26) shows that in the range 1 < E < 2 and 
for r(1, the spectra take the form of a single peak at the 
central carrier frequency o, , whose height depends only on 
E and whose width is determined by the ratio r=  ydy. As 
r increases, the spectra broaden and in addition to the 
central peak two symmetric peaks at sideband frequencies 
develop, the height and location of which are determined 
by the parameters E and r. In the region E > 2 the form of 
the intensity spectra becomes more complicated. Depend- 
ing on the values of E and r, which determine the magni- 
tudes of the contributions of the phase and photon-number 
fluctuations in the expression (14) for the spectrum, two 
or four peaks can develop, located symmetrically with re- 
spect to the central frequency o,. Figure 1 shows a plot 
illustrating this with the intensity of the signal mode and 
one of the pump modes. 

626 JETP 78 (5), May 1994 G. Yu. Kryuchkyan and K. V. Kheruntsyan 626 



For a more detailed analysis of the situation we should 
keep in mind that the broadening and structure of the 
spectra are determined by the contributions of the Fourier 
components of the two-time correlation functions 
(Snj(t)Snj(t+r)), (S$,(t)Sfi(t+~)), and depend on the 
nature of the correlations of the instantaneous fluctuations. 
From the results of the calculations given in the Appendix 
[see Eqs. (A1 ) and (A2)] we see that the T dependence of 
these correlation functions is given respectively by the ex- 
ponential factors exp ( - A, 1 T 1 ) and exp ( - A m \  T 1 ), where 
A,, 1, (m= 1,2,3) are the eigenvalues of the matrices A 
and 2 given in Eq. (6). For the parameters E and r, for 
which and Xlr2 are real (note that A3 and X j  are real for 
arbitrary E and r) the fluctuation correlations die out 
monotonically with increasing T, and the spectra have the 
same form, with a width given by the damping rate of the 
correlations. Splitting of the spectra occurs for values of E 

and r that yield complex values and In this case, 
as shown in the Appendix, the correlation functions are 

xexp(-X')rI )+E3,pPexp(-&1~) 1, (28) 

where we have written p= j + 1, A' =Re AIg2, X ' = R ~  
and they behave as damped oscillations whose frequencies 
are determined by the imaginary parts of the eigenvalues 
A"=ImAl=-ImA2, XN=1rnX1=-lmXz. In this case 
the multipeak structure of the spectra is essentially the beat 
spectrum of the two-time correlation functions of the 
photon-number and phase fluctuations of the radiation 
fields, and the locations of the side peaks are given by the 
frequencies wj*A", wj*XW. 

4. SPECTRA OF THE INTENSITY FLUCTUATIONS 

The spectra of the fluctuations of the field intensities at 
the output of the resonator for each of the modes oj are 
given by 

in which we have written (A, B) = (A B) - (A) (B) . Going 
over to normal ordering and then to a random variable, we 
can show without difficulty that to lowest order in the 
fluctuations the spectrum (29) can be written 

The first terms in these expressions are the quantum 
fluctuation level for the coherent fields. The nontrivial 
noise terms are determined by the correlations of the 
photon-number fluctuations; unlike the intensity spectra 

( 14), they do not contain phase correlation functions. This 
difference is to be expected. We recall that for Gaussian 
fields the information content of the intensity spectrum and 
the spectrum of the corresponding noise is essentially the 
same. It is clear, however, that for nonclassical light this 
situation does not hold in general. 

Analysis of the intensity fluctuation spectra found us- 
ing Eqs. ( 18) and (30) for 1 < E < 2 and for r( 1 reveals 
that the spectra have the same shape with a maximum at 
zero frequency, w=O. As r increases, two symmetric aux- 
iliary peaks develop. Their height increases as a function of 
r, and they move away from w =O for the pump modes and 
approach o = O  for the coo mode. In the region E >  2, the 
split structure of the spectrum can be seen both for r)l 
and for r( 1. 

A more detailed treatment of the spectra, analogous to 
that carried out in Sec. 3, requires recourse to two-time 
correlation functions for the photon-number fluctuations 
(27) [see Eq. (Al)]. This enables us to explain, in partic- 
ular, the multipeak structure of the spectra. In the region 
E > 2, however, it is necessary to use the expressions (A7) 
for the eigenvalues Am obtained explicitly by using the ap- 
proximations E') 1 and rE2) 1. Consequently, the quantita- 
tive analysis of the temporal solutions and explanations of 
the shapes of the spectral curves using these results are 
inapplicable when these conditions are ~iolated.~) 

