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We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional
quasicondensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations
of the quasicondensate momentum distribution. The doubling here refers to the oscillation frequency relative to
the oscillations of the real-space density distribution, invoked by a sudden confinement quench. By constructing a
nonequilibrium phase diagram that characterizes the regime of frequency doubling and its gradual disappearance,
we find that this crossover is governed by the quench strength and the initial temperature rather than by the
equilibrium-state crossover from the quasicondensate to the ideal Bose gas regime. The hydrodynamic predictions
are supported by the results of numerical simulations based on a finite-temperature c-field approach and extend
the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of finite-temperature
systems and their dynamics in momentum space.
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Hydrodynamics is a powerful and broadly applicable ap-
proach for characterizing the collective nonequilibrium behav-
ior of a wide range of classical and quantum fluids, including
Fermi liquids, liquid helium, and ultracold atomic Bose and
Fermi gases [1–6]. For ultracold gases, the hydrodynamic
approach has been particularly successful in describing the
breathing (monopole) and higher-order (multipole) collective
oscillations of harmonically trapped three-dimensional (3D)
Bose-Einstein condensates [2,6,7]. For condensates near zero
temperature, the applicability of the approach stems from
the fact that for long-wavelength (low-energy) excitations the
hydrodynamic equations are essentially equivalent to those
of superfluid hydrodynamics, which in turn can be derived
from the Gross-Pitaevskii equation for the order parameter.
For partially condensed samples at finite temperatures, the
hydrodynamic equations should be generalized to the equa-
tions of two-fluid hydrodynamics, where the applicability of
the approach to the normal (thermal) component of the gas
is justified by fast thermalization times due to collisional
relaxation [3,8].

In contrast to 3D systems, the applicability of the hydrody-
namic approach to 1D Bose gases is not well established. First,
in the thermodynamic limit 1D Bose gases lack the long-range
order required for superfluid hydrodynamics to be a priori
applicable. Second, the very notion of local thermalization,
required for the validity of collisional hydrodynamics of
normal fluids, is questionable due to the underlying integra-
bility of the uniform 1D Bose gas model [9]. Despite these
reservations, the hydrodynamic approach has already been
applied to zero-temperature (T = 0) dynamics of 1D Bose
gases in various scenarios [10–15] (for related experiments,
see [16–18]). The comparison of hydrodynamic predictions
with exact theoretical results is challenging. In Ref. [13], time-
dependent density-matrix renormalization-group simulations
of the collision of 1D Bose gases at T = 0 found reasonable
agreement with the hydrodynamic approximation, although
the latter failed to predict short-wavelength dynamics such as

shock waves. An alternative approximate approach, based on
the conservation of Lieb-Liniger rapidities, has been applied to
describe the free-expansion dynamics of a T = 0 1D gas [15]
and was able to reproduce the hydrodynamic results for both
weak and strong interactions.

At finite temperatures, finding exact predictions is ex-
tremely difficult and thus developing a hydrodynamic ap-
proach is appealing, despite its lack of justification. Here we
develop a general finite-T hydrodynamic approach suitable for
1D Bose gases and specifically apply it to the breathing-mode
oscillations of a harmonically trapped 1D quasicondensate.
We find that the predictions agree with both experimental
observations [18] and numerical simulations of a finite-
temperature c-field methodology [19,20]. More remarkably,
our hydrodynamic approach not only adequately describes the
dynamics of the density distribution of the gas (the standard
observable of the hydrodynamic theory), but it can also be
used to describe the dynamics of the momentum distribution,
which is a key observable for quantum gas experiments.

Reference [18] experimentally studied confinement
quenches of a finite-T 1D Bose gas. The key finding was
the phenomenon of frequency doubling in the oscillations
of the momentum distribution relative to the breathing-
mode oscillations of the real-space density profile. For the
experimental data set deep in the quasicondensate regime, a
periodic narrowing of the momentum distribution occurred
at twice the frequency of the breathing mode of the density
profile. Although finite-temperature effects are crucial for
understanding the momentum-space properties of equilibrium
quasicondensates [21–26], the said experimental data for
dynamics were well described by a simple zero-temperature
classical hydrodynamic approach, wherein the frequency dou-
bling was interpreted as a result of a self-reflection mechanism
due to the mean-field interaction energy barrier. In contrast
to this behavior, no frequency doubling was observed in the
nearly ideal Bose gas regime, as expected for a noninteracting
gas. A theoretical explanation for the experimentally observed
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smooth crossover from the regime of frequency doubling to
no doubling is lacking.

Here we explain this phenomenon within the hydrodynamic
approach and construct the corresponding nonequilibrium
phase diagram, showing that the frequency-doubling crossover
is governed by the quench strength and a nontrivial combina-
tion of the temperature and interaction strength. For small
enough quenches, the crossover from frequency doubling to
no doubling can lie entirely within the quasicondensate regime
and does not require an equilibrium-state crossover to the ideal
Bose gas regime. Constructing and studying phase diagrams
is an important goal in many areas of physics and our findings
here serve as an example where equilibrium and dynamical
phase diagrams are not identical. We confirm our predictions
by comparing the hydrodynamic results to those obtained
numerically using finite-temperature c-field simulations (for
a review, see [20]) based on the projected Gross-Pitaevskii
equation [19].

