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We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum
system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that
continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core
bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions.
We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and,
therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This
demonstrates that, in the presence of interactions, correlations between particles in the many-body wave
function provide the effective dissipation required to drive the relaxation of all one-body observables to the
GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of
the system.
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One-dimensional (1D) quantum systems exhibit two
features unfamiliar in the three-dimensional world. The
first is the breakdown of the strict distinction between
bosonic and fermionic particle statistics [1,2], and the
second is the prospect of integrability in the presence of
interactions [3]. Integrable models have been of particular
interest as they can be studied using exact analytic and
computational approaches to gain insights into strongly
correlated quantum systems [4]. A recent surge of interest
in the nonequilibrium dynamics of these systems [4–8] has
been motivated by the failure of some quasi-1D systems in
cold-atom experiments [9,10] to relax to states consistent
with conventional statistical mechanics.
A paradigmatic model in this realm is that of lattice hard-

core bosons (HCBs),which is integrable byvirtue of an exact
mapping via the Jordan-Wigner transformation to a system
of noninteracting spinless fermions (SFs) [11]. Rigol et al.
[12] showed that, followingan abrupt changeofHamiltonian
parameters (quantum quench), certain single-particle prop-
erties ofHCBs such as site andmomentumoccupations relax
to stationary distributions that are not consistent with the
predictions of conventional statistical ensembles but can
be described by a generalized Gibbs ensemble (GGE). The
GGE is obtained by maximizing the entropy subject to the
constraints that the mean values of the conserved quantities
Îl that make the system integrable are fixed to their values in
the initial state. This yields the density matrix

ρ̂GGE ¼ Z−1
GGE exp

�
−
X
l

λlÎl

�
; ð1Þ

where the Lagrange multipliers λl are such that
Trfρ̂GGEÎlg ¼ hÎliI, with h� � �iI denoting an expectation

value taken in the initial (prequench) state of the system and
the partition function ZGGE ¼ Trfexpð−PlλlÎlÞg.
The validity of the GGE for various classes of

observables has now been verified for the relaxed states
following quenches of HCBs in a number of distinct
geometries [12–15] and in a range of other integrable
systems [16–30]. However, the role of interactions in
the relaxation dynamics and the true extent of the validity
of the GGE as a description of the relaxed state have not
been conclusively established. In particular, recent results
have shown that although for SFs the time-averaged values
of all one-body observables agree with the GGE [27,31,32],
there exist observables that do not relax to these mean
values, even in the absence of real-space localization [32].
As HCBs can be mapped onto SFs, one is left to wonder if
there exist some one-body observables of HCBs that
similarly fail to relax.
To elucidate the role of interactions in the relaxation of

integrable systems we study the dynamics, following a
quench, of a family of hard-core anyons (HCAs) that
continuously interpolate between noninteracting SFs and
HCBs [33–35]. We find that the entire single-particle
density matrix relaxes to the GGE prediction for all models
in the HCA family, aside from the singular limit of
noninteracting SFs. This implies that the (mixed) state of
any particle in the system is driven to a generalized
equilibrium by an effective bath formed by the other
particles, provided that the particles are interacting. We
contrast this picture with previous works [22,26,36–39] that
emphasized that the relaxation of an isolated quantum
system is only observed after the tracing out of a physical
region of the system, which provides dissipation in obvious

PRL 113, 050601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

1 AUGUST 2014

0031-9007=14=113(5)=050601(5) 050601-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.050601
http://dx.doi.org/10.1103/PhysRevLett.113.050601
http://dx.doi.org/10.1103/PhysRevLett.113.050601
http://dx.doi.org/10.1103/PhysRevLett.113.050601


analogy to the external reservoir traditionally invoked when
introducing the (grand-)canonical ensemble.
We note that several proposals for the realization of

anyonic statistics in ultracold quantum gas experiments
have been made in recent years [40–43]. Here, we focus on
the model of HCAs, which satisfy the generalized com-
mutation relations [35]

âjâ
†
k ¼ δjk − e−iθsgnðj−kÞâ†kâj and

âjâk ¼ −eiθsgnðj−kÞâkâj; ð2Þ
where the statistical parameter 0 ≤ θ ≤ π. When j ¼ k,
Eq. (2) yields the hard-core constraints â2j ¼ â†2j ¼ 0 and
fâj; â†jg ¼ 1 [35]. For θ ¼ 0 and θ ¼ π, Eq. (2) reduces to
the commutation relations of SFs and HCBs, respectively,
whereas for 0 < θ < π, these relations interpolate contin-
uously between the two limiting algebras. For all values of
θ, HCAs can be mapped onto SFs by a generalized Jordan-
Wigner transformation [33,35,44]. This makes possible an
efficient numerical evaluation of time-evolving one-body
observables and their GGE expectation values [45–48].
Weconsider thedynamicsofHCAsinatight-bindingmodel

subject to open boundary conditions, with Hamiltonian

Ĥ ¼ −J
XL−1
j¼1

ðâ†j âjþ1 þ H:c:Þ: ð3Þ

Hereafter, we work in units where the hopping parameter
J ¼ ℏ ¼ 1. We investigate the dynamics of a system of N
particlesona latticeofL ¼ 4N sites.Similarly toRef. [12],we
take as the initial state the ground state of N particles on a
smaller sublattice of2N sites, located in thecenter of the larger
lattice (i.e., sites j ¼ L=4þ 1;…; 3L=4). At times t ≥ 0, the
HCAs are allowed to freely move in the larger lattice,
corresponding to theevolutionof theN-particlewave function
jΨðtÞiunder theactionofHamiltonian (3).Thecorresponding
GGE is defined by Eq. (1), where the Îl are the occupation
numbers of the single-particle energy eigenstates of
Hamiltonian (3) in the underlying SF model, and λl ¼
log½ð1 − hÎliIÞ=hÎliI� [12]. To characterize the relaxation
dynamics of the system, we focus on the properties of the
single-particle density matrix σðtÞ [49], which has elements
σjj0 ðtÞ ¼ hΨðtÞjâ†j âj0 jΨðtÞi in real space. The corresponding
momentumdistribution ismkðtÞ ¼ ð1=LÞPjj0e