When we compare the quantitative results for the spec- 
tra of the intensities Nj(w) and their fluctuations 
Pj(w)/ I by ) 2, the following circumstance should be noted. 
As can be seen from the expressions for the eigenvalues A, 
and 1, and the results (Al )  and (A2), the damping rates 
of the correlations of the photon-number and phase fluc- 
tuations for yo<y are first-order quantities. Hence the con- 
tributions of these fluctuations to the broadened structure 
of the intensity spectra are comparable. The final shapes of 
the Nj(w) and Pi(@)/ 1 by 1 spectra in this region differ 
considerably. In the other limit yo>y the damping of the 
phase fluctuation correlations is determined by the width 
yo, and takes place much more rapidly than the damping 
of the correlations of the photon-number fluctuations, de- 
termined by the width y. In this case the phase fluctuations 
therefore make no contribution to the intensity spectrum: 
the shapes of the Nj  ( a )  and Pi (a)/ 1 by 1 spectral curves 
are approximately the same [to within a scale factor of 4 
and disregarding the coherent &function components in 
N,(w)]. Plots of the fluctuation spectra showing this be- 
havior are given in Fig. 2. 

5. CORRELATIONS OF THE PHASE AND PHOTON-NUMBER 
FLUCTUATIONS OF THE MODES IN THE CAVITY 

Let us turn now to a discussion of the statistical and 
noise properties of the radiation field of the system we are 
considering, caused by the effects of intermode correla- 
tions. In the present section we treat these effects for dis- 
crete radiation modes in the cavity. The following sections 
are devoted to studying the corresponding spectra for light 
at the output of the cavity. 

Usually one of the most difficult questions to treat the- 
oretically is that of the quantum fluctuations of the phases 
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FIG. 2. Intensity fluctuation spectrum Pk(m)/ 1 b! 1 for the pump modes 
mk (k= 1,2) as a function of o/y .  The curves shown correspond to a 
pump mode decreasing in intensity with the following values of the pa- 
rameters: .5=2.2, r=0.05 (solid); e=2.2, r=0.2 (dashed); and &= 6, 
r=0.01 (chain curve). 

of electromagnetic fields. One reason for this is that to date 
there has not been complete agreement about the choice of 
the Hermitian operator for the phase (see, e.g., Refs. 21- 
23). Here we skirt around this problem by treating the 
phase fluctuations through analysis of the dispersion in the 
fluctuations of the phase-dependent quadrature of compo- 
nents of the radiation modes wj : 

From the standpoint of the measurement problem this ap- 
proach corresponds to designing the phase-sensitive exper- 
iments by the homodyning technique, in which the phase 
8.  of the reference waves can be varied relative to the phase 
6 $, of the mode being studied. 

As is well known, the quantum-statistical dispersion of 
the fluctuations of the quadrature components (31 ) can be 
expressed in terms of the phase fluctuations of the modes in 
the P representation for 8,-$y=r/2 (Ref. 10): 

To analyze the fluctuation correlations we consider the 
variance of the sum or difference of the quadrature com- 
ponents of the modes wi and w, in the cavity: 

The commutation relations for the two canonically conju- 
gate quadrature operators with definite phases ei,, and 
Bi,, + rr/2 are equal to 

[xP* ~ B j , f ~ + " ' ~ + q + ~ ]  J 1 =4i, ( i#j  ), (34) 

from which it follows in the general case of arbitrary ei,0, 
that the conditions for squeezing of the fluctuations are 

For coherent states of the electromagnetic field the fluctu- 
ation level is equal to f ) (ei,Oj) = 2. 

It is not difficult to show that in the linearized theory 
we are using the variance (33) is 

and for Bi,,- $y,=r/2 depends only on the phase fluctu- 
ations 

[Here and in what follows we use the notation 
Gf)= (ei,ej) = e f ) ( e )  for the phases ei-$P=ej 
-$YE 81. From (35) and (37) we find conditions for the 
suppression of the fluctuations of the sum and difference of 
the phases of two modes. In order to evaluate the quanti- 
ties (37) we must turn to expressions (A2) and (A4). 
Here we give the final results. 

In the region 1 < E < 2, where we have ny = ni= yd;y 
for the pump modes, we find 

It is easy to see that the fluctuations are squeezed for the 
quadrature difference. The mean-square dispersion of the 
phase difference is a negative quantity in the P representa- 
tion, which implies suppression of the fluctuations of the 
phase difference of the pump modes below the coherent 
level: 

This squeezing effect is the result of a strong positive cor- 
relation between the instantaneous phase fluctuations, 

and vanishes for the sum of the quadratures or phases. 
Similar results are found for combinations of the signal 

mode wo and the pump modes a,,,: 

In the region ~ > 2  we can obtain analytical results 
under the conditions .c2% 1 and m 2 %  1. However, in this 
case the contributions of the intermode correlations of the 
phase fluctuations [the last terms in Eq. (37)] are found to 
be small in comparison with the other terms, i.e., squeezing 
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in J$)(lr/2) is determined by the sum 4nY(Sg) 
+4n3(6#) or by the dispersion of the fluctuations of each 
of the quadratures (32). 

