
after cratering events and catastrophic disruptions. The newly
created object’s orbits will gradually evolve and perhaps be trans-
ported into one of the strong resonances that can pump the orbit’s
eccentricity to Earth-crossing values. Smaller objects will migrate
faster under the influence of the Yarkovsky effect21, and once in a
resonance the dynamical lifetime of objects of any size is of the order
of only a few million years2. However, cosmic ray exposure ages tell
us that most OC meteorites are tens of millions of years old22. This
indicates that even the smallest meteoroids spend a considerable
amount of time migrating from their point of origin into the
resonances, and the larger objects that eventually become NEOs
probably require even more time. Thus, we expect that NEOs of
S-complex provenance will display a size-dependent range of
spectra ranging from Q (or OC) to S. This prediction is supported
by numerous reports in the past decade indicating Q-like spectra
and a size-dependent trend to OC-like spectra with decreasing size
in the NEO population23–26. However, space weathering in the main
belt occurs faster than the lifetimes of NEOs, as suggested by
meteoritic cosmic ray exposure ages22. Thus, observational evidence
for a large number of OC-like spectra amongst the NEOs23–26

implies that regular re-surfacing of these objects keep them looking
younger longer. A
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Strongly correlated quantum systems are among the most intri-
guing and fundamental systems in physics. One such example is
the Tonks–Girardeau gas1,2, proposed about 40 years ago, but
until now lacking experimental realization; in such a gas, the
repulsive interactions between bosonic particles confined to one
dimension dominate the physics of the system. In order to
minimize their mutual repulsion, the bosons are prevented
from occupying the same position in space. This mimics the
Pauli exclusion principle for fermions, causing the bosonic
particles to exhibit fermionic properties1,2. However, such bosons
do not exhibit completely ideal fermionic (or bosonic) quantum
behaviour; for example, this is reflected in their characteristic
momentum distribution3. Here we report the preparation of a
Tonks–Girardeau gas of ultracold rubidium atoms held in a two-
dimensional optical lattice formed by two orthogonal standing
waves. The addition of a third, shallower lattice potential along
the long axis of the quantum gases allows us to enter the Tonks–
Girardeau regime by increasing the atoms’ effective mass and
thereby enhancing the role of interactions. We make a theoretical
prediction of the momentum distribution based on an approach
in which trapped bosons acquire fermionic properties, finding
that it agrees closely with the measured distribution.

The physics of ultracold one-dimensional (1D) Bose systems is
very different from that of ordinary three-dimensional (3D) cold
gases1,2,4,5. For example, by decreasing the particle density n, a usual
3D quantum many-body system becomes more ideal, whereas in a
1D Bose gas the role of interactions becomes more important. The
reason is that at temperatures T ! 0, the kinetic energy of a particle
at the mean interparticle separation is K / n2 and it decreases with
decreasing density n faster than the interaction energy per particle,
I / n. The ratio of the interaction to kinetic energy, g ¼ I/K,
characterizes the different physical regimes of the 1D quantum
gas. For a large value of g, the gas enters the Tonks–Girardeau (TG)
regime, where the repulsion between particles strongly decreases the
wavefunction at short interparticle distances.

Achieving such a TG regime and observing ‘fermionization’ of
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the 1D Bose system is a great challenge, and it is complementary to
the current experiments in which bosonic properties are observed in
fermionic quantum gases6–9. The 1D regime is obtained by tightly
confining the particle motion in two directions to zero point
oscillations4,5,10. It was first demonstrated in experiments with
weakly interacting Bose-condensed trapped gases, where g,, 1
(see refs 11, 12). In ref. 13, a tight radial confinement was realized by
using two-dimensional (2D) optical lattice potentials to create an
array of 1D quantum gases. In later experiments with optical
lattices14,15 it has become possible to reach a 1D regime with
g < 1, that is, in between a weakly interacting 1D Bose condensed
gas and a fermionized TG gas. So far, however, it has not been
possible to bridge the last one or two orders of magnitude in g that
could bring the bosonic quantum gas fully into the TG regime.
Larger values of g could either be reached by decreasing the density
of the quantum gas or by increasing the effective interaction
strength between the particles4,5.