ikðj−j0Þσjj0 ðtÞ.
In Fig. 1(a), we show the initial momentum distribution

mkð0Þ of HCAs for various values of θ. For 0 < θ < π,
mkð0Þ exhibits the characteristic asymmetry of an anyonic
state [35,50–52] and interpolates smoothly between the
familiar forms of SFs (θ ¼ 0) and HCBs (θ ¼ π) at
zero temperature. Figure 1(b) shows the corresponding
momentum distributions after relaxation as predicted by
the GGE, hm̂kiGGE ¼ ð1=LÞPjj0e

ikðj−j0Þhâ†j âj0 iGGE (where
h� � �iGGE ≡ Trfρ̂GGE � � �g). We note that even in the SF limit,
hm̂kiGGE is distinct from the initial momentum distribution
mkð0Þ, as the single-particle energy eigenstates of the open-
chain Hamiltonian (3) [53] are not momentum eigenmodes.

The HCA site occupation operators n̂j ¼ â†j âj are, for all
nonzero values of θ, identical to those of the SF limit
(θ ¼ 0). Thus, the time-evolving site occupations njðtÞ ¼
σjjðtÞ following the quench, and the GGE predictions
hn̂jiGGE ¼ hâ†j âjiGGE, are common to all cases in the
HCA family. We quantify the difference between njðtÞ
and hn̂jiGGE by the normalized distance δN ðtÞ ¼
ðPjjnjðtÞ − hn̂jiGGEjÞ=

P
jhn̂jiGGE [15,32], which we plot

for three system sizes in the inset to Fig. 2(e). We see that
δN ðtÞ undergoes some initial transient oscillations before
decaying to a finite value about which it fluctuates. This
value decreases with increasing system size L, suggesting
that the site occupations after relaxation converge to the
GGE predictions in the limit L → ∞.
In contrast to the site occupations, the time evolution of

the momentum distribution mkðtÞ depends strongly on θ.
We characterize this evolution by the normalized distance
δMðtÞ ¼ ðPkjmkðtÞ − hm̂kiGGEjÞ=

P
khm̂kiGGE between

the instantaneous and GGE momentum distributions. In
Figs. 2(a)–2(d), we plot δMðtÞ for a representative selec-
tion of statistical parameters θ. For HCBs [θ ¼ π, shown in
Fig. 2(d)] the behavior of δMðtÞ is similar to that of δN ðtÞ
and consistent with previous work [12,15]. By contrast, in
the SF limit [θ ¼ 0, shown in Fig. 2(a)], δMðtÞ fluctuates
about an average value at late times that does not decrease
significantly with increasing L. In fact, at late times δMðtÞ
is in general larger than its value at time t ¼ 0. For
intermediate values of θ, the behavior of δMðtÞ interpo-
lates between that seen in the SF and HCB limits, with the
late-time values of δMðtÞ decreasing more significantly
with increasing L as θ departs from the SF limit.
Our results suggest that for any θ > 0, just as for HCBs,

both njðtÞ and mkðtÞ relax to the GGE predictions in the
thermodynamic limit, whereas for SFs njðtÞ relaxes to
hn̂jiGGE but mkðtÞ exhibits persistent fluctuations about
hm̂kiGGE [15,32]. The absence of relaxation of the SF
momentum distribution raises the question of whether there
are some one-body observables of HCAs with θ > 0 that—
in contrast to nj and mk—fail to relax. To answer this
question, we employ a generalization of the distances

(b)(a)

FIG. 1 (color online). (a) Ground-state momentum distribution
of N ¼ 64 hard-core anyons in a box of L ¼ 128 sites for
various values of the anyon statistical parameter θ. (b) Momentum
distribution of the anyons after (symmetric) expansion into
a larger box of L ¼ 256 lattice sites, as predicted by the GGE
(see text).
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δMðtÞ and δN ðtÞ that accounts for all one-body observ-
ables: the trace distance [54]

DðσðtÞ; σGGEÞ ¼
1

2N
Tr
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσðtÞ − σGGEÞ2
q o

ð4Þ
between the instantaneous σðtÞ and the GGE prediction
σGGE. As both single-particle density matrices have an
extensive trace TrfσðtÞg ¼ TrfσGGEg ¼ N, we normalize
Eq. (4) byN, yielding a quantitativemeasure of any extensive
difference between σðtÞ and σGGE. The trace distance
DðσðtÞ; σGGEÞ thus provides a strict upper bound [54]
to the distances δN ðtÞ and δMðtÞ and, indeed, the
analogous distance δOðtÞ ¼ ðPqjoqðtÞ − hôqiGGEjÞ=P

qhôqiGGE between the instantaneous occupations oqðtÞ
of any arbitrary complete basis of single-particle modes jqi
(e.g., the natural orbitals studied in Refs. [13,15]) and the
GGE predictions hôqiGGE for these occupations.
In Figs. 2(e)–2(h), we plot the trace distance

DðσðtÞ; σGGEÞ and observe that for any θ > 0,
DðσðtÞ; σGGEÞ decays to an average value about which it
fluctuates. This value decreases with increasing L at fixed θ

and with increasing θ at fixed L. The decay occurs over a
time scale that is similar to that of the initial transient
regime seen in δMðtÞ and δN ðtÞ. However, following the
decay, DðσðtÞ; σGGEÞ is always lower than the initial value
Dðσð0Þ; σGGEÞ for all θ > 0 and all L; i.e., the dynamics of
the interacting HCA models always drive the single-
particle density matrix closer to the GGE prediction. For
SFs (θ ¼ 0), on the other hand, the trace distance is
constant in time. This is a consequence of the invariance
of Eq. (4) under unitary transformations and the fact that
σGGE is diagonal in the single-particle eigenbasis of
Hamiltonian (3) (see the Supplemental Material [48]).
In order to quantitatively characterize the convergence of