(a) Hydrodynamic equations and evolution of the density
distribution. The hydrodynamic approach relies on the local-
density approximation and assumes that the 1D system can be
divided into small locally uniform slices, each of which is in
thermal equilibrium in the local moving frame. Moreover, one
can assume that heat transfer between the slices is negligible
for long-wavelength excitations [27], which implies that each
slice undergoes isentropic decompression or compression. The
hydrodynamic description of this system is [1]

∂tρ + ∂x(ρv) = 0, (1a)

∂tv + v∂xv = − 1
m

∂xV (x,t) − 1
mρ

∂xP, (1b)

∂ts + v∂xs = 0, (1c)

where ρ(x,t) is the local 1D density of the slice at position
x, v(x,t) is the respective hydrodynamic velocity, s(x,t) is the
entropy per particle, P (x,t) is the pressure, m is the mass of
the constituent particles, and V (x,t) is the external trapping
potential, which for our case study is harmonic, V (x,t) =
1
2mω(t)2x2, of frequency ω(t).

We now apply the hydrodynamic approach to describe
the postquench dynamics induced by the following scenario.
Initially, the atomic cloud with density profile ρ0(x) is in
thermal equilibrium at temperature T0 in the trap of frequency
ω0. Subsequently, at time t= 0, the trap frequency is suddenly
changed to ω1. To characterize the ensuing dynamics in
different regimes of the 1D Bose gas, we introduce the
dimensionless interaction parameter γ0 = mg/!2ρ0(0) and
the dimensionless temperature t0 = 2!2kBT0/mg2 [28,29],
where g is the coupling strength of the pairwise δ-function
interaction potential. The solutions of the hydrodynamic
equations (1a)–(1c) describing this harmonic-confinement
quench depend only on the thermodynamic equation of state
of the gas. In each of the following three cases, (i) the ideal
gas regime (t0,γ

3/2
0 t0 ≫ 1), (ii) the strongly interacting or

Tonks-Girardeau regime (γ0,1/t0 ≫ 1), and (iii) the quasi-
condensate regime (γ0,γ

3/2
0 t0 ≪ 1), the solutions reduce to

scaling equations of the form

ρ(x,t) = ρ0[x/λ(t)]/λ(t), v(x,t) = xλ̇(t)/λ(t), (2)

T (t) = T0/λ(t)ν+1, (3)

where the scaling parameter λ(t) [with λ̇ ≡dλ(t)/dt, λ(0) =
1, and λ̇(0) = 0] satisfies the ordinary differential equation

λ̈ = −ω2
1λ + ω2

0/λ
2ν+1, (4)

with the value of ν in different regimes given below [30]. The
hydrodynamic solution (3) for the temperature is one of the
key results of this paper as it allows one to simply calculate
the evolution of the temperature-dependent momentum distri-
bution of the gas (see below).

(i) Ideal gas regime (t0,γ
3/2
0 t0 ≫ 1). In this case ν = 1 and

the validity of the above scaling solutions can be demonstrated
using a dimensional analysis of the equation of state (see
Ref. [31]), which we note is also applicable to an ideal Fermi
gas. Equation (4) in this regime has an explicit analytic solution

λ(t) =
√

1 + ϵ sin2(ω1t). (5)

This corresponds to harmonic oscillations of the mean-square
width of the density profile, occurring at frequency ωB = 2ω1,
with ϵ ≡(ω0/ω1)2 − 1 characterizing the quench strength.
This result coincides with that for a noninteracting gas obtained
from a single-particle picture. The fact that the hydrodynamic
approach, which a priori assumes sufficient collisions to
ensure local thermal equilibrium, agrees with the results for
a noninteracting gas is specific to the harmonic-confinement
quench considered here and is accidental.

(ii) Strongly interacting regime (γ0,1/t0 ≫ 1). Here the
equation of state is that of an ideal Fermi gas, so the previous
ideal gas results apply and Eqs. (2)–(4) are fulfilled with
ν = 1. The breathing-mode oscillations of the momentum
distribution of a finite-temperature Tonks-Girardeau gas are
discussed elsewhere [32].

(iii) Quasicondensate regime (γ0,γ
3/2
0 t0 ≪ 1). In this case

ν = 1/2 and the validity of the scaling solutions (2) can be
demonstrated using the equation of state P = 1

2gρ2. The latter
can be derived from the quasicondensate chemical potential
µ = gρ and the Gibbs-Duhem relation ρ = (∂P/∂µ)T . For
a weak quench ϵ ≪ 1, the solution to Eq. (4) oscillates
at frequency ωB ≃

√
3ω1 and is nearly harmonic with

an amplitude λ(t= π/ωB) − 1 ≃2ϵ/3 [33]. According to
Eq. (2), the density profile breathes self-similarly, main-
taining its initial Thomas-Fermi parabolic shape, ρ0(x) =
ρ0(0)(1 − x2/X2

0) for x ! X0 [ρ0(x) = 0 otherwise], with
X0 =

√
2gρ0(0)/mω2

0 . Finite-temperature effects are not seen
in the dynamics of the density distribution ρ(x,t) [34] because
in this regime the equation of state does not depend on the
temperature. However, as we show below, such effects can be
revealed in the dynamics of the momentum distribution.

(b) Dynamics of the momentum distribution. Let us consider
a slice of the gas in the region [x,x + dx] of density ρ(x,t), ve-
locity v(x,t), and entropy per particle s(x,t). In the laboratory
frame its momentum distribution is n(ρ,s,k − mv/!), where
n is the equilibrium momentum distribution of a homogeneous
gas, which we normalize to

∫
dk n(ρ,s; k) = ρ. The total

momentum distribution is then given by

n(k,t) =
∫

dx n(ρ,s; k − mv(x,t)/!). (6)
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There are two contributions to n(k,t), the hydrodynamic
velocity field and the contribution of thermal velocities, which
have different effects on the breathing-mode oscillations. In
order to see the sole effect of the hydrodynamic velocity field,
let us first disregard the effect of the thermal velocities, taking
n(ρ,s; k − mv(x,t)/!) = ρδ(k − mv(x,t)/!), where δ(k) is
the Dirac delta function. If a scaling solution as in Eq. (2) exists,
the hydrodynamic component of the momentum distribution
evolves according to

nh(k,t) = !
m|λ̇|

ρ0

(
!k

mλ̇

)
. (7)

For oscillatory λ(t), this implies that nh(k,t) collapses to
a zero-width distribution twice per position-space density
breathing cycle: when the width of the cloud in real space
is both largest and smallest, both corresponding to λ̇ = 0.
Therefore, the oscillations of the hydrodynamic contribution
to the momentum distribution will always display frequency
doubling.

