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Abstract.  We perform a theoretical analysis of atomic four-wave mixing via

a collision of two Bose-Einstein condensates of metastable helium atoms,
and compare the results to a recent experiment. We calculate atom-atom
pair correlations within the scattering halo produced spontaneously during the
collision. We also examine the expected relative number squeezing of atoms
on the sphere. The analysis includes first-principles quantum simulations using
the positiveP-representation method. We develop a unified description of the
experimental and simulation results.
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1. Introduction

Recent years have seen the introduction of powerful new tools for studying degenerate quantum
gases. For example, on the experimental side correlation measurements offer a new experimental
probe of many-body effectd-[11]. On the theoretical side, the challenges posed by the new
experimental techniques are being met by quantum dynamical simulations of large numbers
of interacting particles in realistic parameter regimes. These are becoming possible due to
the advances in computational power and improvements in numerical algorithms (for recent
examples, seelpP]-[19]).

In this paper, we study metastable heliuthi€*), which is currently unique imuantum
atom opticgn that it permits a comparison of experimentally measuddsl §nd theoretically
calculated quantum correlations. This is one of the first examples in which experimental
measurements can be considered in the context of first-principles calculations. Our goal in this
paper is to confront a theoretical analysis with the results of recent experiments on atomic
four-wave mixing via a collision of two Bose—Einstein condensates (BECs) of metadtidile
atoms [L6]. Figure 1 is a schematic momentum space diagram of these experiments. Two
condensates, whose atoms have approximately equal but opposite mdmemdk, ~ —k;,
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Figure 1. Schematic momentum space diagram of the atomic four-wave
mixing interaction. Optical Raman pulses generate untrapped condensates with
momentak,; andk, = —k; parallel to thex-axis (dark disks). These undergo a
four-wave mixing interaction to produce correlated atomic pairs on a spherical
shell of radiug;.

interact by four-wave mixing, while they spatially overlap, to produce correlated atomic pairs
with approximately equal but opposite momettaandk,, satisfying momentum conservation,

ki +k, = ks + k4. Figurel corresponds to the experimental data shown in figuw[16], since

after time-of-flight expansion, atomic momentum is mapped into atomic position.

We perform first-principles quantum simulations of the collision dynamics using the
positive P-representation method T]-[20]. The advantage of this method is that given the
Hamiltonian of the interacting many-body system, no additional approximations are imposed to
simulate the quantum dynamics governed by the Hamiltonian. The drawback on the other hand,
is that it usually suffers from large sampling errors and the boundary term proBgmag the
simulation timetgj,, increases, eventually leading to diverging results.

An empirically estimated upper bound for the positResimulation time (beyond which
the stochastic trajectories start to make large excursions in phase space, leading to boundary
term problem and uncontrollable sampling errdz§]] for the evolution of condensates with
s-wave scattering interactions is given approximatelyagy [

tsim < 2.5M(AV)Y3/[4rhapl’?], (1)

wherem is the atom mass is the s-wave scattering lengtby is the condensate peak density,

and AV = AXAyAz is the volume of the elementary cell of the computational lattice, with
lattice spacings oiAx, Ay and Az. Applying this formula to metastable helium, we see that
this is a particularly challenging case among commonly condensed atoms due to its small
atomic mass and relatively large scattering length. Our simulations are restricted to short
interaction times (typically<25us), which are about six times shorter than the experimental
interaction time of 16]. Despite this, our positivé2 simulations provide useful insights into

the experimental observations; in addition, they can serve as benchmarks for approximate
theoretical methods (such as the Hartree—Fock—Bogoliubov me#3pe[26] or the truncated
Wigner method 12, 13]) to establish the range of their validity.
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We note that the simulations of BEC collisions df2[ 13] using the truncated Wigner
method are in a different regime than the ones carried out here using the p&sitiathod.

More specifically, the authors oL, 13] simulate condensates at much higher densities, for
which the approximations of the methoti3] 27] are satisfied. The advantage of the Wigner
method over the positivé- is that it does not suffer from boundary term problem and can be
used to simulate condensate collisions for longer durations.

In the present paper, we calculate atom pair correlations within the scattering halo produced
spontaneously during the collision (see figu)e The scattering halo is a spherical shell in
momentum space. In the limit of small occupation of the scattered modes, the s-wave nature of
the collisions ensures an approximately uniform atom population over the halo. We consider the
strength and the width of the correlation signal, as well as the momentum width of the halo. We
also analyze relative atom number squeezing and the violation of the classical Cauchy—Schwartz
inequality.

In section2 of this paper, we will summarize the experimental results we wish to analyze.

In section3, we discuss order of magnitude estimates. In sectiome describe simulations
using the positiveP-representation method, and in sectignwe discuss the results of our
simulations. Sectiod summarizes our work.

2. Summary of experimental results

2.1. Overview of the experiment

The starting point of the experiment is“fle* condensate of 810 atoms confined in

a magnetic trap whose frequencies atg/2r =47 Hz andwy/2r = w,/2r = 1150Hz. A
sudden Raman outcoupling drives the trappeé* from the m, =1 Zeeman sublevel into

the magnetic field insensitive state, =0 [16]. The Raman transition also splits the initial

(my = 1) condensate into two roughly equally populated condensates with opposite velocities
along thex-direction. The magnitude of each velocity is equal to the recoil velogity
9.2cmst, defined by the momentum of the photons used to create the colliding condensates
hk, ks = 5.8 x 1® m~L. The relative velocity 2, of the two condensates is about eight times
higher than the speed of souag= ,/u/m of the initial condensate, ensuring that the relevant
elementary excitations of the condensates correspond to free particles.

During the separation of the condensates, elastic collisions occurring between atoms with
opposite velocities scatter a small fraction (5%) of the total initial atom number into the halo.
The system is shown in three dimensions (3D) in an accompanying video of the experimental
results after a 320 ms time of flightFor the purposes of this paper, the experiment consists
in the acquisition of the 3D positions of the particles scattered into the collision halo after the
time of flight. This information permits the reconstruction of the 3D momentum vectors of the
individual particles after they have ceased interacting with each other.