In this work, we propose and demonstrate a novel way to achieve
the TG regime. The main point is to include an additional optical
lattice along the 1D gas, which results in an increase of g. For a
homogeneous gas, g can be expressed as g ¼ mg/"2n, where g is the
1D interaction strength, m the mass of a single atom, and " denotes
Planck’s constant divided by 2p. The addition of a periodic
potential along the third axis increases the effective mass, and
thus leads to an increase of g. In fact, in the limit in which only
the first Bloch band is occupied, we have I ¼ Un and K ¼ Jn, where
n is the filling factor, U the on-site interaction energy and J the
tunnelling amplitude, and thus g ¼ U/J. Additionally, in order to
achieve a pure TG regime in a lattice, the filling factor n should
be smaller than unity: otherwise, doubly occupied sites would be
present, and the direct correspondence to the TG gas would be lost
(as in a recent experiment, see ref. 16). Following these ideas, we
have been able to enter the TG regime with g < 5–200. In this
regime, the bosons can be theoretically described using a ‘fermio-
nization’ approach17,18.

For g ! 1, the ground state of N bosons at zero temperature is

described by the many-body wavefunction:

W0ðx1;x2;…;xN Þ/ jdet½JiðxjÞ�j; i; j ¼ 1;2;…;N ð1Þ

where det denotes the Slater determinant, and J i(x) is the ith
eigenfunction of the single-particle hamiltonian. The presence of
the Slater determinant guarantees that the wavefunction vanishes
whenever two particles occupy the same position in space. However,
the absolute value of the determinant ensures that the wavefunction
for the bosons remains completely symmetric. This wavefunction
reflects the fundamental similarities between strongly interacting
bosons and non-interacting fermions in one dimension, with
properties such as the spatial density distribution, the density–
density correlation function, or the entropy of the gas being the
same as in the case of non-interacting fermions. More interestingly
though, several properties are strongly modified by the presence of
the absolute value of the determinant, leading to a unique behaviour
of, for example, the momentum distribution of the TG gas3. This
can be understood qualitatively in the following way: the bosonic
particles in a TG gas are not allowed to occupy the same position in
space. Owing to this restriction, they are distributed over a more
extended region in momentum space than in the case of an ideal or
weakly interacting Bose gas. On the other hand, in order to keep
themselves apart from each other, they do not need to be in different
momentum states, as would be the case for fermions.

We first describe the experimental realization together with the
measured data, and then provide a detailed theoretical analysis of
the system. In order to reach the regime of low filling factor, we start
with a rather small Bose–Einstein condensate (BEC) of approxi-
mately (3–4) £ 104 87Rb atoms in a magnetic trap. Then the BEC
is loaded into a 2D optical lattice potential (along the y- and z-axes),
such that an array of 1D quantum gases confined to narrow
potential tubes is created (Fig. 1a). The lattice potential is formed
by superimposing two orthogonal standing waves with a wavelength
of 823 nm on top of the BEC. In order to transfer the atoms into the
optical potential, the potential depth of the optical lattice is first
gradually increased to a mean final value of 27 E r (Fig. 1b). Here E r

is the recoil energy "2k2/2m, with k describing the wave vector of the
lattice laser light. During this ramp up of the lattice potentials, the
tunnel coupling between the different 1D quantum gases decreases
exponentially. This results in a decoupling of the quantum gases,
such that particle exchange between different tubes is suppressed.
For the maximum lattice depth, the gaussian shape of the laser
beams (160 mm waist) leads to an axial harmonic confinement of the
1D gases with a trapping frequency of q ax < 2p £ 60 Hz. This has
been verified by exciting a ‘sloshing’ motion of the thermal cloud
and by parametric heating measurements, which both agree with
the calculated value. Furthermore, the depths of all standing-wave
potentials have been measured by vibrational band spectroscopy19.
For such 1D quantum gases, without a lattice in the axial direction,
we have g < 0.5 near the lattice centre.