Now consider the additional contribution of thermal veloci-
ties to n(k,t), which changes as each slice undergoes isentropic
compression and decompression during the breathing cycle.
Since one expects the momentum width to be a monotonically
increasing function of the compression factor, the thermal
momentum width of each slice [and hence of the overall
momentum distribution n(k,t)] is expected to oscillate out
of phase relative to the width of the real-space density profile,
but at the same breathing frequency ωB .

The evolution of the overall momentum distribution n(k,t)
results from the combination of the hydrodynamic and thermal
parts. For a near-ideal gas at T > 0 this leads to a somewhat
fortuitous cancellation of the hydrodynamic velocity field
by the thermal component and so the total momentum
distribution always oscillates at ωB = 2ω1 (see Ref. [31])
and never displays frequency doubling, consistent with the
single-particle picture.

The situation is different, however, in the quasicondensate
regime. The momentum distribution of a homogeneous quasi-
condensate of density ρ and temperature T , for wavelengths
in the phononic regime (i.e., k ≪ !/

√
mgρ), is given by

a Lorentzian n(ρ,s; k) = (2ρlφ/π )/[1 + (2lφk)2] [31]. Sub-
stituting this Lorentzian into Eq. (6), we obtain the full
momentum distribution of the trapped gas

n(k,t) = 1
π

∫
dx

2lφ(x,t)ρ(x,t)
1 + 4[lφ(x,t)]2[k − mv(x,t)/!]2

, (8)

where lφ(x,t) = !2ρ(x,t)/mkBT (t). According to the scaling
solutions (2) and (3) with ν = 1/2 (see also [31]), lφ(x,t)
evolves as

lφ(x,t) =
√

λl
(0)
φ ρ̃0(x/λ), (9)

where ρ̃0(x) = 1 − x2/X2
0 is the scaled initial density profile

and l
(0)
φ = !2ρ0(0)/mkBT0 = 2[ρ0(0)γ 2

0 t0]−1.
Combining the scaling solution for lφ(x,t) with that for

ρ(x,t) and changing variables to u = x/λX0 in Eq. (8) leads
to the final result

n(k,t) = B
√

λ̃

∫ 1

−1
du

(1 − u2)2

1 + 4λ̃(1 − u2)2
(
k̃ − ω1

ω0
A ˙̃λu

)2 . (10)

Here k̃ = l
(0)
φ k, A = mω0X0l

(0)
φ /! =

√
8/γ

3/2
0 t0, and B =

2ρ0(0)l(0)
φ X0/π is a normalization factor. In addition, we have

introduced a dimensionless time τ ≡ω1t, so the dimensionless
functions λ̃(τ ) ≡λ(τ/ω1) and ˙̃λ = dλ̃/dτ , obtained from
Eq. (4), depend only on the ratio ω1/ω0 or, equivalently, only
on the quench strength ϵ = (ω0/ω1)2 − 1. Thus, for a given ϵ,
the evolution of n(k,t) is governed solely by the dimensionless
parameter A, which itself depends only on the initial intensive
parameters γ0 and t0. Note that A ≫ 1 in the quasicondensate
regime where γ

3/2
0 t0 ≪ 1 [25,28].

Using Eq. (10) for a given A and quench strength ϵ, we can
now compute the evolution of the full momentum distribution
and its half-width at half maximum (HWHM) [see Figs. 1(a)
and 1(b)]. The HWHM can then be fitted with a sum of
two sinusoidal functions: the fundamental mode oscillating
at ωB (≃

√
3ω1, for ϵ ≪ 1) and the first harmonic oscillating

at 2ωB , with amplitudes c1 and c2, respectively. Defining the
weight of the fundamental mode as K = c2

1/(c2
1 + c2

2), we
identify the frequency-doubling phenomenon with K ≪ 1,
whereas K ≃1 corresponds to the absence of doubling. The
doubling crossover can therefore be defined as the value of
A = Acr for which K = 1/2. As we show in [31], for small
quench amplitudes one expects the frequency doubling to
occur for A

√
ϵ ≫ 1, while for A

√
ϵ ≪ 1 the thermal effects

dominate and the frequency doubling is absent; accordingly,
Acr is expected to scale as Acr ∝ 1/

√
ϵ. Figure 1(c) shows the

nonequilibrium phase diagram of the crossover from frequency
doubling to no doubling and confirms that Acr, obtained using
Eq. (10) and the fitting procedure described above, does indeed
scale proportionally to 1/

√
ϵ.

In Fig. 1(d) we superimpose the conditions for observing
frequency doubling on the equilibrium phase diagram of the
1D Bose gas. As we see, for small enough quench strengths,
the crossover from doubling to no doubling lies well within
the quasicondensate regime. We therefore conclude that this
phenomenon is governed not by the crossover from the ideal
Bose gas regime into the quasicondensate regime, but by
the competition between the hydrodynamic velocity (which
always displays doubling) and the narrowing and broadening
of the thermal component of the gas due to adiabatic
compression/decompression (which always oscillates at the
fundamental frequency ωB).

