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Abstract. We perform a theoretical analysis of atomic four-wave mixing via
a collision of two Bose–Einstein condensates of metastable helium atoms,
and compare the results to a recent experiment. We calculate atom–atom
pair correlations within the scattering halo produced spontaneously during the
collision. We also examine the expected relative number squeezing of atoms
on the sphere. The analysis includes first-principles quantum simulations using
the positiveP-representation method. We develop a unified description of the
experimental and simulation results.
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1. Introduction

Recent years have seen the introduction of powerful new tools for studying degenerate quantum
gases. For example, on the experimental side correlation measurements offer a new experimental
probe of many-body effects [1]–[11]. On the theoretical side, the challenges posed by the new
experimental techniques are being met by quantum dynamical simulations of large numbers
of interacting particles in realistic parameter regimes. These are becoming possible due to
the advances in computational power and improvements in numerical algorithms (for recent
examples, see [12]–[15]).

In this paper, we study metastable helium (4He∗), which is currently unique inquantum
atom opticsin that it permits a comparison of experimentally measured [16] and theoretically
calculated quantum correlations. This is one of the first examples in which experimental
measurements can be considered in the context of first-principles calculations. Our goal in this
paper is to confront a theoretical analysis with the results of recent experiments on atomic
four-wave mixing via a collision of two Bose–Einstein condensates (BECs) of metastable4He∗

atoms [16]. Figure 1 is a schematic momentum space diagram of these experiments. Two
condensates, whose atoms have approximately equal but opposite momenta,k1 andk2 ' −k1,
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Figure 1. Schematic momentum space diagram of the atomic four-wave
mixing interaction. Optical Raman pulses generate untrapped condensates with
momentak1 andk2 = −k1 parallel to thex-axis (dark disks). These undergo a
four-wave mixing interaction to produce correlated atomic pairs on a spherical
shell of radiusk1.

interact by four-wave mixing, while they spatially overlap, to produce correlated atomic pairs
with approximately equal but opposite momenta,k3 andk4, satisfying momentum conservation,
k1 + k2 = k3 + k4. Figure1 corresponds to the experimental data shown in figure2 of [16], since
after time-of-flight expansion, atomic momentum is mapped into atomic position.

We perform first-principles quantum simulations of the collision dynamics using the
positive P-representation method [17]–[20]. The advantage of this method is that given the
Hamiltonian of the interacting many-body system, no additional approximations are imposed to
simulate the quantum dynamics governed by the Hamiltonian. The drawback on the other hand,
is that it usually suffers from large sampling errors and the boundary term problem [21] as the
simulation timetsim increases, eventually leading to diverging results.

An empirically estimated upper bound for the positive-P simulation time (beyond which
the stochastic trajectories start to make large excursions in phase space, leading to boundary
term problem and uncontrollable sampling errors [21]) for the evolution of condensates with
s-wave scattering interactions is given approximately by [22]

tsim. 2.5m(1V)1/3/[4π h̄aρ2/3
0 ], (1)

wherem is the atom mass,a is the s-wave scattering length,ρ0 is the condensate peak density,
and1V = 1x1y1z is the volume of the elementary cell of the computational lattice, with
lattice spacings of1x, 1y and1z. Applying this formula to metastable helium, we see that
this is a particularly challenging case among commonly condensed atoms due to its small
atomic mass and relatively large scattering length. Our simulations are restricted to short
interaction times (typically.25µs), which are about six times shorter than the experimental
interaction time of [16]. Despite this, our positive-P simulations provide useful insights into
the experimental observations; in addition, they can serve as benchmarks for approximate
theoretical methods (such as the Hartree–Fock–Bogoliubov method [23]–[26] or the truncated
Wigner method [12, 13]) to establish the range of their validity.
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We note that the simulations of BEC collisions of [12, 13] using the truncated Wigner
method are in a different regime than the ones carried out here using the positive-P method.
More specifically, the authors of [12, 13] simulate condensates at much higher densities, for
which the approximations of the method [13, 27] are satisfied. The advantage of the Wigner
method over the positive-P is that it does not suffer from boundary term problem and can be
used to simulate condensate collisions for longer durations.

In the present paper, we calculate atom pair correlations within the scattering halo produced
spontaneously during the collision (see figure1). The scattering halo is a spherical shell in
momentum space. In the limit of small occupation of the scattered modes, the s-wave nature of
the collisions ensures an approximately uniform atom population over the halo. We consider the
strength and the width of the correlation signal, as well as the momentum width of the halo. We
also analyze relative atom number squeezing and the violation of the classical Cauchy–Schwartz
inequality.

In section2 of this paper, we will summarize the experimental results we wish to analyze.
In section3, we discuss order of magnitude estimates. In section4, we describe simulations
using the positiveP-representation method, and in section5, we discuss the results of our
simulations. Section6 summarizes our work.

2. Summary of experimental results

2.1. Overview of the experiment

The starting point of the experiment is a4He∗ condensate of 104–105 atoms confined in
a magnetic trap whose frequencies are:ωx/2π = 47 Hz andωy/2π = ωz/2π = 1150 Hz. A
sudden Raman outcoupling drives the trapped4He* from the mx = 1 Zeeman sublevel into
the magnetic field insensitive statemx = 0 [16]. The Raman transition also splits the initial
(mx = 1) condensate into two roughly equally populated condensates with opposite velocities
along thex-direction. The magnitude of each velocity is equal to the recoil velocityvr =

9.2 cm s−1, defined by the momentum of the photons used to create the colliding condensates
h̄kr , kr = 5.8× 106 m−1. The relative velocity 2vr of the two condensates is about eight times
higher than the speed of soundcs =

√
µ/m of the initial condensate, ensuring that the relevant

elementary excitations of the condensates correspond to free particles.
During the separation of the condensates, elastic collisions occurring between atoms with

opposite velocities scatter a small fraction (5%) of the total initial atom number into the halo.
The system is shown in three dimensions (3D) in an accompanying video of the experimental
results after a 320 ms time of flight5. For the purposes of this paper, the experiment consists
in the acquisition of the 3D positions of the particles scattered into the collision halo after the
time of flight. This information permits the reconstruction of the 3D momentum vectors of the
individual particles after they have ceased interacting with each other.

5 A 3D, animated rendition of the atomic positions 320 ms after release from the trap, available from
stacks.iop.org/NJP/10/045021/mmedia. The vertical positions are derived from the arrival times as described
in [16]. Each point corresponds to the detection of one atom and the animation shows the sum of 50 separate runs.
The ellipsoids at the sides are the colliding condensates. The ellipsoids at the top and bottom result from imperfect
Raman polarizations and stimulated atomic four-wave mixing (see [16]). The four condensates are excluded from
the analysis given in the text.
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2.2. Main results

Knowledge of the momentum vectors in turn permits the construction of two-particle correlation
functions in momentum space. The correlation function shows features for particles traveling
both back-to-back (BB) and collinearly. The BB correlation results from binary, elastic
collisions between atoms, whereas the collinear (CL) correlation is a two particle interference
effect involving members of two different pairs: a Hanbury Brown–Twiss correlation [28].
Both correlation functions are anisotropic because of the anisotropy of the initial colliding
condensates.