After a further hold time of 10 ms, we add an optical standing
wave along the axial direction (x axis) in order to increase g. The
intensity of the laser forming this lattice potential (operated at a
wavelength of 854 nm) is ramped up to a final depth Vax of up to
18.5 E r. The axial momentum distribution of the quantum gases is
subsequently probed by suddenly removing all optical and magnetic
trapping potentials, and by imaging the atom clouds after a time-of-
flight period of 16 ms. In order to prevent a strong expansion of
the atom cloud along the propagation axis of the imaging laser beam
(z axis), which would make the experiment more sensitive to
misalignments in the imaging axis, we reduce the confinement
along this axis by lowering the z-lattice potential to 6 E r within a
time of 100 ms before initiating the ballistic expansion sequence.
Also, along the x axis we use a ramp down, which is not fully non-
adiabatic and leads to a narrowing of the gaussian envelope in the
observed momentum distribution by ,20%. This enhances the
number of atoms in the central momentum peak. From the

 

Figure 1 Experimental sequence and momentum profiles. a, Using a 2D optical lattice

potential, we realize an array of 1D quantum gases. b, These quantum gases are created

by first increasing the optical lattice depths along the y and z axes in an exponential ramp

over a time of 160 ms (time constant t ¼ 40 ms) to a mean final value of 27 E r. After a

further hold time of 10 ms at this final lattice depth, we increase the optical lattice potential

along the x axis within a time of 20 ms (time constant t ¼ 10 ms) to a variable lattice

depth V ax. The quantum gases are then allowed to equilibrate for another 30 ms before

we probe the momentum distribution as described in the text. c, Typical time-of-flight

images after a ballistic expansion of the atom clouds over a time of 16 ms for an axial

optical lattice depth V ax ¼ 6.5 E r. The white dashed lines denote the area from which

averaged momentum profiles along the x axis are extracted (d).
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absorption images, we extract profiles of the axial momentum
distribution by averaging horizontal profiles through the centre of
the atom cloud (Fig. 1c).

In Fig. 2, we show six experimentally measured momentum
profiles (see Supplementary Information for all 12 momentum
profiles), corresponding to different values of the axial optical
lattice depth (Vax/E r ¼ 0–18.5). In Fig. 2a there is no lattice present
along the x axis, and thus no first-order diffraction peak appears.
Here, the value of g is ,0.5 at the trap centre. For the rest of
the figures (Fig. 2b–f) we can use the relation g < U/J obtaining
g < 5–200, which indicates that the TG regime is entered rather

rapidly when increasing the axial lattice depth. In Fig. 2b–f we also
plot our theoretical predictions based on fermionization at finite
temperature averaged over the different 1D tubes (see Methods).
Apart from a normalizing factor for each experimental curve, only
the atom number in the central tube is used as an overall adjustable
parameter in this model. This atom number is, however, kept
constant between different momentum profiles. The initial tem-
perature for the lowest axial lattice depth Vax ¼ 4.6 E r has been
obtained through a finite temperature fit to the corresponding
momentum profiles using our fermionization approach. From this
initial temperature, the temperatures of the quantum gases at

Figure 2 Momentum profiles of the 1D quantum gases for different axial lattice depths. In

b–f, the experimental data (blue circles) are displayed together with our theoretical

predictions (black line) based on fermionization at finite temperatures, averaged over the

different 1D tubes. In order to emphasize the linear part of the momentum profiles, an

auxiliary straight line with the corresponding slope is shown in each plot. In c, the

momentum profiles for the ideal Bose gas (green dotted lines) and the ideal Fermi gas

(yellow dashed lines) are also displayed for comparison. For all plots, an atomic

distribution characterized by an atom number N 0,0 ¼ 18 in the central tube is used, for

which we have found the best agreement with the experimental data (see Methods). In the

insets of b–f, the density profile of a single 1D tube with N ¼ 15 particles at the

corresponding temperature and lattice depth is shown for the fermionized gas (black lines

in plots b–f), for the ideal Fermi gas (yellow line in c), and for the ideal Bose gas (green line

in c). The values of the axial lattice depths V ax, the average temperatures, the slopes a of

the linear part of the momentum profiles, and the values of g ¼ U/J are: b, 4.6 E r

and k BT/J ¼ 0.5 (Tonks), a ¼ 1.90, g ¼ 5.5; c, 7.4 E r and k BT/J ¼ 0.7 (Tonks),

k BT/J ¼ 1.6 (ideal Bose gas), k BT/J ¼ 0.7 (ideal Fermi gas), a ¼ 1.4, g ¼ 13.7;

d, 9.3 E r and k BT/J ¼ 0.9 (Tonks), a ¼ 1.2, g ¼ 23.6; e, 12 E r and k BT/J ¼ 1.3

(Tonks), a ¼ 0.8, g ¼ 47.6; and f, 18.5 E r and k BT/J ¼ 3.9 (Tonks), a ¼ 0.6,

g ¼ 204.5. For the momentum profile without the axial lattice (a), we find a ¼ 2.2 and

g ¼ 0.5 at the centre of the trap.