Although the applicability of the hydrodynamic theory
in this system might be questionable, our analytic results
have been benchmarked against finite-temperature c-field
simulations (performed using the software package XMDS2
[36]), whose validity for degenerate weakly interacting Bose
gases is well established [19,20,37–39]. In this approach,
the Bose gas is approximated as a classical field, whose
evolution is governed by the time-dependent Gross-Pitaevskii
equation, with the initial state being sampled from the classical
Gibbs ensemble for the given temperature and density [31].
Qualitatively, the same behavior as in Figs. 1(a) and 1(b)
based on the hydrodynamic approach occurs in our c-field
simulations [35]; quantitatively, the crossover from doubling
to no doubling is in broad agreement with the analytic
predictions [see Fig. 1(c)]. Moreover, as we argue in Ref. [31],
for sufficiently weak confinement (small ω0), the c-field
dynamics are governed by just two dimensionless parameters
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FIG. 1. (a) Breathing-mode oscillations and (b) the respective widths (HWHM) of the momentum distribution of a harmonically trapped
1D quasicondensate after a confinement quench as a function of the dimensionless time τ = ω1t. The three examples shown in (a) and
(b) correspond, respectively, to ϵ = 0.563 and A = 104 (with t0 = 106 and !ω0/gρ0(0) = 3.0 × 10−3 for the c-field simulations) (top row),
ϵ = 0.101 and A = Acr = 5.21 (t0 = 103 and !ω0/gρ0(0) = 1.1 × 10−2) (middle row), and ϵ = 0.0203 and A = 3.95 (bottom row) [35]. The
gray triangles are the c-field data [31], with the error bars indicating a 95% confidence interval. (c) Nonequilibrium phase diagram of the
dynamical crossover from frequency doubling to no doubling in the A-ϵ parameter space. Data points (circles) show the crossover values Acr

for which the weights of the fundamental and the first harmonics are equal (K = 1/2); gray triangles are from c-field simulations. The dashed
line is a fit in the region A > 5 with a power law Acr ≃1.58/

√
ϵ (see the text), whereas the two dotted lines show the values of A corresponding

to K = 0.05 and K = 0.95. (d) Frequency-doubling conditions superimposed on the equilibrium phase diagram of the 1D Bose gas [25,28],
drawn in terms of the dimensionless temperature t0 and interaction strength γ0, and covering the quasicondensate and the neighboring nearly
ideal Bose gas regimes. The gray dashed line (t0 = γ

−3/2
0 ) corresponds to the crossover between the two equilibrium regimes. The two lines with

closed (red) and open (blue) circles, on the other hand, correspond to the frequency-doubling crossover conditions for two different quenches
ϵ = 0.1 and ϵ = 0.02 [the respective data points in (c) are labeled in the same way]. The (light red and light blue) shaded areas underneath
these lines correspond to the conditions where the frequency doubling occurs.

A and ϵ, as predicted from the hydrodynamic approach.
Overall, the performance of the hydrodynamic theory, as
validated by our c-field simulations, in modeling the harmonic
confinement quench of a finite-temperature quasicondensate is
remarkable. Moreover, even though the hydrodynamic results
of Eq. (10) formally require A ≫ 1 to ensure the applicability
of the quasicondensate regime, our comparison with c-field
simulations shows that Eq. (10) continues to give accurate
predictions even for moderate values of A " 1.

In summary, we have developed a finite-temperature hy-
drodynamic approach for a harmonically trapped 1D Bose gas
and applied it to the study of breathing mode oscillations in the
quasicondensate regime. While the usual scope of the hydrody-
namic theory is to describe the evolution of the real-space den-
sity of a gas, our approach extends its utility to describe the evo-
lution of its momentum distribution. The approach allowed us
to discern the contribution of the hydrodynamic velocity field
and that of thermal excitations in the oscillatory dynamics of
the momentum distribution of the 1D quasicondensate, hence
explaining the full mechanism behind the phenomenon of

frequency doubling and the crossover to no doubling. The hy-
drodynamic predictions are in broad agreement with numerical
simulations based on finite-temperature c-field simulations.
Our approach can address not only the sudden quench scenario
studied here, but also the dynamics under arbitrary driving
of the trapping frequency ω(t), in which case the differential
equation for the scaling parameter λ(t), Eq. (4), must be solved
numerically. Future extensions of this work will concern
the treatment of breathing-mode oscillations in the strongly
interacting regime [32] and could also address collective
behavior of 1D Bose gases in anharmonic traps, as well as of
2D and 3D quasicondensates in highly elongated geometries.
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In this supplemental material we provide further details on
the hydrodynamic scaling solutions, as well as a brief descrip-
tion and further results of our c-field simulations.

I. SCALING SOLUTIONS IN THE HYDRODYNAMIC
APPROACH

A. Ideal gas regime.

For a uniform ideal gas (either bosonic or fermionic) at
temperature T and 1D density ⇢ = N/L, where N is
the number of particles and L is length of the confinement
box, the only two length scales are the mean interparti-
cle separation ⇢

�1 and the thermal de Broglie wavelength
⇤T =

p
2⇡~2/(mkBT ); the corresponding energy scales are

~2⇢2/m and kBT . Using the thermodynamic definition of the
1D pressure, P = (@U/@L)s, where U is the internal energy,
one can apply simple dimensional analysis to write down the
equations of state for P and s:

P = kBT⇢ F (~2⇢2/mkBT ), (S1)

s/kB = G(mkBT/~2⇢2). (S2)

Here F and G are dimensionless functions of the only di-
mensionless parameter—the ratio of the two energy scales.
With this choice of expression for P , the classical ideal gas
law in the high temperature limit is recovered with F ' 1.
For a highly degenerate ideal Fermi gas, on the other hand,
the equation of state P = ~2⇡2

⇢
3
/(3m) is recovered with

F ' (⇡2
/3)(~2⇢2/mkBT ).