5 A 3D, animated rendition of the atomic positions 320ms after release from the trap, available from
stacks.iop.org/NJP/10/045021/mmedidhe vertical positions are derived from the arrival times as described

in [16]. Each point corresponds to the detection of one atom and the animation shows the sum of 50 separate runs.
The ellipsoids at the sides are the colliding condensates. The ellipsoids at the top and bottom result from imperfect
Raman polarizations and stimulated atomic four-wave mixing (56 [The four condensates are excluded from

the analysis given in the text.
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2.2. Main results

Knowledge of the momentum vectors in turn permits the construction of two-particle correlation
functions in momentum space. The correlation function shows features for particles traveling
both back-to-back (BB) and collinearly. The BB correlation results from binary, elastic
collisions between atoms, whereas the collinear (CL) correlation is a two particle interference
effect involving members of two different pairs: a Hanbury Brown—Twiss correlati@h [
Both correlation functions are anisotropic because of the anisotropy of the initial colliding
condensates.

To quantify these correlations, we first introduce the unnormalized normally-ordered
second-order correlation function between the densities at two points in momentum space,

G@(ky, ko) = (: Aitk)A(ky) :). 2)

Here, A(k) = &' (k)a(k) is the momentum density operat(at*(k) and a(k) are the Fourier
transforms of the field creation and annihilation operatbfgx) and \IJ(x) and the colons ::

stand for normal ordering of the operators according to which all creation operators stand to the
left of the annihilation operators, so that

(: AtkDAky) ) = (@' (kA" (ko)a(ko)A(ky)). (3)
Because of a low data rate, the correlation measurements must be averaged over the entire

collision sphere to get statistically significant results. The average CL second-order correlation
as a function of the relative displacemexy; in thek;-direction { = x, y, z) is defined as

S PRGA(k k+6 ak)
4)

)
Go(Al) = f d*k(A(K)) (A(k +& Ak))’
whereg is the unit vector in thd -direction. The normalization qj(CzL)(Aki) ensures that for
uncorrelated densitie;‘tzﬁ(Aki) = 1. The integration domai® in (4) selects a certain region of
interest in momentum space and can be defined, for example, to contain only a narrow spherical
shell and to eliminate the initial colliding condensates. Due to the averaging, the dependence of
the correlation functions on the directiérnis lost.

The average BB correlation functicgézg(Aki) between two diametrically opposite points,
one of which is additionally displaced bxk; in the k;-direction, is defined similarly to
g&L (Ak):

f d*kG@(k, —k +¢ Aki)

gsa(Ak) = (5)

fd3k (MK (A(—k +e Ak)) "

The experimental observatlons can be summarized as follows. The width of both
correlation functions along the axial direction of the condensatexfes, is limited by the
resolution of the detector and hence contains little information about the collision. In the radial
direction (with respect to the symmetry of the colliding condensates), one observes a peak which
can be fitted to a Gaussian function with rms Wldd% and ayBB for the CL and BB cases,
respectively. The experimental results are summarized in the following table

U)?,E/kr Uyc,lz'/kr U;?Iz'/afls,lz3 (6)
0.081+0.004 | 0.069+0.008 | 0.85+£0.15
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Figure 2. Cross-section of the scattering halo. A sloped background is present
due to thermal atoms in the trap. This background has been fitted to a straight
line and subtracted in order to estimate the rms widkir: 0.067; .

One can also use the data to deduce the averaged radial kidththe scattering halo.
Figure2 shows a cross-section of the halo, averaged over all accessible scattering angles. The
presence of the unscattered condensates prevents observation of the shell akeagishéut
along the accessible directions we fisid~ 0.067%; .

3. Qualitative analysis

In this section, we discuss some simple, analytical estimates of the measured quantities. In later
sections, we will do more precise, numerical calculations which will verify the results of this
section.

3.1. Width of the pair correlation functions

As discussed in]€], the width of the BB and CL correlation functions should be on the order

of the momentum width of the initial condensate, which in turn is proportional to the inverse
width of its spatial profile. For a Gaussian density profile of the initial condensate in position
spacep(X) = (W)W (X)) = po exp [ Zi:x,y’zriz/(Zwiz)], and therefore a Gaussian density
distribution in momentum space(k) = (A(k)) ccexp [- 3_, , ,k*/(262)], with o; = 1/2w;,

an approximate theoretical treatment based on a simple ansatz for the pair wavefunction predicts
a Gaussian dependence of the BB and CL correlation functions on the relative wavevectors
Ak; [28]:

AK?
AK?
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The widths of the BB£®) and CL ") correlations are related to the momentum-space
width o; of the initial (source) condensate viag

0% Joi = /2, (9)
ot /oy =2, (10)

and therefore the width of the BB correlation+& times smaller than the width of the CL
correlation. Similar predictions of correlation widths have been made and discus$&d4d|[

In sectionb. 1, the initial momentum-space widths are found tefe= 0.002%; andoy , =
0.05%,, assumingN = 9.84 x 10* atoms. Expressing the experimentally measured widths in
units ofoy ,, we can rewrite§) as

(7;/3,?/(7%2 U)SIE/UY~Z USIE/U;E? (11)
1.47+0.07 | 1.25+0.15| 0.85+0.15

and therefore, equatiof)is in agreement with the measured width of the radial BB correlation
function, whereasl(0) overestimates the width of the CL correlation function by almost 60%.
As we show below, first-principles simulations using the posifveiethod and incorporating
atom-atom interactions result in widths which are closer to the experimental values.

The discrepancy between the two theoretical approaches (which apparently is larger for the
CL correlations than for the BB ones) comes mostly from the fact that the above calculation
is made for a Gaussian shape of the initial BEC density profile, whereas in practice and
in the positiveP simulations the spatial density of a harmonically trapped condensate is
closer to an inverted parabola (as in the Thomas—Fermi limit) rather than to a Gaussian. An
alternative theoretical modeR9], based on the undepleted source condensate approximation
and a numerical solution to the linear operator equations of motion for scattered atoms, also
confirms that for short times the momentum-space correlation widths are narrower if the source
condensate has a parabolic spatial density profile, compared to the case of a Gaussian density
profile.

3.2. Width of the scattered halo

A second, experimentally accessible quantity in a BEC collision is the wigikkhin momentum
space of the halo on which the scattered atoms are found. Clearly the momentumesgnead
I = X-, y- or z-direction) of the colliding condensates imposes a minimum width

sk Z oi. (12)

This limit suggests that the halo could be anisotropic. As noted above, however, the experiment
in [16] is not highly sensitive to such an anisotropy, and measures the width chiefly in the
y- andz-directions.

Other physical considerations also affect this width, and suggest that the halo should rather
be isotropic, in which case we can drop the index fr&knHere, we discuss two mechanisms
that impose a finite radial width on the halo.