σðtÞ to σGGE, we consider the time average of
DðσðtÞ; σGGEÞ over the period t ∈ ½105; 106� (i.e., after
relaxation) and denote this quantity by Dðσ; σGGEÞ∞.
Figure 3(a) shows the dependence of Dðσ; σGGEÞ∞ on
the statistical parameter θ for a selection of system sizes
L ¼ 16; 24; 32; 48;…; 512. The results make it clear that
the time-averaged trace distance decreases with increasing
θ and that its initial decrease as θ is increased from zero
becomes steeper with increasing L. The latter suggests that
any θ > 0 leads to a vanishing trace distance between σðtÞ
after relaxation and σGGE in the thermodynamic limit. In
Fig. 3(b) we present the same data as a function of system
size. We observe that the decrease in Dðσ; σGGEÞ∞ with
increasing L is more pronounced for larger values of θ,
whereas for SFs there is little change in Dðσ; σGGEÞ∞ with
increasing system size.
For HCBs (θ ¼ π), a fit to the data reveals that the time-

averaged trace distance after relaxation exhibits power-law
scaling close to L−1=2. For all interacting models (θ > 0)
Dðσ; σGGEÞ∞ appears to exhibit an identical scaling at large
L, although systems with smaller values of θ are slower to
reach this limiting behavior. By contrast, for the case of SFs
the (time-invariant) trace distance, which we denote by Df,

(b)(a)

FIG. 3 (color online). Dependence of Dðσ; σGGEÞ∞ (see text)
on (a) the HCA statistical parameter θ and (b) the system
size L (both panels report the same data). The red dashed line
indicates a power-law fit (fitted to data points for
L ¼ 96;…; 512), which yields Dðσ; σGGEÞ∞ ∝ L−0.516�0.001 in
the limit of HCBs (θ ¼ π). Inset: Dependence of the SF trace
distance Df on L. The corresponding dashed line indicates
a power-law fit (fitted to data points for L ¼ 1024;…; 12 288),
which yields Df − 1=2 ∝ L−0.833�0.004.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 2 (color online). Time evolution of (a)–(d) the normalized
distance δMðtÞ between instantaneous and GGE momentum
distributions and (e)–(h) the normalized trace distance
DðσðtÞ; σGGEÞ, for N hard-core anyons expanding from a hard-
wall box of 2N sites to one of L ¼ 4N sites. The inset to (e)
shows the time evolution of the normalized distance δN ðtÞ
between instantaneous and GGE site occupations, which is
identical for all statistical parameters θ.
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does not appear to scale towards zero as L → ∞. In fact, a
nonvanishing lower bound Df ≥ 1=2 can be derived in the
thermodynamic limit, as shown in the Supplemental
Material [48]. An examination of Df for larger lattice
sizes L [inset to Fig. 3(b)] suggests that this bound is in fact
an equality in the thermodynamic limit, as Df − 1=2
appears to vanish as a power law (close to L−5=6)
as L → ∞.
The behavior of Dðσ; σGGEÞ∞ for HCA models with

θ > 0 implies that the entire single-particle density matrix
and as a result the occupations of all single-particle bases
(not just the site and momentum occupations) relax to the
predictions of the GGE in the thermodynamic limit. This
occurs despite the persistence of time fluctuations of one-
body observables in the underlying SF model [27,32].
Indeed, the vanishing of Dðσ; σGGEÞ∞ with increasing
system size implies that no measurement of one-body
observables can reveal any more than a subextensive
distinction between the state after relaxation and the
GGE prediction (see the Supplemental Material [48]).
This is in stark contrast to the behavior of the underlying
SFs, for which the time-evolving σðtÞ can always (in
principle) be distinguished from σGGE.
In the quenches we have considered so far, the final

Hamiltonian Ĥ lacks translational invariance only because
of the imposedboundary conditions, the effects ofwhich one
might expect to vanish in the thermodynamic limit. It is,
therefore, natural to ask whether the complete relaxation of
the anyonic single-particle density matrices we have
observed applies only to translationally invariant systems.
To answer this question,we followRefs. [15,32] in explicitly
breaking translational invariance by adding to Hamiltonian
(3) a lattice potential V̂ lat ¼ λ

P
L
j¼1 cosð2πςjÞâ†j âj with an

incommensurateperiod1=ς ¼ 2=ð ffiffiffi
5

p
− 1Þ,whichyields the

Aubry-André (AA) Hamiltonian [55]. We then repeat the
expansionquench,consideringnowtheevolutionofNHCAs
under theactionof theAAHamiltonianwithλ ¼ 1 (forwhich
the single-particle energy eigenstates remain delocalized)
starting from the ground state on the central L=2 sites of the
AA superlattice.
In Fig. 4, we plot the time-averaged trace distance