Now consider a confinement quench of the gas. Apply-
ing the general functional forms of P and s to small (locally
uniform) slices of the gas, it can be shown by direct sub-
stitution that the scaling solutions, Eqs. (2) and (3) of the
main text, satisfy Eqs. (1a) and (1c). For Eq. (1b), first note
that Eq. (S1) together with the scaling solutions imply that
P (x, t) = P0(x/�)/�3, where P0(x) ⌘ P (x, 0). Since
Eq. (1b) is assumed true at this initial time, then @xP0 =
�⇢0(x)@xV (x, 0) = �m!

2
0x⇢0(x). Together with the scal-

ing solutions and Eq. (4) of the main text, this relation is suf-
ficient to show that Eq. (1b) is true for all times.

B. Equilibrium momentum distribution of a uniform 1D
quasicondensate.

Here we outline the derivation of the Lorentzian shape of
the equilibrium momentum distribution of a uniform 1D qua-
sicondensate (for a more detailed derivation, we refer the
reader to Refs. [1, 2]). For a uniform and hence translation-
ally invariant system, the momentum distribution is given by
the Fourier transform of the first-order correlation function,
G

(1)(x) = h ̂(x) ̂(0)i, where  ̂(x) is the bosonic field
operator. In the quasicondensate regime, corresponding to
T ⌧ p

� ~2⇢2/(2mkB) [3] (with ⇢ being the uniform den-
sity and � ⌘ mg/~2⇢), the first-order correlation function is
dominated by the long-wavelength (low-energy) excitations
whose Hamiltonian reduces (using the density-phase repre-
sentation of the field operator,  ̂(x) =

p
⇢+ �⇢̂(x)ei�̂(x)) to

the Luttinger liquid form [2, 4]

ĤL =

ˆ
dx


~2⇢
2m

(@x�̂)
2 +

g

2
(�⇢̂)2

�
. (S3)

Here, �⇢̂(x) is the operator describing the density fluctuations,
canonically conjugate to the phase operator �̂(x).

In evaluating G
(1)(x) we note that the density fluctuations

are small in the quasicondensate regime and can be com-
pletely neglected as long as the relative distances of interest
are much larger than the healing length ⇠ = ~/pmg⇢ [1, 2,
5, 6]. As the Luttinger liquid Hamiltonian (S3) is quadratic in
�̂, the correlation function G

(1)(x) = ⇢hei(�̂(x)��̂(0))i can be
expressed through the mean-square fluctuations of the phase
via Wick’s theorem:

G
(1)(x) = ⇢e

� 1
2 h[�̂(x)��̂(0)]2i

. (S4)

Denoting the Fourier component of �̂(x) at wavevector k via
�̂k, the corresponding term in the expectation value of the
Hamiltonian is given by

´
dk
2⇡L⇢~

2
k
2h|�̂k|2i/(2m), where L

is the length of the uniform system. The relevant modes con-
tributing to G

(1)(x) are highly populated, such that a classical
field picture is sufficient. The energy per quadratic degree
of freedom is thus given by kBT/2 and therefore h|�̂k|2i =
mkBT/(L⇢~2k2) [7]. Using this result one can then show,
after a little algebra, that Eq. (S4) yields

G
(1)(x) ' ⇢e

�|x|/2l� , (|x| � ⇠), (S5)
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where l� ⌘ ~2⇢/(mkBT ). The Fourier transform of this ex-
ponentially decaying correlation function gives the Lorentzian
momentum distribution, n(k) = (2⇢l�/⇡)/

⇥
1 + (2l�k)2

⇤
,

used in the main text.

C. Scaling solution for the temperature in the quasicondensate
regime.

In order to calculate n(k, t) using the hydrodynamic scal-
ing solutions, Eqs. (2) and (4) of the main text, we first need
to determine how the temperature of the gas and hence the
phase correlation length l� = ~2⇢/(mkBT ) evolves dur-
ing the breathing oscillations. To do this, we first note that
the energy of the jth phonon mode in a quantization box of
length L is given by Ej = ~kjc, where kj = 2⇡

L j is the
phonon wave vector and c =

p
(@P/@⇢)/m is the speed of

sound. Using P / ⇢
2, we find that c scales as c / ⇢

1/2

and therefore Ej / L
�1
⇢
1/2 / ⇢

3/2. Consider now an adia-
batic compression/decompression cycle for a uniform slice of
the gas confined to a box of length L. Such a compression
does not change the mean occupation number of the mode
j. The mode occupation is given by nj ' kBT/Ej in the
long-wavelength limit and scales as nj / T/⇢

3/2, whereas
⇢ / �

�1 according to the scaling solution, Eq. (2) of the main
text. Therefore, during the adiabatic breathing oscillations,
the temperature T (t) evolves from the initial value T (0) ⌘ T0

to T (t) = T0/�
3/2, i.e., Eq. (3) of the main text with ⌫ = 1/2.

D. Evolution of the momentum distribution for an ideal gas.

Applying the hydrodynamic approach and Eq. (7) of
the main text to the ideal gas regime, we first note that
the momentum distribution of a uniform ideal gas (nor-
malized to

´
dk n(k) = ⇢) is given by n̄(⇢, s; k) =

N ((~2k2/2m� µ)/kBT ), where N is a dimensionless func-
tion whose expression depends on the quantum statistics
[8]. Since µ/kBT is a function of s (in the sense of a
thermodynamic equation of state), which itself is a func-
tion of mkBT/~2⇢2 [see Eq. (S2)], one can assert that
µ/(kBT ) = G(mkBT/~2⇢2), where G is a dimensionless
function. Then, the scaling solutions (2) and (3) of the main
text imply that µ(x, t)/kBT (t) = G[mkBT (t)/~2⇢2(x, t)] =
G[mkBT0/~⇢20(x/�)] ⌘ G0(x/�), or

µ(x, t) = µ(x/�, 0)/�2 = [µ0 � 1
2m!