To quantify these correlations, we first introduce the unnormalized normally-ordered
second-order correlation function between the densities at two points in momentum space,

G(2)(k1, k2) = 〈: n̂(k1)n̂(k2) :〉. (2)

Here, n̂(k) = â†(k)â(k) is the momentum density operator,â†(k) and â(k) are the Fourier
transforms of the field creation and annihilation operators9̂†(x) and9̂(x), and the colons ::
stand for normal ordering of the operators according to which all creation operators stand to the
left of the annihilation operators, so that

〈: n̂(k1)n̂(k2) :〉 = 〈â†(k1)â
†(k2)â(k2)â(k1)〉. (3)

Because of a low data rate, the correlation measurements must be averaged over the entire
collision sphere to get statistically significant results. The average CL second-order correlation
as a function of the relative displacement1ki in theki -direction (i = x, y, z) is defined as

g(2)

CL(1ki ) =

∫
D

d3kG(2)(k, k + ei 1ki )∫
D

d3k〈n̂(k)〉〈n̂(k + ei 1ki )〉
, (4)

whereei is the unit vector in theki -direction. The normalization ofg(2)

CL(1ki ) ensures that for
uncorrelated densitiesg(2)

CL(1ki ) = 1. The integration domainD in (4) selects a certain region of
interest in momentum space and can be defined, for example, to contain only a narrow spherical
shell and to eliminate the initial colliding condensates. Due to the averaging, the dependence of
the correlation functions on the directionk is lost.

The average BB correlation functiong(2)
BB(1ki ) between two diametrically opposite points,

one of which is additionally displaced by1ki in the ki -direction, is defined similarly to
g(2)

CL(1ki ):

g(2)
BB(1ki ) =

∫
D

d3kG(2)(k, −k + ei 1ki )∫
D

d3k〈n̂(k)〉〈n̂(−k + ei 1ki )〉
. (5)

The experimental observations can be summarized as follows. The width of both
correlation functions along the axial direction of the condensate, thex-axis, is limited by the
resolution of the detector and hence contains little information about the collision. In the radial
direction (with respect to the symmetry of the colliding condensates), one observes a peak which
can be fitted to a Gaussian function with rms widthsσ CL

y,z andσ BB
y,z for the CL and BB cases,

respectively. The experimental results are summarized in the following table

σ BB
y,z/kr σ CL

y,z/kr σ CL
y,z/σ

BB
y,z

0.081± 0.004 0.069± 0.008 0.85± 0.15
(6)
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Figure 2. Cross-section of the scattering halo. A sloped background is present
due to thermal atoms in the trap. This background has been fitted to a straight
line and subtracted in order to estimate the rms width,δk ' 0.067kr .

One can also use the data to deduce the averaged radial widthδk of the scattering halo.
Figure2 shows a cross-section of the halo, averaged over all accessible scattering angles. The
presence of the unscattered condensates prevents observation of the shell along thex-axis, but
along the accessible directions we findδk ' 0.067kr .

3. Qualitative analysis

In this section, we discuss some simple, analytical estimates of the measured quantities. In later
sections, we will do more precise, numerical calculations which will verify the results of this
section.

3.1. Width of the pair correlation functions

As discussed in [16], the width of the BB and CL correlation functions should be on the order
of the momentum width of the initial condensate, which in turn is proportional to the inverse
width of its spatial profile. For a Gaussian density profile of the initial condensate in position
spaceρ(x) = 〈9̂†(x)9̂(x)〉 = ρ0 exp [−

∑
i =x,y,z r 2

i /(2w2
i )], and therefore a Gaussian density

distribution in momentum space,n(k) = 〈n̂(k)〉 ∝ exp [−
∑

i =x,y,z k2
i /(2σ 2

i )], with σi = 1/2wi ,
an approximate theoretical treatment based on a simple ansatz for the pair wavefunction predicts
a Gaussian dependence of the BB and CL correlation functions on the relative wavevectors
1ki [28]:

G(2)(k, −k + ni 1ki ) ∝ exp

(
−

1k2
i

2(σ BB
i )2

)
, (7)

G(2)(k, k + ni 1ki ) ∝ exp

(
−

1k2
i

2(σ CL
i )2

)
. (8)
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The widths of the BB (σ BB
i ) and CL (σ CL

i ) correlations are related to the momentum-space
width σi of the initial (source) condensate via [28]

σ BB
i /σi =

√
2, (9)

σ CL
i /σi = 2, (10)

and therefore the width of the BB correlation is
√

2 times smaller than the width of the CL
correlation. Similar predictions of correlation widths have been made and discussed in [13, 24].

In section5.1, the initial momentum-space widths are found to beσx = 0.0025kr andσy,z =

0.055kr , assumingN = 9.84× 104 atoms. Expressing the experimentally measured widths in
units ofσy,z, we can rewrite (6) as

σ BB
y,z/σy,z σ CL

y,z/σy,z σ CL
y,z/σ

BB
y,z

1.47± 0.07 1.25± 0.15 0.85± 0.15
(11)

and therefore, equation (9) is in agreement with the measured width of the radial BB correlation
function, whereas (10) overestimates the width of the CL correlation function by almost 60%.
As we show below, first-principles simulations using the positive-P method and incorporating
atom–atom interactions result in widths which are closer to the experimental values.

The discrepancy between the two theoretical approaches (which apparently is larger for the
CL correlations than for the BB ones) comes mostly from the fact that the above calculation
is made for a Gaussian shape of the initial BEC density profile, whereas in practice and
in the positive-P simulations the spatial density of a harmonically trapped condensate is
closer to an inverted parabola (as in the Thomas–Fermi limit) rather than to a Gaussian. An
alternative theoretical model [29], based on the undepleted source condensate approximation
and a numerical solution to the linear operator equations of motion for scattered atoms, also
confirms that for short times the momentum-space correlation widths are narrower if the source
condensate has a parabolic spatial density profile, compared to the case of a Gaussian density
profile.

3.2. Width of the scattered halo

A second, experimentally accessible quantity in a BEC collision is the widthh̄δki in momentum
space of the halo on which the scattered atoms are found. Clearly the momentum spreadσi (in
i = x-, y- or z-direction) of the colliding condensates imposes a minimum width

δki & σi . (12)

This limit suggests that the halo could be anisotropic. As noted above, however, the experiment
in [16] is not highly sensitive to such an anisotropy, and measures the width chiefly in the
y- andz-directions.

Other physical considerations also affect this width, and suggest that the halo should rather
be isotropic, in which case we can drop the index fromδk. Here, we discuss two mechanisms
that impose a finite radial width on the halo.