Figure 3 Momentum profiles of a single 1D tube obtained from our fermionization-based

theory for different lattice depths. The plots are shown for axial lattice depths V ax of 5.0 E r

(a), 9.5 E r (b), and 12.0 E r (c). For all plots, the number of particles is N ¼ 15, and

b ¼ 8 £ 1024 E r (this value of b corresponds to the trapping frequency of the

experiment; see Methods). In each plot, the log–log momentum profile at k BT/J ¼ 0

(black line) is displayed together with that at k BT/J ¼ 1.0 (orange dashed line). The

density profiles at k BT/J ¼ 0 and k BT/J ¼ 1.0, together with the corresponding lattice-

harmonic potential, are shown in the inset of each plot. Note that at k BT/J ¼ 0, finite size

effects make the slope at low momenta deviate from the ideal 1/2. The slope a is larger

than 1/2 for small filling factors (a ¼ 0.79 in a), it approaches 1/2 as a Mott phase is

developed at the centre of the trap (a ¼ 0.49 in b), and it decreases to zero deep in the

Mott phase (a ¼ 0.29 in c).
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increasing lattice depth Vax have been modelled by assuming
conservation of entropy during the ramp up of the axial lattice.
For all 12 experimentally measured momentum profiles (see Sup-
plementary Information), we find excellent agreement with the
theory based on fermionization. For reference, we have plotted the
results obtained assuming an ideal Bose or Fermi gas, also averaged
over all the 1D tubes and at finite temperatures (see for example,
Fig. 2c).

The observed momentum distributions allow us to conclude that
we are dealing with a finite, non-uniform, TG gas in a lattice. Our
results show pronounced deviations20 from the generic behaviour of
the uniform TG gas at zero temperature, where one has a 1/p 1/2 low
momentum distribution3 giving a slope of 1/2 in the log–log plot. In
our experiment we observe: (1) a rather flat momentum distri-
bution at small momenta p, and (2) a linear region at larger p, with a
slope decreasing with an increase in the lattice depth. This beha-
viour is in excellent agreement with the predictions of our fermio-
nization-based theory for such a TG gas with a finite number of
particles (about 20 per tube) in a lattice, in the presence of a
harmonic trap, and at finite temperatures (see Fig. 3). Note that
already for our lowest axial lattice depths we find g .. 1, and a
further increase in the lattice depth mainly changes the average
filling factor in our system and allows us to study the behaviour of a
TG gas at different densities.

Most of the relevant physics concerning the momentum distri-
bution for our case can be qualitatively understood by considering a
uniform lattice system at the same temperature and with a filling
factor equal to the average filling factor of the trapped system. We
can then restrict the discussion to the case n # 1/2, because for
n . 1/2 the system can be viewed as a system of holes at filling factor
1 2 n. The filling factor determines a characteristic momentum
p n ¼ " £ 2pn/l related to the mean interparticle separation, where
l is the wavelength of the lattice laser light. At zero temperature, for
p ,, pn, the momentum distribution should exhibit a linear 1/2
behaviour, whereas for larger momenta short-range correlations21

tend to increase the slope. An increase in the filling factor, and
therefore a decrease in the average separation between particles,
modifies p n and can therefore lead to a change of the observed slope.
Note that for the case of n ¼ 1/2, the momentum p n is the closest to
the lattice momentum " £ 2p/l, and the momentum distribution is
the least affected by short-range correlations. At finite temperatures
a new momentum scale sets in18,22, below which the slope has a
tendency to decrease. This is the momentum p T ¼ " £ p/LT, where
LT < lJ=kBT sinpn is a characteristic length of thermal fluctu-
ations. For a small filling factor, this length coincides with the gas
phase result LT < "2n/m*kBT, in which the particle mass is replaced
by the effective mass m* ¼ 2"2/Jl2. In our experiment we have
p T < p n. Therefore, finite-temperature effects overlap with effects
of short-range correlations and we observe a rather flat momentum
distribution at small p, and a linear region with slope larger than 1/2
for larger p.