If the pairs are produced during a finite time intervetl, the total energy of the pair is
necessarily broadened Iy At. This is true even if the relative momentum is well defined.
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For a meark-vectork;, the finite interaction time between the colliding BECs results in a
broadening of

. m
 hk At
where we assumedk/k. <« 1. In the experiment, the collision time is sufficiently long that

the above effect does not impose a limitation on the width of the sphere. In the pditive-
simulations, however, numerical stability problems limit the maximum collision time that can
be simulated, as discussed in secipand this time does indeed impose a width on the halo. For
short collision times, where the scattering is in the spontaneous regime, our numerical results
for the widthsk are in good agreement with the simple estimate of equatign (

For long collision times, it can happen that so many atoms are scattered that Bose
enhancement and stimulated effects become important. In this case, the width of the
scattering shell can be estimated by a slightly more involved approximate approach based on
analytic solutions for the uniform system within the undepleted ‘pump’ (source condensate)
approximation B0]. Under this approximation, the present system is equivalent to the
dissociation of a condensate of molecular dimers studied in detalldn3[L, 32]. The latter
system in turn is analogous to parametric down-conversion in o@i}s The details of the
approximate solutions, common to condensate collisions and molecular dissociation, and the
relationship between them are given in apper@lixX he resulting width of the halo found from
this approach is

sk (13)

4 apo
K,

We see that in this regime, the width is proportional to the scattering lemgtid the peak
densitypg, but it no longer depends on the collision duration.

The physical interpretation of equatioh4] is that with the stronger effective coupling
(or nonlinearity)apo, one can excite and amplify spectral components that are further detuned
from the exact resonance conditibm\y, = O (or further ‘phase mismatched’). The inverse
dependence on collision momentimncan be understood via the quadratic dependence of the
energy on momenturk: to get the same excitation at a given energy offeat, (C.3), one
requires smaller absolute momentum ofideat largerk, than at smalk; .

Positive simulations covering the transition from the spontaneous to stimulated regimes
are available for®Na condensate collisions as ih9. The numerical results in this case are
in agreement with the simple analytic estimate of equatif). (More specifically, we find
that for collision durations between 300 and @40the actual numerical results for the width
of the spherical halo vary, respectively, betweda k, ~ 0.13 andsk/k, ~ 0.087, whereas
equation 14) predictssk/k, ~ 0.096.

For*He*, on the other hand, the small mass and the larger scattering lentile‘oitoms
limit the maximum simulation time tdgi, < 25us. This is far from the stimulated regime,
and therefore we do not have a direct comparison of the numerical results with eqadjion (
The experiment is also not in the stimulated regime. We are nevertheless tempted by the
numerical®®Na result to extrapolate equatiofi4j to “He* BEC collisions in the long time
limit and we obtaindk/k, ~ 0.05. Adding this width in quadrature to the momentum width
of the initial condensatey, , ~ 0.055,, gives\/(O.OSk,)2 +(0.05%,)2 = 0.074,, not far from
the experimentally observed radial momentum widtlilof- 0.067. . We thus suggest that the
mechanism leading to equatioh4j may play a role in the experiment.

Sk ~ . (14)
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4. Model

The effective field theory Hamiltonian governing the dynamics of the collision of BECs
is given by

4 h? e NUociays o

H_/dx{2m|V\D| t= \p\p\w}, (15)
whereW (x, t) is the field operator with the usual commutation relatigref, t), U'(x, t)] =
§®(x —x), m is the atomic mass, the first term is the kinetic energy, and the second term
describes the s-wave scattering interactions between the atoms. The trapping potential for
preparing the initial condensate before the collision is omitted since we are only modeling the
dynamics of the outcoupled condensates in free space. The use of the effective delta function
interaction potentiald (x —y) = Ugd(X — y) assumes a UV momentum cutd™®, In our
numerical simulations, the momentum cutoff is imposed explicitly via the finite computational
lattice. If the lattice spacingsAx, Ay and Az) in each spatial dimension are chosen to
be much larger than the s-wave scattering leragtithen the respective momentum cutoffs
satisfyky'9, < 1/a. In this case the coupling constdudy is given by the familiar expression
Up =~ 4rha/m [34] without the need for explicit renormalization.

To model the dynamics of quantum fields describing the collision of two BECs, we use the

positive P-representation approach?]. In this approach, the quantum field operatére, t)
and U(x, t) are represented by two complex stochastitumber fieldsw (x, t) and ¥ (x, t)
whose dynamics is governed by the following stochastic differential equatiéhs |

8\1’ ’t h H T i

% zzl_mvz‘p—wo‘lf‘l’q”m S (16
dW(x, t N 2§ +iUw G T +./iUgd

% — _Z'_mvzq; +iUgWWW +,/iUgW2 £o(X, t). (160)

Here,z1(X, t) andg, (X, t) are real independent noise sources with zero mgagx, t)) =0,
and the following non-zero correlation:

(&% DX, 1)) = 8ik8@ (x = x)3(t —t). (17)

The stochastic field® (x, t) and W (x, t) are independent of each otheb (x, t) # W*(x, t)]

except in the mear W (x, t)) = (¥*(x, t)), where the brackets. .) refer to stochastic averages

with respect to the positive-distribution function. In numerical realizations, this is represented

by an ensemble average over a large number of stochastic realizations (trajectories). Observables
described by quantum mechanical ensemble averages over normally ordered operator products
have an exact correspondence with stochastic averages over thelfiglds and W (x, t):

(¥ x, O]"E ¢, D] = [P (x, DM@, D). (18)

The initial condition for our simulations is a coherent state of a trapped condensate,
modulated with a standing wave that imparts initial mometka (wherek., = mv, /h andv, is
the collision velocity) in the<-direction,

W(x,0) = (U(x, 0)) = v/po(x)/2 (e +e7¥), (19)

with W (x, 0) = W*(x, 0). Here,po(X) is the density profile given by the ground state solution to
the Gross—Pitaevskii equation in imaginary time. The above initial condition models a sudden
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Raman outcoupling of a BEC of trappéde* atoms in them, = 1 sublevel into the magnetic
field insensitive staten, =0, using two horizontally counter-propagating lasers and a third
vertical laser 16]. In this geometry, the Raman transitions split the initra & 1) condensate
into two equally populated condensates and simultaneously impart velocities,obnto
the two halves. As a result, the two outcoupled condensates undergo a collision and expand
in free space. Accordingly, in our dynamical simulations, the field, t) represents the atoms
in the untrapped state, = 0, having the s-wave scattering lengthagh= 5.3 nm ([16] and
references therein), while the initial density proftigx) refers to that of the trapped atoms in
the m, = 1 state having the scattering lengthaf = 7.51 nm [35]. The same distinction in
terms of the scattering length in question applies to the definition of the interaction strength
Up >~ 4rha/m, in whicha has to be understood asg, for the trapped condensate oraag for
the outcoupled cloud.