If the pairs are produced during a finite time interval1t , the total energy of the pair is
necessarily broadened byh̄/1t . This is true even if the relative momentum is well defined.
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For a meank-vector kr , the finite interaction time between the colliding BECs results in a
broadening of

δk '
m

h̄kr 1t
, (13)

where we assumedδk/kr � 1. In the experiment, the collision time is sufficiently long that
the above effect does not impose a limitation on the width of the sphere. In the positive-P
simulations, however, numerical stability problems limit the maximum collision time that can
be simulated, as discussed in section5, and this time does indeed impose a width on the halo. For
short collision times, where the scattering is in the spontaneous regime, our numerical results
for the widthδk are in good agreement with the simple estimate of equation (13).

For long collision times, it can happen that so many atoms are scattered that Bose
enhancement and stimulated effects become important. In this case, the width of the
scattering shell can be estimated by a slightly more involved approximate approach based on
analytic solutions for the uniform system within the undepleted ‘pump’ (source condensate)
approximation [30]. Under this approximation, the present system is equivalent to the
dissociation of a condensate of molecular dimers studied in detail in [14, 31, 32]. The latter
system in turn is analogous to parametric down-conversion in optics [33]. The details of the
approximate solutions, common to condensate collisions and molecular dissociation, and the
relationship between them are given in appendixC. The resulting width of the halo found from
this approach is

δk '
4πaρ0

kr
. (14)

We see that in this regime, the width is proportional to the scattering lengtha and the peak
densityρ0, but it no longer depends on the collision duration.

The physical interpretation of equation (14) is that with the stronger effective coupling
(or nonlinearity)aρ0, one can excite and amplify spectral components that are further detuned
from the exact resonance conditionh̄1k = 0 (or further ‘phase mismatched’). The inverse
dependence on collision momentumkr can be understood via the quadratic dependence of the
energy on momentumk: to get the same excitation at a given energy offseth̄1k, (C.3), one
requires smaller absolute momentum offsetδk at largerkr than at smallkr .

Positive-P simulations covering the transition from the spontaneous to stimulated regimes
are available for23Na condensate collisions as in [15]. The numerical results in this case are
in agreement with the simple analytic estimate of equation (14). More specifically, we find
that for collision durations between 300 and 640µs the actual numerical results for the width
of the spherical halo vary, respectively, betweenδk/kr ' 0.13 andδk/kr ' 0.087, whereas
equation (14) predictsδk/kr ' 0.096.

For 4He∗, on the other hand, the small mass and the larger scattering length of4He∗ atoms
limit the maximum simulation time totsim. 25µs. This is far from the stimulated regime,
and therefore we do not have a direct comparison of the numerical results with equation (14).
The experiment is also not in the stimulated regime. We are nevertheless tempted by the
numerical23Na result to extrapolate equation (14) to 4He∗ BEC collisions in the long time
limit and we obtainδk/kr ' 0.05. Adding this width in quadrature to the momentum width
of the initial condensate,σy,z ' 0.055kr , gives

√
(0.05kr )2 + (0.055kr )2 = 0.074kr , not far from

the experimentally observed radial momentum width ofδk ' 0.067kr . We thus suggest that the
mechanism leading to equation (14) may play a role in the experiment.
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4. Model

The effective field theory Hamiltonian governing the dynamics of the collision of BECs
is given by

Ĥ =

∫
dx

{
h̄2

2m
|∇9̂|

2 +
h̄U0

2
9̂†9̂†9̂9̂

}
, (15)

where9̂(x, t) is the field operator with the usual commutation relation [9̂(x, t), 9̂†(x′, t)] =

δ(3)(x − x′), m is the atomic mass, the first term is the kinetic energy, and the second term
describes the s-wave scattering interactions between the atoms. The trapping potential for
preparing the initial condensate before the collision is omitted since we are only modeling the
dynamics of the outcoupled condensates in free space. The use of the effective delta function
interaction potentialU (x − y) = U0δ(x − y) assumes a UV momentum cutoffkmax. In our
numerical simulations, the momentum cutoff is imposed explicitly via the finite computational
lattice. If the lattice spacings (1x, 1y and 1z) in each spatial dimension are chosen to
be much larger than the s-wave scattering lengtha, then the respective momentum cutoffs
satisfykmax

x,y,z � 1/a. In this case the coupling constantU0 is given by the familiar expression
U0 ' 4π h̄a/m [34] without the need for explicit renormalization.

To model the dynamics of quantum fields describing the collision of two BECs, we use the
positive P-representation approach [17]. In this approach, the quantum field operators9̂(x, t)
and 9̂†(x, t) are represented by two complex stochasticc-number fields9(x, t) and 9̃(x, t)
whose dynamics is governed by the following stochastic differential equations [15]:

∂9(x, t)

∂t
=

ih̄

2m
∇

29 − iU09̃99 +
√

−iU092 ζ1(x, t), (16a)

∂9̃(x, t)

∂t
= −

ih̄

2m
∇

29̃ + iU099̃9̃ +
√

iU09̃2 ζ2(x, t). (16b)

Here,ζ1(x, t) andζ2(x, t) are real independent noise sources with zero mean,〈ζ j (x, t)〉 = 0,
and the following non-zero correlation:

〈ζ j (x, t)ζk(x′, t ′)〉 = δ jkδ
(3)(x − x′)δ(t − t ′). (17)

The stochastic fields9(x, t) and 9̃(x, t) are independent of each other [9̃(x, t) 6= 9∗(x, t)]
except in the mean,〈9̃(x, t)〉 = 〈9∗(x, t)〉, where the brackets〈. . .〉 refer to stochastic averages
with respect to the positiveP-distribution function. In numerical realizations, this is represented
by an ensemble average over a large number of stochastic realizations (trajectories). Observables
described by quantum mechanical ensemble averages over normally ordered operator products
have an exact correspondence with stochastic averages over the fields9(x, t) and9̃(x, t):

〈[9̂†(x, t)]m[9̂(x′, t)]n
〉 = 〈[9̃(x, t)]m[9(x′, t)]n

〉. (18)

The initial condition for our simulations is a coherent state of a trapped condensate,
modulated with a standing wave that imparts initial momenta±kr (wherekr = mvr /h̄ andvr is
the collision velocity) in thex-direction,

9(x, 0) = 〈9̂(x, 0)〉 =
√

ρ0(x)/2
(
eikr x + e−ikr x

)
, (19)

with 9̃(x, 0) = 9∗(x, 0). Here,ρ0(x) is the density profile given by the ground state solution to
the Gross–Pitaevskii equation in imaginary time. The above initial condition models a sudden
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Raman outcoupling of a BEC of trapped4He∗ atoms in themx = 1 sublevel into the magnetic
field insensitive statemx = 0, using two horizontally counter-propagating lasers and a third
vertical laser [16]. In this geometry, the Raman transitions split the initial (mx = 1) condensate
into two equally populated condensates and simultaneously impart velocities of±vr onto
the two halves. As a result, the two outcoupled condensates undergo a collision and expand
in free space. Accordingly, in our dynamical simulations, the field9̂(x, t) represents the atoms
in the untrapped statemx = 0, having the s-wave scattering length ofa00 = 5.3 nm ([16] and
references therein), while the initial density profileρ0(x) refers to that of the trapped atoms in
the mx = 1 state having the scattering length ofa11 = 7.51 nm [35]. The same distinction in
terms of the scattering length in question applies to the definition of the interaction strength
U0 ' 4π h̄a/m, in whicha has to be understood asa11 for the trapped condensate or asa00 for
the outcoupled cloud.