Dðσ; σGGEÞ∞ following expansion in the AA model as a
function of system size for θ ¼ 0; π=2, and π. In the limit of
SFs,Df doesnotdecaysignificantlywith increasingLand,as
shownin the inset, appears to saturateat avalueDf ≈ 1=2.By
contrast, the trace distances Dðσ; σGGEÞ∞ of the interacting
models of hard-core semions (θ ¼ π=2) and bosons (θ ¼ π)
exhibit aclearpower-lawscalingclose toL−1=2.These results
demonstrate that translational invariance of the final
Hamiltonian (in the limit L → ∞) is not required for the
postquench single-particle density matrices of HCAs (and
HCBs in particular) to relax to σGGE in the thermodynamic
limit. We note, however, that real-space localization (as
produced, e.g., by the AA Hamiltonian for λ > 2) would
necessarily preclude relaxation of σðtÞ to the GGE, as the

resulting saturation of the time average of δN ðtÞ [15,32]
bounds Dðσ; σGGEÞ∞ to be nonzero for all values of the
statistical parameter θ [48].
We emphasize that this complete one-body relaxation of

interacting HCAs is in stark contrast to the behavior of
noninteracting SFs. The results presented here and in
Refs. [15,27,32] demonstrate the existence of extensive
sets of one-body SF observables that exhibit nonvanishing
time fluctuations in the thermodynamic limit, whereas the
fact that Dðσ; σGGEÞ∞ vanishes with increasing L for θ > 0
implies that no such extensive set exists in the interacting
HCAmodels (see the Supplemental Material [48]). We note
also that, for the interacting quenches considered here [48]
and in Ref. [15], δMðtÞ scales like L−1 as L → ∞.
Although this scaling is in fact faster than the L−1=2 scaling
observed for relaxing SF observables in Ref. [32], the trace
distance Dðσ; σGGEÞ∞ scales like L−1=2. Remarkably, the
characteristic scaling of the Gaussian equilibration scenario
proposed for free SF models in Ref. [31], although violated
for certain observables of the SF model itself, is in effect
restored by the generalized Jordan-Wigner transformation
to an interacting hard-core anyon or boson model when the
entire single-particle density matrix is considered.
In summary, we have shown that a family of HCAs that

interpolates between SFs and HCBs exhibits complete
relaxation of the entire single-particle density matrix to
the GGE prediction, with the singular exception of the
noninteracting SF model itself. This demonstrates that
relaxation to the GGE can manifest without tracing out
any spatial domain of the system; i.e., that the dissipation
required for the single-particle state to relax to (a gener-
alized) equilibrium is provided by the correlations between
particles in the many-body wave function [56]. Interactions
are, however, seen to play a crucial role in this relaxation:
Although for noninteracting SFs the single-particle density
matrix agrees with the GGE after time averaging [27,32], it
is precluded from relaxing by the unitarity of its evolution.
By contrast, for all interacting HCA models (with θ > 0)

FIG. 4 (color online). Dependence of Dðσ; σGGEÞ∞ on L, for
HCAs undergoing expansion within the Aubry-André model
with λ ¼ 1. The black dashed line indicates a power-law fit (fitted
to data points for L ¼ 96;…; 512), which yields Dðσ; σGGEÞ∞ ∝
L−0.512�0.003 for HCBs (θ ¼ π). Inset: dependence of the SF trace
distance Df on L.
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the single-particle density matrix evolves nonunitarily and
each particle in the system is driven, by an effective bath
provided by the other particles, to the stationary state
predicted by the GGE. We have also shown that these
conclusions apply even when translational invariance of
the pre- and postquench Hamiltonians is broken, provided
that the system remains delocalized.
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CALCULATION OF ANYONIC OBSERVABLES

Hard-core anyons, with commutation relations

âj â
†
k = δjk − e−iθ sgn(j−k)â†kâj ,

âj âk = −eiθ sgn(j−k)âkâj , (S1)

can be mapped to spinless fermions ({f̂j , f̂k} = 0,

{f̂j , f̂†
k} = δjk) by the generalized Jordan-Wigner trans-

formation

â†j = f̂†
j

∏

k<j

eiθf̂
†

k
f̂k , âj =

∏

k<j

e−iθf̂†

k
f̂k f̂j , (S2)

and in particular, in the limit θ = 0, â
(†)
j = f̂

(†)
j . One-

body observables in a pure state |ΨA〉 of HCAs can thus
be calculated by a simple generalization of the method of
Ref. [S1]. The HCA Green’s function can be expressed
as an SF expectation value

Gij ≡ 〈ΨA|âiâ†j |ΨA〉
= 〈ΨF |

∏

k<i

e−iθf̂†

k
f̂k f̂if̂

†
j

∏

l<j

eiθf̂
†

l
f̂l |ΨF 〉 (S3)

in the Slater determinant |ΨF 〉 =
∏N

m=1

∑L
n=1 Pnmf̂†

n|0〉.
Therefore

f̂†
j

∏

k<j

eiθf̂
†

k
f̂k |ΨF 〉 =

N+1
∏

m=1

L
∑

n=1

P j
nmf̂†

n|0〉, (S4)

where P j
nm is obtained from Pnm by multiplying the el-

ements m < j by the phase eiθ, and the addition of one
column, with the sole nonzero element PjN+1 = 1. Thus

Gij = 〈0|
N+1
∏

m=1

L
∑

n=1

(P i
nm)∗ f̂n

N+1
∏

k=1

L
∑

l=1

P j
lkf̂

†
l |0〉

= det
[

(Pi)†Pj
]

. (S5)

The single-particle density matrix of HCAs is then given
by

σij ≡ 〈â†i âj〉 = δij − e−iθsgn(i−j)Gij . (S6)

This methodology can be straightforwardly extended to
compute the time evolution of the nonequilibrium single-

particle density matrix after a quench, following the ap-
proach described in Ref. [S2].
The single-particle density matrix in the GGE

(σGGE)ij = Z−1
GGETr{â

†
i âje

−
∑L

ℓ=1
λℓÎℓ}, where Îℓ ≡ f̃†

ℓ f̃ℓ
are the occupations of SFs in the appropriate single-
particle orbitals |ζℓ〉, can similarly be evaluated by an
extension of the method of Ref. [S3]. In particular, using
Eq. (S2) we have

(σGGE)ij =
1

ZGGE
Tr

{

f̂†
i f̂j

j−1
∏

k=1

e−iθf̂†

k
f̂k (S7)