In our simulations, we assume for simplicity that the outcoupling from the trapped 1
state is 100% efficient, in which case the entire population is transferred into,the0 state
and therefore we have only to model s-wave scattering interactions between the atoms in the
m, = O state. In the experiment, on the other hand, the transfer efficiency is only about 60%
and therefore the collisions between the atoms innthe= 0 andm, = 1 are not completely
negligible and may be responsible for some of the deviations between the present theoretical
results and the experimental observations.

5. Results and discussion

5.1. Main numerical example

Here, we present the results of positienumerical simulations of collisions of two
condensates ofHe* atoms (n~ 6.65x 1072’kg) as in the experiment oflf]. The key
parameters in our main numerical example are the collision velagity, 9.2 cms?, and the
peak density of the initial trapped condensaig= 2.5 x 10**m~3. The trap frequencies are
matched exactly with the experimental valueg,2n = 47 Hz andwy /27 = w,/2w = 1150 Hz.
The s-wave scattering length for the magnetically trapped atoms imghe 1 sublevel is
a;; = 7.5nm; the s-wave scattering length for the outcoupled atoms inmthe O sublevel
IS ago = 5.3 nm. Other simulation parameters are given in appeBdix

The initial state of the trapped condensate is found via the solution of the Gross—
Pitaevskii equation in imaginary time. Given the above trap frequencies and the peak density
as a target, we find that the total number of atoms in the main examMe=$9.84 x 10
With these parameters, the average kinetic energy of colliding atofg, j&kg = mv?/2kg =~
2.0 x 10°%K, which is about 74 times larger than the mean-field energy of the initial condensate
Emr/ ks = 4rh?ai00/mks ~ 2.7 x 1077 K.

The duration of simulation in the main exampléis= 25us. This is considerably smaller
than the estimated duration of collision in the experiment,igl(see appendiX). The number
of scattered atoms in our numerically simulated exampte at25us is~1750, representing
~1.8% of the total number of atoms in the initial BEC. Operationally, the fraction of scattered
atoms is determined as the total number of atoms contained within the scattering halo (see
figure 3 showing two orthogonal slices through the momentum density distribution) after
eliminating the regions of momentum space occupied by the two colliding condensates. We
implement the elimination by simply discarding the data points correspondiikg|te 0.99,,
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() n(k,t;) (m°) 18 (b) n(kt) (m) _18

x 10
4

K /K,

Figure 3. Slices throughk, =0 (a) andky, =0 (b) of the 3D atomic density
distribution in momentum spac®k, t;) aftert; = 25us collision time. Due to

the symmetry in the transverse direction (orthogonat)tahe average density
throughky = 0 coincides with that ok, = 0. The color scale is chosen to clearly
show the halo of spontaneously scattered atoms and cuts off the high-density
peaks of the two colliding condensates (shown in white on the left panel).

which fully contain the colliding condensates. This cuts off a small fraction of the scattered
atoms as well, but the procedure is simple to implement operationally and is unambiguous.

In order to compare our calculated fraction of scattered atonts at25us with the
experimentally measured fraction of 5% at the end of collisiorr B40us, we first note that
these timescales are relatively short and correspond to the regime of spontaneous scattering. The
number of scattered atoms increases approximately linearly with time, therefore our calculated
fraction of 18% can be extrapolated to about 10% to correspond to the expected fraction at
~140 us. Next, one has to scale this value by a fact®&? @ account for the fact that in the
experiment only 60% of the initial number of atoms was transferred tothe O state of the
colliding condensates. Accordingly, our theoretical estimate of 10% should be proportionally
scaled down to 4% conversion, in good agreement with the experimentally estimated fraction
of 5% (see also appendi).

In figure 4, we plot the radial momentum distribution of scattered atoms (solid line),
obtained after angle averaging of the full 3D distribution within the redgigh< 0.8k;. The
numerical result is fitted with a Gaussianexp[—(k — ko)?/(26k?)] (dashed line), centered at
ko = 0.98k, and having the radial width ofk = 0.10k, ~ 5.8 x 10® m~%, wherek = |k|. The
fitted radial width ofsk = 0.10k; of the numerical simulation is in reasonable agreement with
the simple estimate of equatiobd), which givessk ~ 0.075«; for At = 25us.

Figure 5 shows the numerical results for the BB and CL correlations (solid lines with
circles), defined in equationd)(and 6). Due to the symmetry of thg- and z-directions, the
results in these directions are practically the same. In order to verify the hypothesis that the
shape and therefore the width of the pair correlation functions is governed by the width of
the momentum distribution of the source condensate, we also plot the actual initial momentum
distributions of the source condensate in the two orthogonal directions (with the understanding
that the horizontal axiak; now refers to the actual wavevector compornghtThe actual data
points for the correlation functions and for the momentum distribution of the source are shown
by the circles and squares, respectively, and are fitted with Gaussian curves for simplicity and
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Figure 4. Angle averaged (radial) momentum distributio¢k) of the scattered
atoms (solid line) and a simple Gaussian fit (dashed line) used to define the radial
width 6k = 0.10k, of the halo around the peak momentlgn= 0.98k (see text).

to guide the eye. The Gaussian fits for the correlation functions (solid lines) give:
J5s(Ak) — 1=9.2exp{—AK/[2(6%°)7]}, (20)

0% (Ak) — 1= exp{—Ak?/[2(at)?]), (21)

where the correlation widthg®® ando;“" are shown in the table2p) below. The Gaussian fits
(dashed lines) for the slices of the initial momentum distributigek; ) o« exp{—k?/[2(0i)?]}
are scaled to the same peak valuag%CL(O) — 1 and haver, = 0.002%; andoy , = 0.055;.

By comparing the solid and the dashed lines, we see that the shape of the correlation
functions indeed closely follow the shape of the momentum distribution of the source. More
specifically, we find that the following results provide the best fit to our numerical data:

o B8 /oy oﬁ?/ay,z ot Joy a)f'g/oyz 22)
1.18 1.39 1.27 157

The ratios between the CL and BB correlation widthsefre/o2® ~ 1.08 ands,; /02 ~ 1.13.
The errors due to stochastic sampling on all quoted values of the correlation widths are smaller
than 3%.