In our simulations, we assume for simplicity that the outcoupling from the trappedmx = 1
state is 100% efficient, in which case the entire population is transferred into themx = 0 state
and therefore we have only to model s-wave scattering interactions between the atoms in the
mx = 0 state. In the experiment, on the other hand, the transfer efficiency is only about 60%
and therefore the collisions between the atoms in themx = 0 andmx = 1 are not completely
negligible and may be responsible for some of the deviations between the present theoretical
results and the experimental observations.

5. Results and discussion

5.1. Main numerical example

Here, we present the results of positive-P numerical simulations of collisions of two
condensates of4He∗ atoms (m ' 6.65× 10−27 kg) as in the experiment of [16]. The key
parameters in our main numerical example are the collision velocity,vr = 9.2 cm s−1, and the
peak density of the initial trapped condensate,ρ0 = 2.5× 1019 m−3. The trap frequencies are
matched exactly with the experimental values,ωx/2π = 47 Hz andωy/2π = ωz/2π = 1150 Hz.
The s-wave scattering length for the magnetically trapped atoms in themx = 1 sublevel is
a11 = 7.5 nm; the s-wave scattering length for the outcoupled atoms in themx = 0 sublevel
is a00 = 5.3 nm. Other simulation parameters are given in appendixD.

The initial state of the trapped condensate is found via the solution of the Gross–
Pitaevskii equation in imaginary time. Given the above trap frequencies and the peak density
as a target, we find that the total number of atoms in the main example isN = 9.84× 104.
With these parameters, the average kinetic energy of colliding atoms isEkin/kB = mv2

r /2kB '

2.0× 10−6 K, which is about 7.4 times larger than the mean-field energy of the initial condensate
EMF/kB = 4π h̄2a11ρ0/mkB ' 2.7× 10−7 K.

The duration of simulation in the main example ist f = 25µs. This is considerably smaller
than the estimated duration of collision in the experiment, 140µs (see appendixA). The number
of scattered atoms in our numerically simulated example att f = 25µs is∼1750, representing
∼1.8% of the total number of atoms in the initial BEC. Operationally, the fraction of scattered
atoms is determined as the total number of atoms contained within the scattering halo (see
figure 3 showing two orthogonal slices through the momentum density distribution) after
eliminating the regions of momentum space occupied by the two colliding condensates. We
implement the elimination by simply discarding the data points corresponding to|kx| > 0.99kr ,
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Figure 3. Slices throughkz = 0 (a) andkx = 0 (b) of the 3D atomic density
distribution in momentum spacen(k, t f ) after t f = 25µs collision time. Due to
the symmetry in the transverse direction (orthogonal tox), the average density
throughky = 0 coincides with that ofkz = 0. The color scale is chosen to clearly
show the halo of spontaneously scattered atoms and cuts off the high-density
peaks of the two colliding condensates (shown in white on the left panel).

which fully contain the colliding condensates. This cuts off a small fraction of the scattered
atoms as well, but the procedure is simple to implement operationally and is unambiguous.

In order to compare our calculated fraction of scattered atoms att f = 25µs with the
experimentally measured fraction of 5% at the end of collision at∼140µs, we first note that
these timescales are relatively short and correspond to the regime of spontaneous scattering. The
number of scattered atoms increases approximately linearly with time, therefore our calculated
fraction of 1.8% can be extrapolated to about 10% to correspond to the expected fraction at
∼140µs. Next, one has to scale this value by a factor 0.62 to account for the fact that in the
experiment only 60% of the initial number of atoms was transferred to themx = 0 state of the
colliding condensates. Accordingly, our theoretical estimate of 10% should be proportionally
scaled down to 4% conversion, in good agreement with the experimentally estimated fraction
of 5% (see also appendixA).

In figure 4, we plot the radial momentum distribution of scattered atoms (solid line),
obtained after angle averaging of the full 3D distribution within the region|kx|6 0.8kr . The
numerical result is fitted with a Gaussian∝ exp[−(k − k0)

2/(2δk2)] (dashed line), centered at
k0 = 0.98kr and having the radial width ofδk = 0.10kr ' 5.8× 105 m−1, wherek = |k|. The
fitted radial width ofδk = 0.10kr of the numerical simulation is in reasonable agreement with
the simple estimate of equation (13), which givesδk ' 0.075kr for 1t = 25µs.

Figure 5 shows the numerical results for the BB and CL correlations (solid lines with
circles), defined in equations (4) and (5). Due to the symmetry of they- andz-directions, the
results in these directions are practically the same. In order to verify the hypothesis that the
shape and therefore the width of the pair correlation functions is governed by the width of
the momentum distribution of the source condensate, we also plot the actual initial momentum
distributions of the source condensate in the two orthogonal directions (with the understanding
that the horizontal axis1ki now refers to the actual wavevector componentki ). The actual data
points for the correlation functions and for the momentum distribution of the source are shown
by the circles and squares, respectively, and are fitted with Gaussian curves for simplicity and

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)

http://www.njp.org/


12

0 0.5 1.0 1.5
0

0.5

1.0

1.5

2.0

2.5

× 10–18

k /kr

n
(k

) 
 (

m
3 )

Figure 4. Angle averaged (radial) momentum distributionn(k) of the scattered
atoms (solid line) and a simple Gaussian fit (dashed line) used to define the radial
width δk = 0.10kr of the halo around the peak momentumk0 = 0.98kr (see text).

to guide the eye. The Gaussian fits for the correlation functions (solid lines) give:

g(2)
BB(1ki ) − 1 = 9.2 exp{−1k2

i /[2(σ BB
i )2]}, (20)

g(2)

CL(1ki ) − 1 = exp{−1k2
i /[2(σ CL

i )2]}, (21)

where the correlation widthsσ BB
i andσ CL

i are shown in the table (22) below. The Gaussian fits
(dashed lines) for the slices of the initial momentum distributionn0(ki ) ∝ exp{−k2

i /[2(σi )
2]}

are scaled to the same peak value asg(2)

BB/CL(0) − 1 and haveσx = 0.0025kr andσy,z = 0.055kr .
By comparing the solid and the dashed lines, we see that the shape of the correlation

functions indeed closely follow the shape of the momentum distribution of the source. More
specifically, we find that the following results provide the best fit to our numerical data:

σ BB
x /σx σ BB

y,z/σy,z σ CL
x /σx σ CL

y,z/σyz

1.18 1.39 1.27 1.57
(22)

The ratios between the CL and BB correlation widths areσ CL
x /σ BB

x ' 1.08 andσ CL
y,z/σ

BB
y,z ' 1.13.