× e−
∑L

ℓ=1
λℓÎℓ

i−1
∏

l=1

eiθf̂
†

l
f̂l

}

,

which, for i 6= j, can be expressed (cf. Ref. [S3])

(σGGE)ij = Z−1
GGE

{

det
[

I+ (I+A
ij)O1Ue−λ

U
†
O2

]

− det
[

I+O1Ue−λ
U

†
O2

]

}

, (S8)

where I is the L × L identity matrix, Aij is such that
(Aij)i′j′ = δii′δjj′ , O1 (O2) is diagonal with the first i
(j) diagonal elements equal to e−iθ (eiθ) and the oth-
ers equal to unity, U is the unitary transformation to
the diagonal representation of the |ζℓ〉, and λ is diago-
nal with nonzero elements (λ)ℓℓ = λℓ. The GGE par-
tition function ZGGE =

∏

ℓ(1 + e−λℓ), and the diago-
nal elements of the GGE single-particle density matrix
(σGGE)ii = Z−1

GGE[U(I+ e−λ)−1
U

†]ii.

SINGLE-PARTICLE TRACE DISTANCE

We define the trace distance between the single-
particle density matrices σ(t) and σGGE

D(σ(t), σGGE) =
1

2N
Tr

{

√

(σ(t)− σGGE)
2

}

. (S9)

This differs from the standard definition [S4] of the
trace distance between normalized density matrices
by a factor Tr{σ(t)} = Tr{σGGE} = N = νL,
with ν the filling fraction. Standard results for the
trace distance immediately transpose to the defini-
tion of Eq. (S9). In particular, the normalized dis-
tance δO(t) = (

∑

q |oq(t)− 〈ôq〉GGE|)/
∑

q〈ôq〉GGE be-



S2

tween the instantaneous occupations oq(t) = 〈q|σ(t)|q〉 of
any arbitrary complete basis of single-particle modes |q〉
(e.g., site or momentum modes, or the natural orbitals of
σGGE) and the GGE predictions 〈ôq〉GGE = 〈q|σGGE|q〉
for these occupations, satisfies δO(t) ≤ 2D(σ(t), σGGE).
It follows therefore that if the time-averaged trace dis-
tance D(σ, σGGE)∞ exhibits power-law decay like L−α,
then the time average δO∞ of δO(t) after relaxation
scales to zero at least as rapidly. Conversely, the exis-
tence of any such set of modes |q〉 for which δO∞ ∼ L0

implies that D(σ(t), σGGE) ∼ L0 also.

Moreover, D(σ(t), σGGE) is equal to the standard trace
distance between the unit-normalized density matrices
σ′(t) = σ(t)/N and σ′

GGE = σGGE/N . Thus we have
0 ≤ D(σ(t), σGGE) ≤ 1, where the lower bound is
reached when σ′(t) = σ′

GGE; i.e., D(σ(t), σGGE) vanishes
as L → ∞ if and only if σ(t) becomes equal to σGGE,
up to subextensive differences in this limit. More specif-
ically, given any positive operator-valued measure {Em}
composed of positive operators Em acting in the single-
particle space such that

∑

m Em = 1 [S4], the distance

d(pm(t), pGGE
m ) =

1

2

∑

m

|Tr{Em(σ(t)− σGGE)}| (S10)

between the distributions of the outcomes pm(t) =
Tr{Emσ(t)} and pGGE

m = Tr{EmσGGE} of the measure-
ment defined by {Em} is bounded

d(pm(t), pGGE
m ) ≤ ND(σ(t), σGGE) ∼ νL1−α, (S11)

if D(σ(t), σGGE) ∼ L−α. Thus if α > 0 at most only
a subextensive difference between σ(t) and σGGE can be
revealed by any measurement in the single-particle space.

Bounds on single-particle trace distance for free

spinless fermions

We consider an initial state |ΨI〉 that is an eigen-

state of a free spinless fermion Hamiltonian ĤI = a†hIa,

where a† = (â†1, . . . , â
†
L); i.e., |ΨI〉 is a Slater determi-

nant of N single-particle energy eigenstates |χℓ〉 of hI .
At times t > 0, |Ψ(t)〉 evolves under the action of an

SF Hamiltonian ĤF = a†hFa, with single-particle en-
ergy eigenvectors |ζj〉 (hF |ζj〉 = ǫj |ζj〉). The resulting
time-dependent Slater determinant |Ψ(t)〉 is completely
characterized (up to a global phase) by the single-particle
density matrix [S5]

σ(t) = U(t)σ(0)U †(t)

=

L
∑

j,k=1

〈ζj |σ(0)|ζk〉e−i(ǫj−ǫk)t/~|ζj〉〈ζk|, (S12)

where the time-evolution operator U(t) = exp(−ihF t/~),
and σ(0) =

∑

ℓ |χℓ〉〈χℓ|. We compare this single-particle
density matrix to the single-particle density matrix of the

generalized Gibbs ensemble,

σGGE = Tr2···N{ρ̂GGE} =

L
∑

j=1

nj |ζj〉〈ζj |, (S13)

with

nj = 〈ΨI |ã†j ãj |ΨI〉 = Tr{σ(0)|ζj〉〈ζj |}, (S14)

where ãj annihilates an SF in the orbital |ζj〉. We note

in particular that
∑L

j=1 nj = Tr{σ(0)∑L
j=1 |ζj〉〈ζj |} =

Tr{σ(0)} = N , and that U(t)σGGEU
†(t) = σGGE, as

σGGE is diagonal in the basis {|ζj〉}.
We consider now the normalized trace distance (S9)

between σ(t) and σGGE. Standard results for the trace
distance [S4] imply that

D(σ(t), σGGE) = D(U(t)σ(0)U †(t), U(t)σGGEU
†(t))