The values fov& /Oy.2 anday‘ffgs /oy., can be compared with the respective experimentally
measured values of tabl&l) and we see reasonably good agreement, even though the numerical
data are for a much shorter collision time. The remaining discrepancy between the numerical
data att; = 25us and the experimentally measured values afterld0us interaction time
may be due to the evolution of the condensates pagts2Bot attainable within the positivie-
method. The above numerical results for the correlation widths can also be compared with the
simple analytic estimate based on the Gaussian ansatz treatment of equtand ((0). We
find that the approximate analytic results overestimate the BB and CL width0yand 40%,

respectively, in the present example.

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)


http://www.njp.org/

I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(a) (b)
Py N
== O
:o :o
T T
x N
3 .
m 2
9 m S Q
> N m
>
0.02
() 1.0 d 1.0
—_ N
i‘j 0.81 ) &= 0.8
< \ <
— 0.6 A —~ 0.6+
AL ' '
X | . \
f] 0.4 \\ «';: 0.4 \
= <
SD%") 0.2 § &= 0.2 E\
\[\k vc,o \D
0 -~ = 0 T S a=m T
0 0.01 0.02 0.1 0.2 0.3
AK,/k, Aky z/ k,

Figure 5. BB and CL atom-atom pair correlatiogéz,;/CL(Aki) — 1 as afunction

of the displacementik; (i =x, y andz) in units of the collision momentum

k., aftert; = 25us collision time. The circles are the numerical results, angle-
averaged over the halo of scattered atoms after elimination of the regions
occupied by the two colliding condensates; the solid lines are simple Gaussian
fits to guide the eye (see text). For comparison, we also plot the initial momentum
distributionng(k;) of the colliding condensates; the actual data points are shown
by the squares and are fitted by a dashed-line Gaussian.

The amplitude of the correlation functions can also be inferred by simple models. In
fact, the CL correlation function is a manifestation of the Hanbury Brown and Twiss effect
since it involves pairs from two independent spontaneous scattering events and we expect an
amplitude ofg(CZL)(O) =2 [28]. This is in agreement with the positiV@-simulations. The BB
correlation amplitude, on the other hand, can be substantially higher and display super-bunching
(gézg(O) > 1) [14, 24] since the origin of this correlation is a simultaneous creation of a pair of
particles in a single scattering event.

In a simple qualitative modellp|, the amplitude of the BB correlation can be linked to
the inverse population of the atomic modes on the halo. As we show in apg&nitiis model
follows the trends observed in our first-principles numerical simulations.

5.2. Shorter collision time

Here, we present the results of numerical simulation for the same parameters as in our main
numerical example from sectidnl, except that the data are analyzedat 12.5 us, which

is half the previous interaction time. We found in secttof thato),, o, and the width of

the halodk are all nearly the same. In section 3, however, we argue that the widths of the
correlation functions and the halo are governed by different limits (equa®n@.0) and (L3

or (14), respectively). The example in this section illustrates this point.
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Figure 6. Same as in figur8, except fort; = 12.5 s collision time.

x 10~19
I
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Figure 7. Same as in figurd, except fort; = 12.5 us collision time. The width
and the peak of the fitted Gaussian here &kex= 0.20k, andky, = 0.95k; .

Figure6 shows two orthogonal slices of the s-wave scattering sphere in momentum space
(cf figure3), whereas figuré is the corresponding radial distribution after angle averaging. The
most obvious feature of the distribution is that it is broader than at 25us and the fitted
Gaussian gives the radial width &if = 0.20k; . This is precisely twice the width in figudeand
is in agreement with the simple qualitative estimate of equafi@h (

The BB and CL correlation functions aftef = 12.5us collision time are qualitatively

very similar to those shown in figuke except that the Gaussian fits are

g (Ak) — 1 =356 exp{—AKk?/[2(c®)%]}, (23)

0 (Ak) — 1 = exp{—AK?/[2(0°H)?]), (24)
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Figure 8. Same as in figur8, except for/2 times smaller collision velocity, =
6.46cms? (kK =4.09x 10° m™1). The axes for the momentum componekts

(i = x, y andz) are in units of smaller recoil momentum than in fig#eand
therefore the absolute radius of the s-wave scattering sphere is smaller in the
present example.

with the correlation widths given by

o,° [ox Uf?/ay,z 0"/ ox Uyc,;/gyz
1.16 1.28 127 1.48

The ratios between the widths arg" /o8 ~ 1.09 ando 7 /007 ~ 1.16.

For the correlation functions, the main difference compared to the case fog B5that
the peak value of the BB correlation is now larger, reflecting the lower atomic density on the
scattering halo. The correlation widths, on the other hand, are practically unchanged, at least
within the numerical sampling errors of the positikesimulations; the errors are at the level
of the third significant digit in the quoted values, which we suppress. The number of scattered
atoms in this example is about 850, which is approximately half the numbenpat, 2onfirming

the approximately linear dependence on time in the spontaneous scattering regime.

(25)

5.3. Smaller collision velocity

In this example, we present the results of simulations in which the collision velocity is smaller
by a factory/2 than beforep/ =6.5cms? (k' = 4.1 x 1P m™1), while all other parameters
are unchanged. In practice, this can be achieved by changing the propagation directions of the
Raman lasers that outcouple the atoms from the trapped state. As in the previous example, the
halo width illustrates equatiorig).

The results of positivéd? simulations for the momentum density distributiort @t 25us
are shown in figure8 and9. The most obvious feature of the distribution is again the fact that
it is now broader than in our main example of sectioh The width of the Gaussian function
fitted to the numerically calculated radial momentum distribution is giveskiay 0.21k; . This
is again in excellent agreement with the simple analytic estimate of equadpmvich predicts
the broadening to be inversely proportional to the collision velocity. We also note that the peak
momentum (relative td;) in the present example is slightly shifted towards the center of the

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)


http://www.njp.org/

16 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

x 10718

2.5 ~

2.0 -

1.5 -

n(k) (m3)

1.0 \ -

0.5 '/ \ L

kiky

Figure 9. Same as in figurd except for+/2 times smaller collision velocity
vl (K =4.1x1Pm™Y). The width and the peak of the fited Gaussian are
sk =0.21k' = 8.6 x 10° m~t andky, = 0.92k’.

halo, ko = 0.92;, which is a feature predicted i8(] to occur when the ratio of the kinetic
energy to the interaction energy per particle is reduced.