When the phase of the quadrature components is taken 
to be ei,, - $:j = 0, determining the amplitude fluctuations 
of the modes, the dispersion (36) depends only on the 
fluctuations of the photon number: 

Expressions for the correlation functions 
(Sni(t)Snj(t)) (i,j =0,1,2) can be obtained using Eqs. 
(Al)  and (A3). We present a final result for the case of 
the greatest squeezing of the fluctuations of the quadrature 
sum of the pump modes in the region 1 < E < 2: 

The suppression of the fluctuations is greatest in the limit 
~ + 2  and r(1, and results from the negative correlation 
[see also Eq. (48)l between the instantaneous fluctuations 
(Gn,(t)Sn2(t)) <O of the photon number. 

Note that these photon-number correlation effects can 
be described more conventionally using the second-order 
correlation functions 

,!2) = 
(a:(t)af (t)aj(t>ai(t)) 

IJ (a'ai) (af a,) , i , j=0 ,1 ,2 .  (45) 

To lowest order in the quantum fluctuations, this quantity 
is equal to 

In using these expressions, however, we should keep in 
mind that the effects they describe, in accordance with the 
conditions for the applicability of the linearization tech- 
nique 

are very small. Hence the results for g!;' have a restricted 
range of applicability and are useful only by virtue of their 
simplicity and to clarify the physics of the phenomena in 
question. 

As shown by calculations using Eqs. (A1 ) and (A3), 
the correlations within photons of the different modes wi 
show a bunching behavior giZ)> 1, while those between 
photons of different modes show an antibunching behavior 
g$) < 1 (i#j ) . In particular, in the region 1 < E < 2 we find 

and antibunching in (48) occurs under the condition 
r < 2 ( ~ -  1)/(2-E). 

6. SPECTRA FOR THE FLUCTUATIONS OF THE SUM AND 
DIFFERENCE OF THE QUADRATURE COMPONENTS 

We turn now to the fluctuation spectra for light at the 
output from the cavity in connection with the experimental 
measurement scheme using the twin homodyning 
te~hnique.'"'~ In this method each of the two modes wi,wj 
(i#j=0,1,2) of interest to us interferes with its own ref- 
erence wave, as detected by a photodetector, and then the 
fluctuation spectrum of the sum or difference of the two 
photofluxes is measured. Such measurements make it pos- 
sible to study the fluctuation spectrum of the sum or dif- 
ference of the quadrature components of the fields at the 
frequencies wi and w, : 

Here 

are the phase-dependent operators of the quadrature com- 
ponents of the fields at the output from the cavity near the 
frequencies wk, and the colons denote normal-ordered op- 
erators. 

The first term in expression (50) is the vacuum level of 
the corresponding quantum fluctuations of the electromag- 
netic field. The quantum fluctuations in the sum or differ- 
ence of the quadratures are squeezed below the vacuum 
level for ~ ~ ~ ) ( e ~ , O ~ , w )  <2, where the maximum effect 
( 100% squeezing) corresponds to s!? if (Oi,Oj ,w) =O. The 
quantity (50) serves as a measure of the correlation be- 
tween two quadrature components, and in this connection 
has a direct relation to the ideas involved in performing 
nondestructive quantum  measurement^'^'^^-^^ and demon- 
strating Einstein-Podolsky-Rosen correlations (see Refs. 
14, 27, and 28, and the earlier work cited therein). Other 
practical applications may apply to ultrahigh-resolution 
spectroscopy2 and control of quantum n ~ i s e . ~ ~ - ~ '  

In the linearized theory of fluctuations the result for 
the quantity (50), normalized to the vacuum noise level 
So = 2, can be given in the following form: 

where the quantity F!? ) is related to the fluctuations in the 
phases of the sum and difference modes: 
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&$$j(-o)sin(~j-$y) I 

x [ m6$i(o)sin(Bi-$y) 

* f l a l b , ( ~ ) s i n ( ~ j - $ y )  1). (53) 

and the quantity N,!;) can be expressed in terms of the 
photon-number fluctuations: 

1 /2 
0 N~$)(Bi,Sj,o) = ( [($) ani( -0)cos(f3~-$~) 

* (3)'"anj( -m)cos(~j-$;) I 

From these expressions we see that by appropriate 
choice of the phases Bi and Bj we can ensure that the spec- 
trum (52) is expressed either in terms of phase fluctuations 
or photon-number fluctuations. As was already pointed 
out, this property of the process we are considering is en- 
sured by the definiteness of the stationary phases of all 
three modes in the above-threshold generation regime, and 
is responsible for a significant departure from the familiar 
 result^"^'^ for nondegenerate parametric light generation 
and four-wave mixing with a single pump mode, where 
phase diffusion occurs. 