= D(σ(0), σGGE); (S15)

i.e., the trace distance is invariant under the evolution of
σ(t), and that

D(σ(0), σGGE) ≥
1

N
Tr{P(σGGE − σ(0))}, (S16)

where P is any projector in the single-particle space
spanned by {|ζj〉}. Considering in particular the pro-
jector Q = 1− σ(0) we have therefore

D(σ(0), σGGE) ≥
1

N
Tr{σGGE − σ(0)σGGE}. (S17)

As σGGE is diagonal in the basis {|ζj〉},

Tr{σ(0)σGGE} =

L
∑

j=1

〈ζj |σ(0)|ζj〉〈ζj |σGGE|ζj〉

= Tr{(σGGE)
2}, (S18)

and so we obtain a lower bound

D(σ(0), σGGE) ≥ 1− γGGE (S19)

for the trace distance in terms of the generalized purity
γGGE ≡ (1/N)Tr{(σGGE)

2}.

A necessary condition for D(σ(0), σGGE) to vanish in
the thermodynamic limit is that γGGE → 1 as L → ∞;
i.e., that σGGE becomes idempotent as L → ∞. Con-
versely, an idempotent σGGE is the single-particle density
matrix of some single Slater determinant [S5]

σGGE = Tr2···N{|Ξ〉〈Ξ|}, (S20)

where |Ξ〉 is composed of N orbitals |ζjℓ〉, for
ℓ = 1, . . . , N . In this limit 〈ζjℓ |σ(0)|ζjℓ〉 = 1; i.e.,
σ(0) is an identity operator within the space spanned by
the N orbitals |ζjℓ〉, and thus the spans of {|χj〉} and
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FIG. S1: (Color online) Comparison of Df , the (time-
independent) trace distance between the instantaneous single-
particle density matrix σ(t) of SFs and the corresponding
GGE prediction, to the bound provided by the generalized pu-
rity γGGE of σGGE (see text). Results are shown for expansion
quenches in (a) the tight-binding model (b) the Aubry-André
model.

{|ζjℓ〉} are equal. This occurs in particular if the initial
and final Hamiltonians are related by a unitary trans-
formation hF = UhIU

† (or if ν = 1), in which case the
individual single-particle orbitals |χℓ(t)〉 = e−ihF t|χℓ〉
evolve nontrivially in time, but all observables are
time-independent. In fact, the invariance of a Slater
determinant under unitary transformations among the
orbitals of which it is composed [S5] implies that |Ξ〉
is equal to |ΨI〉 (up to a phase); i.e., |ΨI〉 is an energy

eigenstate of ĤF , and the diagonal-ensemble density
matrix [S6] is pure: ρ̂DE ≡ |ΨI〉〈ΨI |. In this limit
σGGE = Tr2···N{ρ̂DE} = σ(0), and therefore in general
D(σ(0), σGGE) → 0 if and only if the diagonal-ensemble
purity ΓDE ≡ Tr{(ρ̂DE)

2} → 1 in the thermodynamic
limit (a trivial “quench”).

In Fig. S1, we compare the bound of Eq. (S19) with
the numerically calculated trace distance Df between
σ(0) and σGGE for SFs, for the expansion quenches
considered in the main text. We note that in general
Df is somewhat larger than the bound of Eq. (S19)
but, both without [Fig. S1(a)] and with [Fig. S1(b)]
the additional incommensurate lattice potential, the
results suggest that (for these quenches) this bound
becomes an equality and, indeed, that Df → 1/2 in the
thermodynamic limit.

In fact, this asymptotic value of Df has a simple phys-
ical interpretation for the expansion quenches. In the
quench within the tight-binding model, the GGE site oc-
cupations 〈n̂j〉GGE become uniform as L → ∞. Thus,
introducing a projector P =

∑

j∈L\I |j〉〈j|, where L\I
denotes the set of lattice sites outside the central box in
which the particles are confined before the quench, we
have Tr{P(σGGE − σ(0))}/N = Tr{PσGGE}/N → 1/2
as L → ∞, bounding Df ≥ 1/2 in this limit. In
the quench within the delocalized regime of the AA
model, the GGE site occupations exhibit persistent site-
to-site fluctuations (cf. Ref. [S7]). Nevertheless, one ex-
pects the average site occupancy in any extensive block

of contiguous sites to converge to 1/2 in the thermo-
dynamic limit, implying the same asymptotic behavior
Tr{PσGGE}/N → 1/2 as L → ∞. Thus in both quenches
the trace distance 1/2 between σ(t) and σGGE in the
thermodynamic limit can be understood as the “mem-
ory” of the initial confinement of the sample within the
smaller box, which is additional to the initial-state mem-
ory encoded in the conserved quantities Îℓ that define
the GGE. This memory is preserved by the unitarity of
the evolution in the single-particle space in the limit of
SFs, but lost in the case of the interacting HCA mod-
els, for which σ(t) evolves non-unitarily; i.e., in this case
the single-particle density matrix is effectively coupled,
due to correlations in the N -body wave function, to a
bath that induces relaxation to a generalized equilibrium
state constrained only by the mean values of the con-
served quantities Îℓ.

TIME FLUCTUATIONS OF OBSERVABLES

Free spinless fermions

The fact that D(σ(t), σGGE) has a time-invariant, non-
vanishing value in the SF limit implies that at each given
time t the single-particle density matrix σ(t) can be dis-
tinguished from σGGE. It does not necessarily imply the
existence of a time-independent single-particle basis |q〉
for which the occupations oq(t) have nonvanishing fluc-
tuations (i.e., δO∞ ∼ L0).