The BB and CL correlation functions in this example are again qualitatively very similar
to those shown in figurB, except that the Gaussian fits are

Oua(Ak) —1=9.0exp{—AK?/[2(c%5)7]}, (26)

0% (Ak) — 1= exp{—Ak?/[2(at)?]), (27)

with the correlation widths given by

0" /0% Gﬁg/ay,z o /ox Gyc,lz'/gy,z

1.16 1.35 131 1.51 (28)

whereoy / k! >~ 0.0035 and,/ k' ~ 0.078. The ratios between the CL and BB correlation widths
areoct/oP® ~1.13 ando [, /o3 ~ 1.12.

As we see from these results, the absolute widths of the correlation functions are practically
unchanged compared to the main numerical exanf#le This provides further evidence that,
at least for short collision times, the correlation widths are governed by the momentum width
of the source condensate, which is unchanged in the present example compared to the case of
section5.1

The number of scattered atoms in this example is about 1270, which is approximately
V2 times smaller than in sectidhl and corresponds te1.3% conversion. This scaling is in
agreement with the rate equation approa2#j,[according to which the number of scattered
atoms is proportional to the square root of the collision energy and hence to the collision
momentum, which is/2 times smaller here.
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Figure 10. Same as in figur8 except for the scattering lengthsaf = 2.65 nm
anda;; = 3.75nm, which are twice as small as before.

5.4. Smaller scattering length

Finally, we present the results of numerical simulations for the same parameters as in our
main numerical example from sectié@nl, except that the scattering lengtag anday, are
artificially halved, i.e.ago = 2.65 nm anda;; = 3.75nm. The trap frequencies are unchanged
and we modify the chemical potential to arrive at the same peak density of the initial BEC in the
trap, pg > 2.5 x 10 m~3, The total number of atoms is now smallsr~ 3.5 x 10*. One effect

of changing the scattering length is that it changes the size and shape of the trapped cloud,
and therefore also its momentum distribution. The shape is slightly closer to a Gaussian and
therefore also to the treatment 2g.

Due to the smaller scattering length, the density distribution in position space of the initial
trapped condensate is now narrower and conversely the momentum distribution of the colliding
condensates is broader. On the other hand, the width of the halo (see fijuaesl 11 at
t; = 25us) of scattered atoms is practically unchanged compared to the example ofifigare
it is governed by the energy—time uncertainty considerati@) {or the spontaneous scattering
regime. The only quantitative difference is the lower peak density on the scattering sphere,
which is due to the weaker strength of atom—atom interactions resulting in a slower scattering
rate. The number of scattered atoms au85s ~180, corresponding t0.91% conversion of
the initial total numbeN ~ 3.5 x 10*. The fraction 061% itself corresponds approximately to
a scaling law of~a¥?2, which is the same as the scaling of the total initial number of trapped
atoms in the Thomas—Fermi limit for a fixed peak density.

Since the widths of the correlation functions are governed by the width of the momentum
distribution of the initial colliding condensates, we expect corresponding broadening of the
correlation functions as well (see figui®). To quantify this effect, we fit the momentum
distribution of the initial BEC by a Gaussian exp{—k?/[2(0i)?]}, whereoy = 0.003&, and
oy, = 0.068; (cfwith o, = 0.002%; andoy , = 0.055; in figure5, which are~+/2 smaller).

The Gaussian fits to the correlation functions in figiiPeare

gua(Ak) — 1 =49 exp{AK?/[2(0P8)]), (29)
0% (Aki) — 1 =0.94 exp{AK?/[2(0°H)7]), (30)
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Figure 11. Same as in figuré except for twice as small values of the scattering
lengthsagy anda; ;. The width and the peak of the fitted Gaussians&re- 0.10k;
andky = 0.98k;, which are the same as in figufe
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Figure 12. Same as in figurB except for twice as small s-wave scattering lengths
a;1 andagy.
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Figure 13. lllustration of the four regions of the momentum space density,
forming the quadrant#\, B, C andD on the s-wave scattering sphere, on which
we analyze the data for relative number squeezing.

where the width.28 ando,“* are given by

o,° [ox U&E/ay,z o/ ox Uyc,;/‘fy,z (31)
1.18 153 142 1.81

We see that the relative widths are practically unchanged, implying that the absolute widths
are broadened. The ratios between the CL and BB correlation widths are slightly increased and
are given byt /02® ~1.20 ando; /02 ~ 1.18.

These numerical results make the present example—with the diminished role of atom—
atom interactions—somewhat closer to the simple analytic predictions of equétj@msl((L0)
based on a Gaussian ansatz for non-interacting condensates.

5.5. Relative number squeezing and violation of Cauchy—Schwartz inequality

Another useful measure of atom—atom cqrrelatiqns is the normalized variance of the relative

number fluctuations between atom numbirsandN; in a pair of counting volume elements

denoted via and j,

(AN =NpP) |, CIAN = N)JZ)
(Ni) +(Nj) (Ni) +(Nj)

Vi_j = (32)
where AX = X — (X) is the fluctuation. This definition uses the conventional normalization
with respect to the shot-noise level characteristic of Poissonian statistics, such as for a coherent
state, (Nj) + (N;) . In this case, the varianc¥_; = 1, which corresponds to the level of
fluctuations in the absence of any correlation betwigrand N ;. Variance smaller than one,

Vi_j <1, implies reduction (or squeezing) of fluctuations below the shot-noise level and is due
to quantum correlation between the particle number fluctuatioh iand Nj. Perfect (100%)
squeezing of the relative number fluctuations corresponifs to= 0.
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Figure 14. Relative number variance in the diametrically opposite and
neighboring quadrant¥,a_c,s_p andVa_g,c_p, as a function of time.

In the context of the present model for the BEC collision experiment and possible
correlation measurements between atom number fluctuations on diametrically opposite sides
of the s-wave scattering sphere, we assign the indices A, B, C andD in equation 82) to
one of the four quadrants as illustrated in figif The total atom number operathi; in each
guadrantD; within the s-wave scattering sphere is defined after elimination of the regions in
momentum space occupied by the two colliding condensates

N;i(t) = f dkydk, / dk.A(k, t). (33)
Di —

o0

Operationally, this is implemented by discarding the data points beyknd- 0.8k.. In
addition, the quadran®B; are defined on a 2D plane after integrating the momentum distribution
along thez-direction, which in turn only takes into account the 3D data points satisfying
|1—k?/k?| < 0.28, i.e. lying in the narrow spherical shedl + 8k with sk~ 0.14k.. The
elimination of the inner and outer regions of the halo is done to minimize the sampling error in
our simulations, since these regions have vanishingly small population and produce large noise
in the stochastic simulations.