7. SPECTRA OF SQUEEZED QUADRATURE DIFFERENCES: 
THE PHASE EFFECT 

We give an expression for the fluctuation spectrum 
(52) in the case Bi-$~=Bj-$~=?r/2, when it depends 
only on the phase fluctuations of the modes oi and wj 
(i#j=0,1,2): 

The results for the phase fluctuation autocorrelation 
functions are given by Eqs. (25). The intermode correla- 
tion functions 

cij(@)=8 J*; ~ e ( a $ i (  - ~ ) ~ $ j ( ~ ) )  (56) 

can be calculated using the solutions of Eqs. (5) with the 
noise correlations (8). 

We first give the result for the case in which the two 
combining modes are the pump modes o1 and w2: 

r 

FIG. 3. Spectral curves of the fluctuations S(l;"(~/2,w)/S,, of the dif- 
ference in the quadratures of the pump modes as a function of w/y: 
~=2.2,  r=0.5 (chain); ~=2.2 ,  r=0.05 (solid); and ~ = 6 ,  r=0.01 
(dashed curve). 

Analysis of the general expression (55) for this case shows 
that the squeezing is larger for the fluctuations of the dif- 
ference spectra. Calculations reveal that in the region 
1 < E < 2 the expression for the difference spectrum simpli- 
fies greatly and reduces to the following: 

This expression does not depend on r=y,,/y and shows 
that 100% squeezing of the difference fluctuations of the 
quadratures is possible in the limit ~ - . 2  in the low- 
frequency range w(y of the spectrum. 

In the range ~ > 2  the form of the spectrum 
S ~ F  ) (?r/2,w)/So becomes more complicated. The results 
of the calculations are plotted in Fig. 3 for different values 
of E and r. Squeezing decreases with increasing E in the 
low-frequency range and disappears for ~ > 2 .  However, for 
fixed values of E and small r, two symmetric minima ap- 
pear in the sideband regions of the spectrum. The amount 
of fluctuation suppression at these sideband frequencies ex- 
ceeds the squeezing at zero frequency and approaches total 
squeezing in the limit r-0. Note that there is no squeezing 
of the quadratures of either of the pump modes for small r 
and relatively large values of E, and the contribution of the 
autocorrelation functions of the phase fluctuations to the 
magnitude of the squeezing of the difference of these 
quadratures is vanishingly small. The difference compres- 
sion (see, e.g., the trace for &=6 and r=0.01 in Fig. 3) is 
entirely determined by the strong positive correlation be- 
tween phase fluctuations of the pump modes. 

For the case in which the mode wo and one of the 
pump modes uk(k= 1,2) combine, the result for the cross- 
correlation function Cok(w) is 
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The quantity COk(w) is positive for arbitrary values of E 

and r. Consequently, just as in the case of the pump modes, 
effective squeezing of the fluctuations should be expected in 
the difference spectrum $1 ) (.rr/2,0)/So. 

Figure 3 shows typical traces of the ~ i ~ ) ( . r r / 2 , o ) / S ~  
spectrum as a function of o / G .  The behavior of the 
functions for different E and r is complicated, and the val- 
ues of E and r used were chosen to maximize the contribu- 
tion of the intermode correlation functions COk(w) to the 
squeezing of the quadratures of wo and wk. With an ap- 
propriate choice of the parameter r, the magnitude of the 
squeezing that can actually be achieved may be at least 
50% over the entire above-threshold region E >  1 at the 
zero or sideband frequencies of the spectrum. The maxi- 
mum squeezing occurs close to &= 1.2 and is equal to 
-83%. 