2
0(x/�)

2]/�2, (S6)

where µ0 is the initial chemical potential in the trap center.
Substituting n̄(⇢, s; k) along with this expression for µ(x, t)
into Eq. (6) of the main text, and changing variables to x̃ =
↵x�~k��̇/(m!2

0↵), gives

n(k, t) = n0(k/↵)/↵, (S7)

where n0(k) is the initial momentum distribution of the
trapped gas and ↵2 = (!2

0 + �
2
�̇
2)/(�!0)2. Using Eq. (5)

of the main text, we can explicitly write ↵ as

↵ =
p

[1 + ✏ cos2(!1t)]/(1 + ✏), (S8)

which implies that the momentum distribution of a finite-
temperature ideal gas in the hydrodynamic limit oscillates at
!B = 2!1 and never displays frequency doubling. One thus
recovers the expected behaviour for an ideal gas, due to the
position-momentum symmetry of the underlying harmonic
oscillator Hamiltonian. The fact that this result is reproduced
within the hydrodynamic approach is a result of a “fortuitous”
exact cancelation of the effect of the hydrodynamic velocity
field by the thermal component.

E. Scaling of the frequency doubling crossover Acr with the
quench strength ✏.

In this section we make qualitative arguments that pro-
vide an understanding of the dominant oscillation regimes
in the dynamics of the momentum distribution of a quasi-
condensate, and derive an approximate scaling of Acr with
✏. Let us first introduce typical momentum scales involved
in the dynamics. For small-amplitude oscillations, corre-
sponding to ✏ ⌧ 1, the scaling parameter � oscillates as
�(t) ' 1 + ✏

3 � ✏
3 cos(

p
3!1t) and therefore the magni-

tude of ˙̃
� is of the order of ⇠ ✏/

p
3. This means that the

characteristic hydrodynamic momentum, which can be esti-
mated as k̄h ⇠ mX0�̇/~ from Eq. (7) of the main text, and
which can be rewritten as k̄h⇠mX0✏!1/~⇠(!1/!0)A✏/l

(0)
� ,

is of the order of k̄h ⇠ A✏/l
(0)
� for ✏ ⌧ 1. Compared to

this, the characteristic thermal momentum during the com-
pression/decompression cycle oscillates above k̄th ⇠ 1/l(0)�

with an amplitude variation of �k̄th⇠✏/l(0)� ⌧ k̄th.
For A✏ � 1, the characteristic hydrodynamic momentum

is much larger than both the characteristic thermal momentum
and its variation, k̄h � k̄th, �k̄th. Then, as long as one is inter-
ested in momenta of the order of k̄h, the function n̄ in Eq. (6)
of the main text can be approximated by a �-function, and
therefore the breathing oscillations of the momentum distri-
bution will be dominated by the hydrodynamic phenomenon
of frequency doubling.

In the opposite regime of A✏ ⌧ 1, the characteristic hy-
drodynamic momentum is much smaller than the characteris-
tic thermal momentum, k̄h ⌧ k̄th, and therefore the above
approximation, which neglects the effect of the width of n̄

in Eq. (6) of the main text, breaks down. In this case, the
contribution of the hydrodynamic momenta to n(k, t) can
instead be estimated via a Taylor series of n̄ as powers of
kh(x, t) = mv(x, t)/~. In this series, the contribution of
the first-order term to the integral vanishes because @n̄/@k
is an even function of x, whereas kh(x, t) is odd; there-
fore, the hydrodynamic velocity field has no effect on n(k, t)
in this order. The leading-order correction in n(k, t) thus
comes from the second-order derivative term, proportional
to k

2
h. To estimate this correction, let us consider the typi-

cal variations of the peak value of the momentum distribution
n(0, t), which we denote via �n, induced solely by the hy-
drodynamic momenta. Using @

2
n̄/@k

2|k=0 ⇠ ⇢0(0)(l
(0)
� )3

in Eq. (6), one can find that �n ⇠ �X0⇢0(0)l
(0)3

� k̄
2
h, or
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�n ⇠ �X0⇢0(0)l
(0)
� (A✏)2, where we have used k̄h⇠A✏/l

(0)
� .

Since the peak value n(0, t) is inversely proportional to the
characteristic momentum width W , the hydrodynamic contri-
bution to the typical change (�W ) of the momentum width
fulfils �W/W ' ��n/n(0, 0). Using W ⇠ k̄th ⇠ 1/l(0)�

and n(0, 0) ⇠ ⇢0(0)l
(0)
� X0, we then find �W ⇠ (A✏)2/l(0)� .

Comparing now this result with the typical variation of the
thermal momentum width �k̄th⇠✏/l(0)� , we can conclude that
the hydrodynamic contribution �W ⇠ (A✏)2/l(0)� will domi-
nate the thermal contribution if A� 1/

p
✏; in this case, one

would still observe the phenomenon of frequency doubling.
If, on the other hand, A ⌧ 1/

p
✏, the breathing oscillations

will be dominated by the variations of thermal momenta and
no frequency doubling will be observed. Accordingly, one
can expect the crossover from doubling to no doubling to oc-
cur at Acr /1/

p
✏, with the proportionality factor to be found

from the numerical results. From Fig. 1(c) of the main textwe
see that, in the relevant region of A& 5, Acr scales as 1/

p
✏

as expected. Since A � 1 in the quasicondensate regime,
the frequency doubling crossover requires very small quench
strengths ✏.