The errors due to stochastic sampling on all quoted values of the correlation widths are smaller
than 3%.

The values forσ CL
y,z/σy,z andσ BB

y,z/σy,z can be compared with the respective experimentally
measured values of table (11) and we see reasonably good agreement, even though the numerical
data are for a much shorter collision time. The remaining discrepancy between the numerical
data att f = 25µs and the experimentally measured values after a∼140µs interaction time
may be due to the evolution of the condensates past 25µs, not attainable within the positive-P
method. The above numerical results for the correlation widths can also be compared with the
simple analytic estimate based on the Gaussian ansatz treatment of equations (9) and (10). We
find that the approximate analytic results overestimate the BB and CL widths by∼20 and 40%,
respectively, in the present example.
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Figure 5. BB and CL atom–atom pair correlation,g(2)

BB/CL(1ki ) − 1 as a function
of the displacement1ki (i = x, y and z) in units of the collision momentum
kr , after t f = 25µs collision time. The circles are the numerical results, angle-
averaged over the halo of scattered atoms after elimination of the regions
occupied by the two colliding condensates; the solid lines are simple Gaussian
fits to guide the eye (see text). For comparison, we also plot the initial momentum
distributionn0(ki ) of the colliding condensates; the actual data points are shown
by the squares and are fitted by a dashed-line Gaussian.

The amplitude of the correlation functions can also be inferred by simple models. In
fact, the CL correlation function is a manifestation of the Hanbury Brown and Twiss effect
since it involves pairs from two independent spontaneous scattering events and we expect an
amplitude ofg(2)

CL(0) = 2 [28]. This is in agreement with the positive-P simulations. The BB
correlation amplitude, on the other hand, can be substantially higher and display super-bunching
(g(2)

BB(0) � 1) [14, 24] since the origin of this correlation is a simultaneous creation of a pair of
particles in a single scattering event.

In a simple qualitative model [16], the amplitude of the BB correlation can be linked to
the inverse population of the atomic modes on the halo. As we show in appendixB, this model
follows the trends observed in our first-principles numerical simulations.

5.2. Shorter collision time

Here, we present the results of numerical simulation for the same parameters as in our main
numerical example from section5.1, except that the data are analyzed att f = 12.5µs, which
is half the previous interaction time. We found in section5.1 that σ BB

yz , σ CL
yz and the width of

the haloδk are all nearly the same. In section 3, however, we argue that the widths of the
correlation functions and the halo are governed by different limits (equations (9), (10) and (13)
or (14), respectively). The example in this section illustrates this point.
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Figure 6. Same as in figure3, except fort f = 12.5µs collision time.
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Figure 7. Same as in figure4, except fort f = 12.5µs collision time. The width
and the peak of the fitted Gaussian here are:δk = 0.20kr andk0 = 0.95kr .

Figure6 shows two orthogonal slices of the s-wave scattering sphere in momentum space
(cf figure3), whereas figure7 is the corresponding radial distribution after angle averaging. The
most obvious feature of the distribution is that it is broader than att f = 25µs and the fitted
Gaussian gives the radial width ofδk = 0.20kr . This is precisely twice the width in figure4 and
is in agreement with the simple qualitative estimate of equation (13).

The BB and CL correlation functions aftert f = 12.5µs collision time are qualitatively
very similar to those shown in figure5, except that the Gaussian fits are

g(2)
BB(1ki ) − 1 = 35.6 exp{−1k2

i /[2(σ BB
i )2]}, (23)

g(2)

CL(1ki ) − 1 = exp{−1k2
i /[2(σ CL

i )2]}, (24)
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Figure 8. Same as in figure3, except for
√

2 times smaller collision velocity,v′

r =

6.46 cm s−1 (k′

r = 4.09× 106 m−1). The axes for the momentum componentski

(i = x, y andz) are in units of smaller recoil momentum than in figure3, and
therefore the absolute radius of the s-wave scattering sphere is smaller in the
present example.

with the correlation widths given by

σ BB
x /σx σ BB

y,z/σy,z σ CL
x /σx σ CL

y,z/σyz

1.16 1.28 1.27 1.48
(25)

The ratios between the widths areσ CL
x /σ BB

x ' 1.09 andσ CL
y,z/σ

BB
y,z ' 1.16.

For the correlation functions, the main difference compared to the case for 25µs is that
the peak value of the BB correlation is now larger, reflecting the lower atomic density on the
scattering halo. The correlation widths, on the other hand, are practically unchanged, at least
within the numerical sampling errors of the positive-P simulations; the errors are at the level
of the third significant digit in the quoted values, which we suppress. The number of scattered
atoms in this example is about 850, which is approximately half the number at 25µs, confirming
the approximately linear dependence on time in the spontaneous scattering regime.

5.3. Smaller collision velocity

In this example, we present the results of simulations in which the collision velocity is smaller
by a factor

√
2 than before,v′

r = 6.5 cm s−1 (k′

r = 4.1× 106 m−1), while all other parameters
are unchanged. In practice, this can be achieved by changing the propagation directions of the
Raman lasers that outcouple the atoms from the trapped state. As in the previous example, the
halo width illustrates equation (13).

The results of positive-P simulations for the momentum density distribution att f = 25µs
are shown in figures8 and9. The most obvious feature of the distribution is again the fact that
it is now broader than in our main example of section5.1. The width of the Gaussian function
fitted to the numerically calculated radial momentum distribution is given byδk = 0.21k′

r . This
is again in excellent agreement with the simple analytic estimate of equation (13), which predicts
the broadening to be inversely proportional to the collision velocity. We also note that the peak
momentum (relative tok′

r ) in the present example is slightly shifted towards the center of the
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√

2 times smaller collision velocity
v′

r (k′

r = 4.1× 106 m−1). The width and the peak of the fitted Gaussian are
δk = 0.21k′

r = 8.6× 105 m−1 andk0 = 0.92k′

r .

halo, k0 = 0.92k′

r , which is a feature predicted in [30] to occur when the ratio of the kinetic
energy to the interaction energy per particle is reduced.

The BB and CL correlation functions in this example are again qualitatively very similar
to those shown in figure5, except that the Gaussian fits are

g(2)
BB(1ki ) − 1 = 9.0 exp{−1k2

i /[2(σ BB
i )2]}, (26)

g(2)

CL(1ki ) − 1 = exp{−1k2
i /[2(σ CL

i )2]}, (27)

with the correlation widths given by

σ BB
x /σx σ BB

y,z/σy,z σ CL
x /σx σ CL

y,z/σy,z

1.16 1.35 1.31 1.51
(28)

whereσx/k′

r ' 0.0035 andσx/k′

r ' 0.078. The ratios between the CL and BB correlation widths
areσ CL

x /σ BB
x ' 1.13 andσ CL

y,z/σ
BB
y,z ' 1.12.