A general one-body (i.e., quadratic) observable has

the form Ô =
∑L

ij=1 â
†
ioij âj = a†oa, where o is an

L × L Hermitian matrix. Such observables therefore
form a vector space, corresponding to the dimension-
L2 space of complex Hermitian matrices. An orthonor-
mal [with respect to the Hilbert-Schmidt inner product
(A|B) ≡ Tr{A†B}] basis for this space is given, in terms
of the elementary L × L matrices [Ekl]ij = δikδjl, by
the set of Hermitian matrices Ejj for 1 ≤ j ≤ L, to-
gether with (Ejk + Ekj)/

√
2 and i(Ejk − Ekj)/

√
2 for

1 ≤ j < k ≤ L. We therefore consider a basis set of
observables Ôℓ = a†oℓa, where oℓ is an arbitrary enu-
meration of the aforementioned L2 basis matrices. In-
troducing the notation f ≡ limT→∞(1/T )

∫ T

0
dt f(t), the

time average and variance of each observable are given
by Oℓ = 〈Ôℓ〉GGE and

∆2
ℓ ≡

(

Oℓ(t)−Oℓ

)2
= Tr{oℓ(σ(t)− σGGE)}2, (S21)

respectively. Averaging the variance over all L2 observ-
ables yields

∆2 ≡ 1

L2

L2

∑

ℓ=1

∆2
ℓ =

1

L2

L2

∑

ℓ=1

Tr{oℓ(σ(t)− σGGE)}2. (S22)
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From the definitions of the basis matrices oℓ, we find

L2

∑

ℓ=1

Tr{oℓ(σ(t)− σGGE)}2 =

L
∑

j,k=1

|〈j|σ(t)− σGGE|k〉|2

= (σ(t)− σGGE|σ(t)− σGGE)

= Tr{σ(0)− σ2
GGE}, (S23)

where we have used the invariance of the Hilbert-Schmidt
inner product under unitary transformations. Therefore,

∆2 =
ν

L
(1− γGGE) ; (S24)

i.e., for non-trivial quenches γGGE < 1, the variances
of one-body SF observables scale to zero as L−1, when
averaged over a complete basis of such observables. We
stress that Eq. (S24) does not, however, preclude the
existence of an extensive number (∼ L) of one-body SF
observable variances that saturate (∆ℓ ∼ L0) [S7–S9].

Post-quench momentum-distribution fluctuations

To characterize the fluctuations of the HCA momen-
tum distributions following the expansion quench in the
tight-binding model, we consider the normalized differ-
ence

∆mk(t) =
mk(t)− 〈m̂k〉GGE

〈m̂k〉GGE
(S25)

between the occupation of an individual momentum
mode k at time t and its mean value in the GGE. In
Fig. S2 we plot histograms of the distributions P (∆mk)
composed from the values of ∆mk(t) for all momenta k,
sampled from a range of times t ∈ [105, 106].

A qualitative distinction between the behavior of the
time fluctuations of mk(t) in the limit of SFs [Fig. S2(a)]
and that observed for the interacting models with θ > 0
[Figs. S2(b)–S2(d)] is immediately apparent. The distri-
bution of fluctuations for SFs is strongly non-Gaussian,
with a large tail appearing for positive values of ∆mk(t).
It also does not exhibit significant narrowing upon in-
creasing the system size L from 64 to 256. This behavior
is consistent with the non-Gaussian, non-narrowing dis-
tribution of momentum fluctuations observed in Ref. [S9]
following a quench to a delocalized fermion Hamilto-
nian1. For the system sizes studied, the histograms of
P (∆mk) for quenches of the HCA models become less
non-Gaussian as θ is increased, and in the case of HCBs

1 In Eq. (S25) we normalize each individual difference ∆mk by
the GGE occupation 〈m̂k〉GGE to obtain a representation of the
relative fluctuations in each k mode, as in general many such
modes are weakly occupied [see Fig. 1(b) in the main text]. We
note, therefore, that the time-fluctuation distributions in Fig. S2
cannot be directly compared to those of Ref. [S9].
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FIG. S2: (Color online) Histograms of the normalized
time fluctuations ∆mk(t) = [mk(t) − 〈m̂k〉GGE]/〈m̂k〉GGE

of momentum-mode occupancies following the free expan-
sion quench. Results are shown for (a) θ = 0 (SFs), (b)
θ = π/8, (c) θ = π/2 (hard-core semions), and (d) θ = π
(HCBs). Each histogram corresponds to the distribution of
∆mk(t) for all k modes, over times sampled from the pe-
riod t ∈ [105, 106]. Dashed lines in (d) indicate Gaussian fits,
which yield means −0.012 and −0.003, and standard devia-
tions 0.0360 and 0.0085, for L = 64 and L = 256, respectively.

[Fig. S2(d)] the distributions are very close to Gaussian,
as indicated by the fits (dashed lines) to these distri-
butions. In clear contrast to the case of SFs, for each
nonzero θ the distribution P (∆mk) exhibits significant
narrowing as the system size is increased from L = 64 to
L = 256, suggesting that the time fluctuations of mk(t)
in these quenches become vanishingly small as L → ∞.

From the fits to the histograms for θ = π, we find
that upon increasing the system size from L = 64 to
L = 256, both the (absolute value of the) mean and
standard deviation of the histogram decrease by a fac-
tor of approximately four, consistent with ∼ L−1 conver-
gence of the momentum distribution to the GGE pre-
diction (cf. Ref. [S7]). This scaling is confirmed in
Fig. S3, where we plot the time average of δM(t) over
the period t ∈ [105, 106], which we denote by δM∞.
In the limit of SFs (θ = 0), δM∞ does not decay ap-
preciably with increasing L, whereas in the opposite
limit of HCBs (θ = π), we observe a scaling close to
δM∞ ∼ L−1. The inset to Fig. S3(b) shows the corre-
sponding time-averaged distance δN∞ between nj(t) and
〈n̂j〉GGE, which is common to all values of θ, and scales

like L−1/2.