8. SQUEEZING OF THE SUM OF THE QUADRATURES: 
INTENSITY CORRELATION 

As already noted in Sec. 5, the present approach en- 
ables us to address the questions of intensity correlations of 
two modes from the standpoint of phase-dependent mea- 
surements. For phases 8,- $?= 8, - $:= 0 the spectrum 
(52) is determined by the fluctuations of the photon num- 
bers of the modes wj and w, . As it turned out, this quantity 
is related to another experimentally measurable quantity, 
the spectrum of fluctuations of the sum or difference of the 
intensities of the two modes, 

where Nj(t) =bi+(t)bj(t) are the photon-number opera- 
tors. It can easily be shown that to lowest order in the 
fluctuations, this quantity is 

where 

is the coherent fluctuation level of two modes, which is the 
same for the sum and difference of the intensities. Com- 
parison of the results (52) for 8,-$?=8,-$:=0 and 
(61) shows that the normalized spectra are identical: 

The spectra P:t)(w) are usually measured (see, e.g., 
Refs. 7 and 8) by direct detection of the intensities of the 
two modes. This relation shows that for the case of coupled 
modes with definite phases they can also be measured by 
the homodyning technique with two reference fields. 

We have ~ h o w n ' ~ " ~  that substantial (close to total) 
compression of the quantum fluctuations in the sum of the 
intensities of the pump modes below the coherent level is 
possible: P!:)(w)/Po < 1. This effect follows from the an- 
ticorrelation between the fluctuations of the photon num- 
bers of these modes. It is clear that by virtue of (63) the 
effect will manifest itself also in the squeezing of fluctua- 
tions of the quadrature sum S { ~ ~ ) ( O , U ) / S ~  < 1. 

For completeness it is also of interest to consider the 
case in which the combining modes consist of oo and one 
of the pump modes wk (k= 1,2). In this case the result 
(63) for the spectra can be obtained using Eq. (18) and a 
calculation of the corresponding cross-correlation func- 
tion. Using the solutions of Eqs. (4) and the noise corre- 
lations (7) for this function we find 

Analysis of this result shows that in the region 1 < E < 2 
the correlation between the photon-number fluctuations of 
these modes is negative, while in the region E > 2 it can be 
either positive or negative, depending on the values of E 

and r. In the region E > 2, where ny#n; holds, the results 
also depend on which of the pump modes o l ,  w2 combines 
with wo. However, in any case this correlation is found 
not to be so strong that it can cancel the excess (relative 
to the coherent) noise level resulting from the contribution 
of the autocorrelation functions (Sno( - w)Sno(w) ) and 
(ank( -w)6nk(w) ) . Consequently, the greatest suppres- 
sion of the fluctuations is found to occur only in the sum of 
the quadratures and in the sum of the intensities of wo and 
that pump mode whose intensity in the cavity increases in 
the region &>2. The magnitude of this suppression is 
- 17% for e z 9  at the zero frequency of the spectrum 
( o = O ) .  

APPENDIX 

We present in general form the results for the two-time 
correlation functions (Snj(t)Snj(tl) ) and (S$j(t)S$j(tl) ) 
(i, j =0,1,2). They can be represented as elements of the 
matrices (Sn(t)Sn(tl) T)aB and (S$(t)S$(tl) T)aB, (a=i 
+ l,p= j + 1 ). Using the general form of the solutions of 
Eqs. (4) and (5) written in the time representationlo and 
the noise correlation functions (7) and (8), we derive 
them in the form 

3 

( S n ( t ) ~ n ( t ' ) ~ ) =  x Kmexp(-A,lt-tlI), (Al )  
m= 1 

3 

(S$(t)S$(tl)T)= x Km exp( -xmIt-tlI ). (A2) 
m= 1 

Here Km and Ern are matrices with elements Km,& and 
Ern,aB, defined as follows: 
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Using this notation we derive Eqs. (27) and (28) from 
the relations (A3) and (A4). 

Am ,x, (m = 1,2,3) are the eigenvalues of the matrices A 
and A given by Eq. (6) respectively, D, are the diffusion 
matrices introduced according to 

and equal to 

In the region 1 < E < 2 the eigenvalues Am and 2, are equal 
to 

In the region E >  2 we can only give their approximate 
values for e2# 1 and re2> 1 : 

If the eigenvalues A12 and are complex, then we 
have A2 = A:, x2 = 1: and we can write = At 
+ iA1', = X) A ip. In this case it can easily be shown 
that the matrices K3 and E3 are real, and the matrices K1,2 
and El,, satisfy the relations K2 = Kt, x2 = @. Accord- 
ingly, it also makes sense to introduce the real and imagi- 
nary parts of the matrices KlS2 and 

"Nonclassical optical effects, but for the case of a resonant monatomic 
medium, were treated in Refs. 16 and 17 without taking pump depletion 
into account. 

 ere they are given in a more compact form than in Ref. 10. 
 his remark applies equally to the analysis of the intensity spectrum 

given in Sec. 3. 
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