II. NUMERICAL SIMULATIONS USING THE C-FIELD
METHODOLOGY

A. The c-field method

The c-field (or classical field) method is a proven approach
to studying the equilibrium properties and dynamics of de-
generate Bose gases at finite temperature [9]. The crux of the
technique is to treat the quantum Bose field  ̂(x, t) as a clas-
sical field  C(x, t), thus ignoring the discrete nature of the
particles that make up the field. The classical field approxi-
mation captures many features of weakly-interacting 1D Bose
gases. For instance, for thermal equilibrium configurations
it correctly describes the crossover from the ideal Bose gas
regime to the quasicondensate regime [10].

The energy functional of a classical Bose field confined in
a harmonic potential is

E({ C})=
ˆ
dx E(x), (S9)

where

E(x) = ~2
2m

����
@ C(x)

@x

����
2

+
1

2
m!

2
0x

2| C(x)|2

+
g

2
| C(x)|4 � µ| C(x)|2. (S10)

Configurations corresponding to thermal equilibrium are ob-
tained from the Gibbs ensemble: the probability of a field con-
figuration  C(x) is proportional to exp(�E({ C})/kBT ).
Here µ is the chemical potential that fixes the mean particle
number.

A convenient method to sample configurations from the
Gibbs ensemble is to integrate the projected stochastic Gross-

Pitaevskii equation (SPGPE) for times long enough that the
memory of the initial state is lost. The SPGPE is

d C(x, t) = PC

⇢
� i

~LC + th(µ� LC) C(x, t)dt

+
p

2thTdW (x, t)

�
, (S11)

where

LC C =


� ~
2m

@
2

@x2
+

1

2
m!

2
0x

2 + g| C|2
�
 C, (S12)

dW (x, t) is uncorrelated complex white noise satisfying
hdW ⇤(x, t)dW (x, t0)i = �(x � x

0)dt, and PC{·} is the pro-
jector onto the computational basis. The value of the rate th
has no consequence for the equilibrium configurations, and
hence can be chosen for numerical convenience [11].

At this point we make some comments about the classi-
cal field model to present its limitations and provide some
physical insight. For high energy modes of the classical field,
the interaction energy can be neglected and the energy func-
tional can be approximated by that for noninteracting parti-
cles. Given a mode of energy ✏m, the classical field model
predicts an energy of kBT , and thus a mean occupation num-
ber of nm = kBT/(✏m � µ). Although this expression is
a good approximation to the Bose-Einstein distribution for
nm � 1, it overestimates the population for nm . 1, where
the Maxwell-Boltzmann distribution is a more appropriate
model. In 2D and 3D, this overestimation leads to an ultra-
violet divergence of the field density | C|2 at a fixed temper-
ature. To overcome this problem, one can introduce an en-
ergy cutoff: higher-energy modes are treated as an ideal Bose
gas [12–15], while the classical field is restricted to the low-
energy modes. With this separation of the field into a classi-
cal and a quantum part (in the sense that the discreteness of
particles is important), Eq. (S11) has a physical meaning: it
represents the “real” time evolution of the field with th an ef-
fective collision rate that quantifies the thermal and diffusive
damping experienced by particles in the classical field region
due to the thermal reservoir (i.e. the quantum region) [9].

Although the inclusion of an energy cutoff is crucial in
higher dimensions in order to prevent a divergence of the
atomic density, its role is less crucial in 1D. In particular, the
1D classical field predictions for the atomic density do not
diverge, even in absence of an energy cutoff, and are quan-
titatively correct for degenerate gases [16]. The results we
present are correctly described solely by classical field theory
without a cutoff: for a given peak linear density and temper-
ature, the results do not depend on the cutoff once it is large
enough. The cutoff merely determines the size of the basis
used for the numerical calculations.

Our simulations were performed within the Hermite-
Gauss basis, which is the single-particle eigenbasis of an
harmonically-confined ideal gas, and therefore represents the
natural, most computationally efficient basis (see Eq. (39) of
[17] for an explicit expression of the SPGPE in the Hermite-
Gauss basis). Since these eigenstates well-approximate the
higher-energy, sparsely populated modes, simulation in the

L#

2

[ ]
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Hermite-Gauss basis imposes an energy cutoff that is in direct
proportion to the basis size. As discussed above, the variation
of this energy cutoff makes little difference to the resulting
equilibrium states.

After generating the equilibrium ensemble, the simulations
proceed by quenching the trapping frequency !0 ! !1 and
evolving the ensemble in time using the simpler projected
Gross-Pitaevskii equation (PGPE) [which can be obtained by
setting th = 0 in Eq. (S11)] [18, 19]. This equation then
conserves energy and number of particles. As pointed out
above, this classical field approximation fails to correctly cap-
ture the behavior of high energy modes. In contrast to the
equilibrium case, this can affect the dynamics, and in par-
ticular the damping rates, and the details can be sensitive to
the cutoff [20, 21]. Nevertheless, nonequilibrium properties
have been studied with some success using this type of clas-
sical field approximation, including the collective oscillations
of Bose gases [21, 22]. In our case, the results of dynamics
that we present here are found not to depend strongly on the
choice of the energy cutoff, demonstrating that the role of the
higher-energy states is relatively unimportant.

For consistency, we chose the same energy cutoff for both
the PGPE evolution after the confinement quench and the
SPGPE that generates the initial condition. However, the
Hermite-Gauss modes that represent the single-particle eigen-
basis depend upon the trapping frequency. This implies that
the number of Hermite-Gauss modes used for the PGPE evo-
lution, M̃cut, is related to the number of modes in the SPGPE
evolution Mcut via

M̃cut =

�
!1

!0
(Mcut +

1
2 )�

1
2

⌫
, (S13)

where bxc denotes the integer component of x.
Figure 1 illustrates PGPE evolution of the position density

and momentum distributions after a confinement quench in
three different parameter regimes. Although the density un-
dergoes breathing oscillations at frequency !B '

p
3!1 in

all three cases, the momentum distribution exhibits frequency
doubling (top row), a crossover between quasi-doubling and
no doubling (middle row), and no frequency doubling (bottom
row). This is consistent with the breathing oscillations pre-
dicted by our finite-temperature hydrodynamic theory within
the quasicondensate regime (see main text).