Localization and relaxation

The presence of nonrelaxing variables in the SF model
demonstrates a fundamental difference in relaxation be-
havior between the SF limit, and the remaining models
of the HCA family. Equations (S23) and (S24) show that
for SFs the single-particle density matrix σ(t) converges
to σGGE as L → ∞ in the sense that the normalized
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FIG. S3: (Color online) Dependence of δM∞ (see text) on
(a) the HCA statistical parameter θ and (b) the system size
L. The red dashed line indicates a power-law fit (fitted
to data points for L = 96, . . . , 512), which yields δM∞ ∝
L−1.018±0.005 in the limit of HCBs (θ = π). Inset: Depen-
dence of δN∞ on L. The corresponding dashed line indicates
a power-law fit (fitted to data points for L = 96, . . . , 512),
which yields δN∞ ∝ L−0.500±0.002.
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FIG. S4: (Color online) Role of boundary conditions in re-
laxation in the SF and HCB limits. The left column shows
the time-averaged normalized distance (a) δM∞ between the
post-quench momentum distribution mk(t) and the GGE pre-
diction 〈m̂k〉GGE for a quench to OBCs, (b) δO∞ between oc-
cupations oℓ(t) of open-boundary single-particle eigenstates
and the GGE prediction 〈ôℓ〉GGE for a quench to PBCs, and
(c) δO∞ for a quench to APBCs. The right column shows the
time-averaged normalized trace distance D(σ, σGGE)∞ follow-
ing quenches to (d) OBCs, (e) PBCs, and (f) APBCs. All
time averages correspond to the period t ∈ [105, 106], and all
distances for HCBs are relative to the GGE calculated for a
quench to OBCs (see text).

Hilbert-Schmidt distance

DHS(σ(t), σGGE) ≡
1

N

√

Tr{(σ(t)− σGGE)2} (S26)

between the two vanishes like L−1/2 (cf. the Gaussian
equilibration scenario of Ref. [S10]). This weak conver-
gence, enforced by the unitarity of the evolution of σ(t),
still allows for the presence of extensive sets of nonre-
laxing one-body observables. By contrast, the stronger
trace-distance convergence of the HCA single-particle
density matrices to the GGE (also ∼ L−1/2) implies that
no such nonrelaxing sets are present in the interacting
models.
From the arguments of Ziraldo and Santoro [S8], we

might expect that one can always contrive a set of non-
relaxing observables in an SF quench, by constructing a
basis that is localized in (but distinct from) the single-
particle energy eigenstates of the post-quench Hamilto-
nian. This expectation is strongly supported by the ob-
servation of the exotic L−1/4 convergence of both nj and
mk to the GGE in quenches of SFs to the critical (local-
ization/delocalization) point of the AA model [S9].
As a further partial check on the role of single-particle

localization in precluding relaxation of SF observables
and the efficacy of the Jordan-Wigner transformation
to an interacting model in removing these persistent
fluctuations, we investigate the effects of the bound-
ary conditions of the post-quench Hamiltonian in expan-
sion quenches within the tight-binding model. In addi-
tion to the open boundary conditions (OBCs) consid-
ered in the main text, we perform quenches in which
the final Hamiltonian has periodic boundary conditions
(PBCs) âL+1 = â1 and antiperiodic boundary condi-
tions (APBCs) âL+1 = −â1. In each case we take as
the initial state the ground state of L/4 particles on a
lattice with L/2 sites and open boundary conditions lo-
cated in the center of the final chain. For (A)PBCs,
the single-particle eigenstates of the final Hamiltonian
are plane waves, and thus the SF momentum distribu-
tion mk(t) = 〈m̂k〉GGE at all times. For quenches to
(A)PBCs, we therefore consider the occupations oℓ(t) =
〈φℓ|σ(t)|φℓ〉 of the single-particle energy eigenstates |φℓ〉
of the tight-binding Hamiltonian with open boundary
conditions (see, e.g., Ref. [S11]), which are localized in
momentum space. We characterize the relaxation dy-
namics of these observables by the normalized distance
δO(t) = (

∑

ℓ |oℓ(t) − 〈ôℓ〉GGE|)/
∑

ℓ〈ôℓ〉GGE, the time
average (over t ∈ [105, 106]) of which we denote by
δO∞ and plot for SFs (θ = 0) in PBCs and APBCs in
Figs. S4(b) and S4(c) respectively. Our results show that
this distance saturates in both cases, similarly to δM∞

for SFs in the quench with OBCs [Fig. S4(a)]. In all three
cases, the trace distance Df for SFs [Figs. S4(d)–S4(f)]
saturates to ≈ 1/2.
Turning our attention to the opposite limit of HCBs

(θ = π), we note that for even particle numbers N such
as we consider here, the Jordan-Wigner transformation
maps HCBs with PBCs (APBCs) to SFs with APBCs
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(PBCs), whereas for odd particle numbers HCBs are
always mapped to SFs with the same boundary condi-
tions. As the particle number N is a fluctuating quan-
tity in the GGE [S3], this alternation of boundary con-
ditions precludes us from calculating GGE expectation
values for HCBs in (A)PBCs. For HCBs, we therefore
calculate δO(t) and D(σ, σGGE)∞ relative to σGGE cal-
culated for the system with open boundary conditions.
Figures S4(d)–S4(f) indicate that, although the particu-
lar SF observables in which persistent fluctuations man-

ifest depend in general on the boundary conditions, the
spurious choice of boundary conditions used in calcu-
lating σGGE for HCBs becomes irrelevant as L → ∞,
as the trace distance between σ(t) and this form of
σGGE vanishes like L−1/2 in all three cases. Moreover,
Figs. S4(b) and S4(c) show that in (A)PBCs δO∞, al-
though saturating for SFs, vanishes like L−1 for HCBs,
echoing the behavior of δM∞ in the original (open)
quench geometry [Fig. S4(a)].
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