As we see from these results, the absolute widths of the correlation functions are practically
unchanged compared to the main numerical example (22). This provides further evidence that,
at least for short collision times, the correlation widths are governed by the momentum width
of the source condensate, which is unchanged in the present example compared to the case of
section5.1.

The number of scattered atoms in this example is about 1270, which is approximately√
2 times smaller than in section5.1 and corresponds to∼1.3% conversion. This scaling is in

agreement with the rate equation approach [24], according to which the number of scattered
atoms is proportional to the square root of the collision energy and hence to the collision
momentum, which is

√
2 times smaller here.
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Figure 10. Same as in figure3 except for the scattering lengths ofa00 = 2.65 nm
anda11 = 3.75 nm, which are twice as small as before.

5.4. Smaller scattering length

Finally, we present the results of numerical simulations for the same parameters as in our
main numerical example from section5.1, except that the scattering lengthsa11 and a00 are
artificially halved, i.e.a00 = 2.65 nm anda11 = 3.75 nm. The trap frequencies are unchanged
and we modify the chemical potential to arrive at the same peak density of the initial BEC in the
trap,ρ0 ' 2.5× 1019 m−3. The total number of atoms is now smaller,N ' 3.5× 104. One effect
of changing the scattering length is that it changes the size and shape of the trapped cloud,
and therefore also its momentum distribution. The shape is slightly closer to a Gaussian and
therefore also to the treatment in [28].

Due to the smaller scattering length, the density distribution in position space of the initial
trapped condensate is now narrower and conversely the momentum distribution of the colliding
condensates is broader. On the other hand, the width of the halo (see figures10 and 11 at
t f = 25µs) of scattered atoms is practically unchanged compared to the example of figure4, as
it is governed by the energy–time uncertainty consideration (13), for the spontaneous scattering
regime. The only quantitative difference is the lower peak density on the scattering sphere,
which is due to the weaker strength of atom–atom interactions resulting in a slower scattering
rate. The number of scattered atoms at 25µs is∼180, corresponding to 0.51% conversion of
the initial total numberN ' 3.5× 104. The fraction 0.51% itself corresponds approximately to
a scaling law of∼a3/2, which is the same as the scaling of the total initial number of trapped
atoms in the Thomas–Fermi limit for a fixed peak density.

Since the widths of the correlation functions are governed by the width of the momentum
distribution of the initial colliding condensates, we expect corresponding broadening of the
correlation functions as well (see figure12). To quantify this effect, we fit the momentum
distribution of the initial BEC by a Gaussian∝ exp{−k2

i /[2(σi )
2]}, whereσx = 0.0036kr and

σy,z = 0.068kr (cf with σx = 0.0025kr andσy,z = 0.055kr in figure5, which are∼
√

2 smaller).
The Gaussian fits to the correlation functions in figure12are

g(2)
BB(1ki ) − 1 = 49 exp{1k2

i /[2(σ BB
i )2]}, (29)

g(2)

CL(1ki ) − 1 = 0.94 exp{1k2
i /[2(σ CL

i )2]}, (30)
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Figure 11. Same as in figure4 except for twice as small values of the scattering
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andk0 = 0.98kr , which are the same as in figure4.
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Figure 12. Same as in figure5 except for twice as small s-wave scattering lengths
a11 anda00.
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Figure 13. Illustration of the four regions of the momentum space density,
forming the quadrantsA, B, C andD on the s-wave scattering sphere, on which
we analyze the data for relative number squeezing.

where the widthsσ BB
i andσ CL

i are given by

σ BB
x /σx σ BB

y,z/σy,z σ CL
x /σx σ CL

y,z/σy,z

1.18 1.53 1.42 1.81
(31)

We see that the relative widths are practically unchanged, implying that the absolute widths
are broadened. The ratios between the CL and BB correlation widths are slightly increased and
are given byσ CL

x /σ BB
x ' 1.20 andσ CL

y,z/σ
BB
y,z ' 1.18.

These numerical results make the present example—with the diminished role of atom–
atom interactions—somewhat closer to the simple analytic predictions of equations (9) and (10)
based on a Gaussian ansatz for non-interacting condensates.

5.5. Relative number squeezing and violation of Cauchy–Schwartz inequality

Another useful measure of atom–atom correlations is the normalized variance of the relative
number fluctuations between atom numbersN̂ i and N̂ j in a pair of counting volume elements
denoted viai and j ,

Vi − j =
〈[1(N̂ i − N̂ j )]2

〉

〈N̂ i 〉 + 〈N̂ j 〉
= 1 +

〈: [1(N̂ i − N̂ j )]2 :〉

〈N̂ i 〉 + 〈N̂ j 〉
, (32)

where1X̂ = X̂ − 〈X̂〉 is the fluctuation. This definition uses the conventional normalization
with respect to the shot-noise level characteristic of Poissonian statistics, such as for a coherent
state,〈N̂ i 〉 + 〈N̂ i 〉 . In this case, the varianceVi − j = 1, which corresponds to the level of
fluctuations in the absence of any correlation betweenN̂ i and N̂ j . Variance smaller than one,
Vi − j < 1, implies reduction (or squeezing) of fluctuations below the shot-noise level and is due
to quantum correlation between the particle number fluctuations inN̂ i andN̂ j . Perfect (100%)
squeezing of the relative number fluctuations corresponds toVi − j = 0.
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Figure 14. Relative number variance in the diametrically opposite and
neighboring quadrants,VA−C/B−D andVA−B/C−D, as a function of time.

In the context of the present model for the BEC collision experiment and possible
correlation measurements between atom number fluctuations on diametrically opposite sides
of the s-wave scattering sphere, we assign the indicesi, j = A, B, C andD in equation (32) to
one of the four quadrants as illustrated in figure13. The total atom number operator̂N i in each
quadrantDi within the s-wave scattering sphere is defined after elimination of the regions in
momentum space occupied by the two colliding condensates

N̂ i (t) =

∫
Di

dkxdky

∫ +∞

−∞

dkzn̂(k, t). (33)

Operationally, this is implemented by discarding the data points beyond|kx| > 0.8kr . In
addition, the quadrantsDi are defined on a 2D plane after integrating the momentum distribution
along thez-direction, which in turn only takes into account the 3D data points satisfying
|1− k2/k2

r | < 0.28, i.e. lying in the narrow spherical shellkr ± δk with δk ' 0.14kr . The
elimination of the inner and outer regions of the halo is done to minimize the sampling error in
our simulations, since these regions have vanishingly small population and produce large noise
in the stochastic simulations.