B. Details for comparison with finite-temperature
hydrodynamic theory in the quasicondensate regime

The thermal equilibrium properties of a harmonically
trapped Bose gas at temperature T0 and peak density ⇢0(0)
can be parametrized by the three dimensionless quantities
�0 = mg/[~2⇢0(0)], t0 = 2~2kBT0/(mg

2), and !̃ ⌘
(lHO/⇠0) = ~!0/[g⇢0(0)]2, where lHO =

p
~/(m!0) and

⇠0 = ~/
p

mg⇢0(0) are the harmonic oscillator length scale
and healing length, respectively. However, within the clas-
sical field approximation only two parameters are required
since features on the order of mean interparticle separation

1/⇢0(0) are neglected. Specifically, if the classical field is
scaled by  0 = [mk

2
BT

2
0 /(~2g)]1/6, the length scale by x0 =

(~4/(m2
gkBT0))1/3, and the trapping frequency by !̄ =

(kBT0
p
mg/~)2/3/~, then the thermal action E({ C})/kBT

[see Eqs. (S9) and (S10)], which determines the grand canon-
ical partition function, depends only on the dimensionless pa-
rameters ⌘0 = [~2/(mg

2
k
2
BT

2
0 ]

1/3
µ and !0/!̄. Equivalently,

the gas can be described by the dimensionless parameters
�0 = kBT/[~⇢0(0)

p
g⇢0(0)/m] and !̃ = ~!/[g⇢0(0)]; field

correlation functions of order q have previously been shown to
depend only on �0 and !̃, provided they are scaled to ⇢0(0)q
and the lengths are scaled to ~2⇢0/(mkBT ) (cf. [10, 23]
which investigated the parameter dependence within the clas-
sical field approximation for a uniform Bose gas). For suffi-
ciently weak trapping frequencies, !̃ ! 0 and drops out of
the problem. This occurs if the size of the atomic cloud is
much larger than other microscopic correlation lengths of the
gas, therefore implying that the local density approximation
(LDA) is valid.

Consider now the post-quench dynamics investigated in this
paper. They are a priori parametrized by the dimensionless
parameters �0, A =

p
8/�0 =

p
8/(�3/20 t0), ✏, and !̃. Within

the classical field approximation, if we rescale the PGPE [cf.

Eqs. (S11) and (S12)] as done for the equilibrium case, we
find that �0 drops out. Additionally, we chose parameters for
our c-field simulations such that the dynamics only depend
upon A and ✏. That is, we required a sufficiently weak !̃

such that the size of the cloud was always much larger than
the typical correlation length l

(0)
� = ~2⇢0(0)/(mkBT0) (re-

call that l(0)� is the typical phase correlation length of the gas,
itself larger or on the order of the density-density correlation
length). Similarly to the equilibrium case, one then expects
a dynamical LDA to be valid, ensuring that the parameter !̃
is irrelevant. This further fulfilled the high temperature con-
dition required for the (S)PGPE, whilst still ensuring that the
number of modes was numerically tractable.

In order to compute Acr for a given quench strength ✏,
we fixed t0 and varied A. For each A, K was extracted
by fitting B1 exp(�b1t)[

p
K cos(⌫t) �

p
1�K cos(2⌫t)] +

B2 exp(�b2t) to the HWHM of the momentum distribution
at each time point t (here B1, B1, b1, b2, ⌫, and K are free fit-
ting parameters); see the red curves of Fig. 1 for example fits.
The rates b1 and b2 account for the damping present in the
PGPE evolution, which is absent from our hydrodynamic the-
ory. This gave a dataset (A,K); the point Acr where K = 1/2

was determined by fitting 1
2 [tanh[a(A

�2/3 �A
�2/3
cr )] + 1] to

this dataset, with free fitting parameters a and Acr.
The equilibrium momentum distributions generated by the

SPGPE differ slightly to those generated from Eq. (10) of the
main text. This is not unexpected; various assumptions that go
into Eq. (10) (such as a Thomas-Fermi density profile and the
LDA) are relaxed in the SPGPE. A fairer comparison to our
finite-temperature hydrodynamic theory is therefore obtained
by fitting the equilibrium momentum distribution predicted by
Eq. (10) of the main text to the c-field equilibrium momen-
tum distribution (with A and ~!0/[g⇢0(0)] as free parame-
ters). This shifts the dataset (A,K) ! (A0

,K); the c-field
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FIG. 1. (Color online). Results of PGPE simulations illustrating the breathing mode oscillations of a harmonically trapped, weakly-interacting
1D Bose gas after a confinement quench. (a) Density; (b) momentum distribution; (c) rms width �x̃ of the density; and (d) half-width-at-half-
maximum �k̃HWHM of the momentum distribution; all as a function of the dimensionless time ⌧ = !1t. The three examples correspond,
respectively, to: ✏ = 0.563, A = 104, t0 = 106 and ~!0/[g⇢0(0)] = 3.0 ⇥ 10�3 – top row; ✏ = 0.778, A ⇡ Acr = 2.3, t0 =
103, and ~!0/[g⇢0(0)] = 0.07) – middle row; and ✏ = 0.1, A = 1.15, t0 = 106, and ~!0/[g⇢0(0)] = 0.1 – bottom row. In (d)
the black points are c-field data, with the error bars indicating 95% confidence intervals, whilst the solid red curves are fits of the form
B1 exp(�b1t)[

p
K cos(⌫t)�

p
1�K cos(2⌫t)] +B2 exp(�b2t).

values of Acr reported in Fig. 1 of the main text are computed with respect to this latter dataset.
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