The choice of the quadrants as above is a particular implementation of the procedure
of binning, known to result in a stronger correlation signal and larger relative number
squeezing 11, 36]. Due to strong BB pair correlations, we expect the relative number
fluctuations in the diametrically opposite quadrants to be sque¥zed, Vg_p < 1, while the
relative number variance in the neighboring quadrants, sush asandVc_p, is expected to
be larger than or equal to one. The positResimulations confirm these expectations and are
shown in figurel4, where we see strong-80%) relative number squeezing for the diametrically
opposite quadrant¥/p_c g-p ~1—0.8=0.2.

These results assume a uniform detection efficiency f1, whereas if the efficiency
is less than 100%n(< 1), then the second term in equatio®2) should be multiplied
by n. This implies, that forp = 0.1 as an example, the above prediction~e80% relative
number squeezing will be degraded down to a much smaller but still measurable value of
~ 8% squeezing\(a_c.s_p =~ 1—0.08=0.92). Even with perfect detection efficiency, our
simulations do not lead to ideal (100%) squeezing. This can be understood in terms of a small
fraction of collisions that take place with a center-of-mass momentum offset that is (nearly)
parallel to one of the borders between the quadrants. As a result, the respective scattered pairs
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fail to appear in diametrically opposite quadrants during the (finite) propagation time (see
also [36)). A A A

For the symmetric case withN;) = (N;) and (N?)
rewritten as

(N2), the varianceV;_; can be

Vioj =1+(Np[g? — g1, (34)

where the second-order correlation functgﬁjﬁ is defined according to

@ _ (: NAiNj )
T ND(NG)
Equation 84) helps to relate the relative number squeezMg,; < 1, to the violation of
the classical Cauchy—Schwartz inequa@@ > gﬁ), studied extensively in quantum optics with
photons B3, 37]. The analysis presented here (see aB&) pn molecular dissociation) shows
that the Cauchy—Schwartz inequality, and its violation, is a promising area of stgdw@imum
atom opticsas well.

(35)

6. Summary

An important conclusion that we can draw from the numerical simulations is that the predicted
widths of the correlation functions are remarkably robust against the parameter variations we
were able to explore (in sectidb.1 through 4). This gives us confidence in our physical
interpretation of the width as being chiefly due to the initial momentum width of the condensate.
The discrepancy with the analytical calculation ®8[seems to be primarily due to the different
cloud shapes used. The width of the halo varies with the parameters we tested in a predictable
way and also confirms the discussion in secion

As for comparison with the experiment, the numerically calculated widths of the scattering
halo and the correlation functions coincide with the experimental ones to within better than
20% in most cases. The main discrepancy with the experiment is imatie of the BB
and CL correlation widths. From the experimental point of view, these ratios are more
significant than the individual widths since some sources of uncertainty, such as the number
of atoms and the size of the condensates, cancel. The discrepancy may mean that the CL
correlations are not sufficient to characterize the size and momentum distribution in the source
at this level of accuracy. The discrepancies may of course also be due to the numerous
experimental imperfections, especially the fact that the Raman outcoupling was only 60%
efficient, and therefore an appreciable trappgd= 1 condensate was left behind. This defect
may be remedied in future experiments. On the other hand, the current simulations neglect the
unavoidable interaction of the scattered atoms with unscatterge; 0 condensates as they
leave the interaction region. This interaction could alter the trajectories of the scattered atoms
in a minor, but complicated way. Future numerical work must examine this possibility further.

Still, the overall message of this work is that a first principles quantum field theory
approach can quantitatively account for experimental observations of atomic four-wave mixing
experiments. This work represents the first time that this sort of numerical simulation has been
carefully confronted with an experiment. An interesting extension would be to examine the
regime of stimulated scattering. It has been predicted that a highly anisotropic BEC could lead
to an anisotropic population of the scattering h&8 B9]. This effect would be a kind of atomic

New Journal of Physics 10 (2008) 045021 (http://www.njp.org/)


http://www.njp.org/

22 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

analogue of superradiance observed when off-resonant light is shone on a condéh<die [
In addition, our results may be useful beyond the cold atom community: theoretical descriptions
of correlation measurements in heavy ion collisiofd fnay benefit from some of our insights.
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Appendix A. Duration of the collision

In order to estimate the collision duration one can consider a simple classical model of the
collision [24]. Denoting byp: (X, t) andp» (X, t) the density distributions of the two condensates,
the number of scattered atorNg(t) at a given time can be written

t
NSC(t) - 2/ dt/ / dSXZGOUF /Ol(x’ t/)IOZ(X’ t/)’ (Al)
0

where oo = 8r a3, is the cross-section for a collision of two particles. In this latter formula
ago =~ 5.3 nm is the scattering length betwemp = 0 atoms [L.6].

The time-dependent density of the two condensates can be calculated from the expansion
of a condensate in the Thomas—Fermi regime described4jn This approach suggests two
different timescales for the collision duration. First, the separation of the two condensates occurs
in a time defined by the ratio of the longitudinal size of the condensates and their relative
velocity tsep= Ry/v;. Taking for R, the Thomas—Fermi radius of the initial condensate, one
can show thatse, is on the order of 1 ms. At the same time, the condensates expand during
their separation on a timescdig, = 1/wy = 1/w, >~ 140us. This latter effect appears to be
predominant in the evaluation of equatiof.l) andte,, can be taken as a definition of the
collision durationAt. The numerical evaluation of equatiof.{) givesNs(At) >~ 0.66Ns(c0)
and the estimated total number of scattered atoms corresponds to the experimentally observed
5% of the initial total number of atoms in the trapped condensate.

Appendix B. Occupation number of the scattering modes and amplitude of the
BB correlation

In order to estimate the occupation number of the scattering modes one needs to compare the
number of scattered atonid. to the number of scattering modsk,. To achieve this one has

to first consider the volume of a scattering made given by the first-order coherence volume

(also dubbed ‘phase grain’ ii2, 15]). Such a volume corresponds in fact to the coherence
volume of the source condensate, and in practice it can also be deduced from the measurement
of the width of the CL correlation functiog? (Aki) as one expects in a Hanbury Brown—Twiss
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experiment. For simplicity, we match the scattering mode volipéo the coherence volume
of the source condensate in momentum space,

Vi >~ ,BOX(UyZ)Z, (B.1)

whereg is a geometrical factor which depends on the geometry of the modes. Approximating
the source condensate in momentum space by a Gaussiexp [-Xx%/(202) — (y?+
2°) /(20 ,)], one hags = (27)%2.