The choice of the quadrants as above is a particular implementation of the procedure
of binning, known to result in a stronger correlation signal and larger relative number
squeezing [11, 36]. Due to strong BB pair correlations, we expect the relative number
fluctuations in the diametrically opposite quadrants to be squeezed,VA−C, VB−D < 1, while the
relative number variance in the neighboring quadrants, such asVA−B andVC−D, is expected to
be larger than or equal to one. The positive-P simulations confirm these expectations and are
shown in figure14, where we see strong (∼80%) relative number squeezing for the diametrically
opposite quadrants,VA−C,B−D ' 1− 0.8 = 0.2.

These results assume a uniform detection efficiency ofη = 1, whereas if the efficiency
is less than 100% (η < 1), then the second term in equation (32) should be multiplied
by η. This implies, that forη = 0.1 as an example, the above prediction of∼80% relative
number squeezing will be degraded down to a much smaller but still measurable value of
∼ 8% squeezing (VA−C,B−D ' 1− 0.08= 0.92). Even with perfect detection efficiency, our
simulations do not lead to ideal (100%) squeezing. This can be understood in terms of a small
fraction of collisions that take place with a center-of-mass momentum offset that is (nearly)
parallel to one of the borders between the quadrants. As a result, the respective scattered pairs
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fail to appear in diametrically opposite quadrants during the (finite) propagation time (see
also [36]).

For the symmetric case with〈N̂ i 〉 = 〈N̂ j 〉 and 〈N̂2
i 〉 = 〈N̂2

j 〉, the varianceVi − j can be
rewritten as

Vi − j = 1 +〈N̂ i 〉[g
(2)

i i − g(2)

i j ], (34)

where the second-order correlation functiong(2)

i j is defined according to

g(2)

i j =
〈: N̂ i N̂ j :〉

〈N̂ i 〉〈N̂ j 〉
. (35)

Equation (34) helps to relate the relative number squeezing,Vi − j < 1, to the violation of
the classical Cauchy–Schwartz inequalityg(2)

12 > g(2)

11 , studied extensively in quantum optics with
photons [33, 37]. The analysis presented here (see also [36] on molecular dissociation) shows
that the Cauchy–Schwartz inequality, and its violation, is a promising area of study inquantum
atom opticsas well.

6. Summary

An important conclusion that we can draw from the numerical simulations is that the predicted
widths of the correlation functions are remarkably robust against the parameter variations we
were able to explore (in section5.1 through 4). This gives us confidence in our physical
interpretation of the width as being chiefly due to the initial momentum width of the condensate.
The discrepancy with the analytical calculation of [28] seems to be primarily due to the different
cloud shapes used. The width of the halo varies with the parameters we tested in a predictable
way and also confirms the discussion in section3.

As for comparison with the experiment, the numerically calculated widths of the scattering
halo and the correlation functions coincide with the experimental ones to within better than
20% in most cases. The main discrepancy with the experiment is in theratio of the BB
and CL correlation widths. From the experimental point of view, these ratios are more
significant than the individual widths since some sources of uncertainty, such as the number
of atoms and the size of the condensates, cancel. The discrepancy may mean that the CL
correlations are not sufficient to characterize the size and momentum distribution in the source
at this level of accuracy. The discrepancies may of course also be due to the numerous
experimental imperfections, especially the fact that the Raman outcoupling was only 60%
efficient, and therefore an appreciable trappedmx = 1 condensate was left behind. This defect
may be remedied in future experiments. On the other hand, the current simulations neglect the
unavoidable interaction of the scattered atoms with unscattered,mx = 0 condensates as they
leave the interaction region. This interaction could alter the trajectories of the scattered atoms
in a minor, but complicated way. Future numerical work must examine this possibility further.

Still, the overall message of this work is that a first principles quantum field theory
approach can quantitatively account for experimental observations of atomic four-wave mixing
experiments. This work represents the first time that this sort of numerical simulation has been
carefully confronted with an experiment. An interesting extension would be to examine the
regime of stimulated scattering. It has been predicted that a highly anisotropic BEC could lead
to an anisotropic population of the scattering halo [38, 39]. This effect would be a kind of atomic
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analogue of superradiance observed when off-resonant light is shone on a condensate [40, 41].
In addition, our results may be useful beyond the cold atom community: theoretical descriptions
of correlation measurements in heavy ion collisions [42] may benefit from some of our insights.
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Appendix A. Duration of the collision

In order to estimate the collision duration one can consider a simple classical model of the
collision [24]. Denoting byρ1(x, t) andρ2(x, t) the density distributions of the two condensates,
the number of scattered atomsNsc(t) at a given time can be written

Nsc(t) = 2
∫ t

0
dt ′

∫
d3x2σ0vr ρ1(x, t ′)ρ2(x, t ′), (A.1)

whereσ0 = 8πa2
00 is the cross-section for a collision of two particles. In this latter formula

a00 ' 5.3 nm is the scattering length betweenmx = 0 atoms [16].
The time-dependent density of the two condensates can be calculated from the expansion

of a condensate in the Thomas–Fermi regime described in [44]. This approach suggests two
different timescales for the collision duration. First, the separation of the two condensates occurs
in a time defined by the ratio of the longitudinal size of the condensates and their relative
velocity tsep= Rx/vr . Taking for Rx the Thomas–Fermi radius of the initial condensate, one
can show thattsep is on the order of 1 ms. At the same time, the condensates expand during
their separation on a timescaletexp = 1/ωy = 1/ωz ' 140µs. This latter effect appears to be
predominant in the evaluation of equation (A.1) and texp can be taken as a definition of the
collision duration1t . The numerical evaluation of equation (A.1) givesNsc(1t) ' 0.66Nsc(∞)

and the estimated total number of scattered atoms corresponds to the experimentally observed
5% of the initial total number of atoms in the trapped condensate.

Appendix B. Occupation number of the scattering modes and amplitude of the
BB correlation

In order to estimate the occupation number of the scattering modes one needs to compare the
number of scattered atomsNsc to the number of scattering modesNm. To achieve this one has
to first consider the volume of a scattering modeVm, given by the first-order coherence volume
(also dubbed ‘phase grain’ in [12, 15]). Such a volume corresponds in fact to the coherence
volume of the source condensate, and in practice it can also be deduced from the measurement
of the width of the CL correlation functiong(2)

CL(1ki ) as one expects in a Hanbury Brown–Twiss
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experiment. For simplicity, we match the scattering mode volumeVm to the coherence volume
of the source condensate in momentum space,

Vm ' βσx(σyz)
2, (B.1)

whereβ is a geometrical factor which depends on the geometry of the modes. Approximating
the source condensate in momentum space by a Gaussian∝ exp [−x2/(2σ 2

x ) − (y2 +
z2)/(2σ 2

y,z)], one hasβ = (2π)3/2.
The number of scattering modesNm can in turn be estimated from knowledge of the total

volume of the scattering shellV ,

Nm =
V

Vm
, (B.2)

where the volumeV is determined from the value of the width of the scattering shellδk:

V =

∫
d3k exp [−(k − kr )

2/(2δk2)]

' 4π
√

2πk2
r δk, (B.3)

for δk � kr . If we apply this estimate to the results of the main numerical example (see
section5.1), we findNm ' 26 400. AsNsc = 1750, this implies an occupation number per mode
of Nsc/Nm ' 0.066. Such an estimate confirms that the system is indeed in the spontaneous
regime and that bosonic stimulation effects are negligible.