The number of scattering modé, can in turn be estimated from knowledge of the total
volume of the scattering shed,

Np=— B.2
m Vm7 ( )

where the volumé&/ is determined from the value of the width of the scattering stell
V= / d®k exp [-(k — k)?/(25k?)]
~ A /2T K28K, (B.3)

for 6k < k.. If we apply this estimate to the results of the main numerical example (see
section5.1), we find N, >~ 26 400. AsNs. = 1750, this implies an occupation number per mode
of Nso/Nm >~ 0.066. Such an estimate confirms that the system is indeed in the spontaneous
regime and that bosonic stimulation effects are negligible.

The simple model of]6] for the BB correlation predicts that its height is given by

02(0) = 1 + N/ Nec. (B.4)

Using the above estimate dfl,, and the actual value oNg. found from the numerical
simulations, we obtain that the height of the BB correlation peak should be approximately given
by ~ 16. This compares favorably with the actual numerical result &.18imilarly, we obtain

the BB correlation peak of~62 in the example with the shorter collision time (compare with
the numerical result of 36); ~18 in the example with the smaller collision velocity (compare
with 10); and~70 in the example with the smaller scattering length (compare with 50).

Appendix C. Width of the s-wave scattering sphere in the undepleted ‘pump’
approximation

To estimate the width of the halo of scattered atoms beyond the spontaneous regime we use
the analytic solutions for a uniform system in the so-called undepleted ‘pump’ approximation
in which the number of atoms in the colliding condensates are assumed constant. This
approximation is applicable to short collision times. Nevertheless, it formally describes the
regime of stimulated scattering and can be used to estimate the width of the s-wave scattering
sphere as we show here.

The problem of BEC collisions in the undepleted ‘pump’ approximation was studied
in [30]; the solutions for the momentum distribution of the s-wave scattered atoms are formally
equivalent to those obtained for dissociation of a BEC of molecular dimers in the undepleted
molecular condensate approximatidi[ 31]. For a uniform system with periodic boundary
conditions, one has the following analytic solution for momentum mode occupation numbers:

g2 . _
N (t) = Y sink? (,/g2 - Aﬁt) : (C.1)
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Here, the constarg is given by

g =2Ugpo = w, (C.2)
whereU, = 4rhage/m corresponds to the coupling constarih of [30], and we note that the
results of BO] contain typographical errors and have to be corrected as folléglsdiven the
Hamiltonian of (1), withg = 47 h?a/m, the couplingg in (2), (7), (9) and (10), as well as in the
definition of A(p) after (9), should be replaced bg.2n the problem of molecular dissociation,
the constang corresponds t@g = x ./po [14], wherey is the atom—molecule coupling apgd
is the molecular BEC density.

The parameten, in equation C.1) corresponds to the energy offset from the resonance
condition

hAp = — — —T (C.3)

wherehk. is the collision momentum; in molecular dissociatiérik?/m corresponds to the
effective dissociation energyhPA.¢|, using the notation oflf4].

From equation@.1), we see that modes witlf — AZ > 0 experience Bose enhancement
and grow exponentially with time, whereas the modes vgth- A2 <0 oscillate at the
spontaneous noise level. The absolute momenta of the exponentially growing modes lie
near the resonant momentunk., and therefore we can use the conditigh— Aﬁ =0 to
define the approximate width of the s-wave scattering sphere. First, wekwstte + Ak and
assume for simplicity that, is large enough so thatk « k,. Then the conditior§? — A2 =0
can be approximated by

hk Ak ?

1-— (kf—_) ~ 0. (C.49)
mg

This can be solved foank and used to define the widtk = Ak/2 of the s-wave scattering

sphere as

sk mg  4wagpo
K, - 2hk,2 - krz )
The reason for defining it as half dfk is to makesk closer in definition to the half-width at
half maximum and to the rms width aroukd
The above simple analytic estimat€.f) gives sk/k, ~0.05 for the presentHe*
parameters. For comparison, the actual width of the analytic ré3t\aries betweesk/k, ~

0.12 andsk/k, ~ 0.027 for durations betweegit = 1 andgt = 7, corresponding, respectively,
tot ~ 20us andt ~ 140us in the preserftHe* example.

(C.5)

Appendix D. Positive- P simulation parameters

The positiveP simulations in our main numerical example of secttbare performed on a
computational lattice with 1400 50 x 70 points in the X, y, z)-directions, respectively. The
length of the quantization box along each dimensiomn js=252um, Ly =20.52um and

. =30.76 um. The computational lattice in momentum space is reciprocal to the position
space lattice and has the lattice spacing Ad = 27 /L;, giving Ak, =2.49x 10 m1,
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Ak, =3.06 x 10°m~! and Ak, = 2.04 x 10° m~*. The momentum cutoffs at€™ = 1.75 x
10'm™, k"™ = 7.66 x 10° m~* andk{™* = 7.15x 1P m™*.

The momentum cutoff in the collision directiok{™, is more than 3 times larger
than the collision momentunk,, and hence it captures all relevant scattering processes
of interest, including the energy non-conserving scatterithgs+ (k;) — (3k;) + (—k;) and
(—k) +(—k) — (=3k) + (k) [15]. In all our figures, the regions of momentum space covering
ke >~ £3k. are not shown for the clarity of presentation of the main halo. These scattering
processes, which produce a weak but not negligible signgl at+3k;, i.e. outside the main
halo, are enhanced by Bose stimulation due to the large population of the colliding condensate
components dt, >~ Fk;, respectively. In the remaining andz-directions, such processes are
absent and therefore the number of lattice points and the momentum cutoffs can be smaller.

Since the momentum distribution of the initial condensate is narrowest k ttieection,
one may question whether the resolution /i, = 2.49 x 10* m~! with 1400 lattice points
is sufficient. We check this by repeating the simulations with 42@0 x 40 lattice points
and quantization lengths &f, = 753um andL, = L, = 154 um, which give smaller lattice
spacing Ak = 8.24 x 10 m, together withAk, = Ak, =4.08x 10° m™1, k"™ =1.75x
10'm™ and k{™ = k{™ =816 x 10°m~*. Our results on the new lattice reproduce the
previous ones, within the sampling errors of the stochastic simulations. We typically average
over 2800 stochastic trajectories, and take 128 time steps in the simulations pagec@bsion
time. A typical simulation of this size takes about 100 h on 7 CPUs running in parallél Gt-&
clock speed.
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