The simple model of [16] for the BB correlation predicts that its height is given by

g(2)
BB(0) = 1 + Nm/Nsc. (B.4)

Using the above estimate ofNm and the actual value ofNsc found from the numerical
simulations, we obtain that the height of the BB correlation peak should be approximately given
by ∼ 16. This compares favorably with the actual numerical result of 10.2. Similarly, we obtain
the BB correlation peak of:∼62 in the example with the shorter collision time (compare with
the numerical result of 36.6); ∼18 in the example with the smaller collision velocity (compare
with 10); and∼70 in the example with the smaller scattering length (compare with 50).

Appendix C. Width of the s-wave scattering sphere in the undepleted ‘pump’
approximation

To estimate the width of the halo of scattered atoms beyond the spontaneous regime we use
the analytic solutions for a uniform system in the so-called undepleted ‘pump’ approximation
in which the number of atoms in the colliding condensates are assumed constant. This
approximation is applicable to short collision times. Nevertheless, it formally describes the
regime of stimulated scattering and can be used to estimate the width of the s-wave scattering
sphere as we show here.

The problem of BEC collisions in the undepleted ‘pump’ approximation was studied
in [30]; the solutions for the momentum distribution of the s-wave scattered atoms are formally
equivalent to those obtained for dissociation of a BEC of molecular dimers in the undepleted
molecular condensate approximation [14, 31]. For a uniform system with periodic boundary
conditions, one has the following analytic solution for momentum mode occupation numbers:

nk(t) =
ḡ2

ḡ2 − 12
k

sinh2

(√
ḡ2 − 12

k t

)
. (C.1)
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Here, the constant̄g is given by

ḡ = 2U0ρ0 =
8π h̄a00ρ0

m
, (C.2)

whereU0 = 4π h̄a00/m corresponds to the coupling constantg/h̄ of [30], and we note that the
results of [30] contain typographical errors and have to be corrected as follows [45]: given the
Hamiltonian of (1), withg = 4π h̄2a/m, the couplingg in (2), (7), (9) and (10), as well as in the
definition of1(p) after (9), should be replaced by 2g. In the problem of molecular dissociation,
the constant̄g corresponds tōg = χ

√
ρ0 [14], whereχ is the atom–molecule coupling andρ0

is the molecular BEC density.
The parameter1k in equation (C.1) corresponds to the energy offset from the resonance

condition

h̄1k ≡
h̄2k2

2m
−

h̄2k2
r

2m
, (C.3)

whereh̄kr is the collision momentum; in molecular dissociation,h̄2k2
r /m corresponds to the

effective dissociation energy 2h̄|1eff|, using the notation of [14].
From equation (C.1), we see that modes with̄g2

− 12
k > 0 experience Bose enhancement

and grow exponentially with time, whereas the modes withḡ2
− 12

k < 0 oscillate at the
spontaneous noise level. The absolute momenta of the exponentially growing modes lie
near the resonant momentum̄hkr , and therefore we can use the conditionḡ2

− 12
k = 0 to

define the approximate width of the s-wave scattering sphere. First, we writek = kr +1k and
assume for simplicity thatkr is large enough so that1k � kr . Then the condition̄g2

− 12
k = 0

can be approximated by

1−

(
h̄kr 1k

mḡ

)2

' 0. (C.4)

This can be solved for1k and used to define the widthδk = 1k/2 of the s-wave scattering
sphere as

δk

kr
'

mḡ

2h̄k2
r

=
4πa00ρ0

k2
r

. (C.5)

The reason for defining it as half of1k is to makeδk closer in definition to the half-width at
half maximum and to the rms width aroundkr .

The above simple analytic estimate (C.5) gives δk/kr ' 0.05 for the present4He∗

parameters. For comparison, the actual width of the analytic result (C.1) varies betweenδk/kr '

0.12 andδk/kr ' 0.027 for durations between̄gt = 1 andḡt = 7, corresponding, respectively,
to t ' 20µs andt ' 140µs in the present4He∗ example.

Appendix D. Positive- P simulation parameters

The positive-P simulations in our main numerical example of section5 are performed on a
computational lattice with 1400× 50× 70 points in the (x, y, z)-directions, respectively. The
length of the quantization box along each dimension isLx = 252µm, L y = 20.52µm and
Lz = 30.76µm. The computational lattice in momentum space is reciprocal to the position
space lattice and has the lattice spacing of1ki = 2π/L i , giving 1kx = 2.49× 104 m−1,
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1ky = 3.06× 105 m−1 and1kz = 2.04× 105 m−1. The momentum cutoffs arek(max)
x = 1.75×

107 m−1, k(max)
y = 7.66× 106 m−1 andk(max)

z = 7.15× 106 m−1.
The momentum cutoff in the collision direction,k(max)

x , is more than 3 times larger
than the collision momentumkr , and hence it captures all relevant scattering processes
of interest, including the energy non-conserving scatterings(kr ) + (kr ) → (3kr ) + (−kr ) and
(−kr ) + (−kr ) → (−3kr ) + (kr ) [15]. In all our figures, the regions of momentum space covering
kx ' ±3kr are not shown for the clarity of presentation of the main halo. These scattering
processes, which produce a weak but not negligible signal atkx ' ±3kr , i.e. outside the main
halo, are enhanced by Bose stimulation due to the large population of the colliding condensate
components atkx ' ∓kr , respectively. In the remainingy- andz-directions, such processes are
absent and therefore the number of lattice points and the momentum cutoffs can be smaller.

Since the momentum distribution of the initial condensate is narrowest in thekx-direction,
one may question whether the resolution of1kx = 2.49× 104 m−1 with 1400 lattice points
is sufficient. We check this by repeating the simulations with 4200× 40× 40 lattice points
and quantization lengths ofLx = 753µm andL y = Lz = 15.4µm, which give smaller lattice
spacing1kx = 8.24× 103 m−1, together with1ky = 1kz = 4.08× 105 m−1, k(max)

x = 1.75×

107 m−1 and k(max)
y = k(max)

z = 8.16× 106 m−1. Our results on the new lattice reproduce the
previous ones, within the sampling errors of the stochastic simulations. We typically average
over 2800 stochastic trajectories, and take 128 time steps in the simulations over 25µs collision
time. A typical simulation of this size takes about 100 h on 7 CPUs running in parallel at 3.6 GHz
clock speed.
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