The presence of the harmonic trapping potential introduces
important changes in the observed momentum profiles. First, in
contrast to the uniform case, an adiabatic increase of the lattice
depth increases the ratio k BT/J. This increases the momentum p T,
and the flat region extends to larger momenta. Second, the slope of
the linear part decreases with the lattice depth, and the generic 1/2
value is recovered on approach to the Mott insulator transition16,23–26.
This is a fundamental feature that is present irrespective of the
number of particles and trap frequency. It is related to the fact that
in the trapped case the characteristic average filling factor of the
system increases with the lattice depth, because the tunnelling
amplitude J decreases and particles try to accumulate near the
trap centre. At the Mott insulator crossover, where the filling factor
at the trap centre is equal to unity, the average filling factor is close
to n ¼ 1/2 (see Methods). This is the value for which the effects
of short-range correlations are strongly suppressed in the homo-

geneous lattice system, and one comes closest to the generic
behaviour with slope 1/2. Last, we note that in the weakly interact-
ing regime for a trapped quasicondensate, one should have a
lorentzian momentum distribution27, which would give a slope
close to 2 for p .."£p=LT. Already, for low axial lattice depths Vax

we observe a smaller slope, which emphasizes a strong difference of
our system from previously studied 1D quasicondensates.

In summary, we have prepared a TG gas in an optical lattice. Here
the bosonic atoms exhibit a pronounced fermionic behaviour, and
show a momentum distribution that is in excellent agreement with a
theory of fermionized trapped Bose gases. In a next step, it will be
intriguing to use photoassociation in optical lattices to probe the
reduced two-body correlations, which are expected in a TG gas28.
Furthermore, by using two bosonic atomic species and tuning the
sign and strength of the atomic interactions, it should be possible to
observe a behaviour similar to strongly correlated fermions. For
example, the bosonic atoms can undergo a BCS transition and
form Cooper pairs in the same way as electrons do in a super-
conductor29. A

Methods
Description of the 1D quantum gases using fermionization
Here we develop the theoretical treatment based on fermionization that we have used
above to model the experiment. We consider N bosonic atoms moving in the lowest band
of a 1D lattice and experiencing an additional harmonic potential. This situation is
described by the Bose–Hubbard hamiltonian H ¼ H B þ V, where

HB ¼2J
X1

‘¼21

a†
‘a‘þ1 þ a†

‘þ1a‘

� �
þ b

X1
‘¼21

‘2a†
‘a‘

V ¼ U
X1

‘¼21

a†2
‘ a2

‘

The term H B describes the motion of the atoms in the combined lattice-harmonic
potential, and the term V accounts for on-site interactions. The bosonic operators a‘

annihilate one boson at the ‘ th site, and fulfil canonical commutation relations
½a‘;a

†
‘ 0 � ¼ d‘;‘ 0 : The parameter b is related to the frequency q of the harmonic potential

by b ¼ 1/8 mq2l2.
We are interested in the strongly interacting or Tonks regime, in which two atoms

cannot occupy the same lattice site. Within this regime, the bosonic operators a‘ can be re-
expressed using the Jordan–Wigner transformation30 (JWT) in terms of fermionic ones c‘

fulfilling ½c‘; c
†
‘ 0 �þ ¼ d‘;‘ 0 . Under the JWT, the interacting Bose hamiltonian H B is

transformed into a non-interacting fermionic hamiltonian H F, through the replacement
a‘ ! c‘. In order to predict the behaviour of the different bosonic observables, one has to
transform them into fermionic ones via the JWT, and then evaluate the corresponding
expectation values for the fermionic ground state. At T ¼ 0, the fermionic ground state is
given by the Slater determinant of equation (1). At a finite temperature T, the
wavefunction is a mixture of different Slater determinants characterized by the many-body
density matrix r / exp(2H F/kBT), where kB is Boltzmann’s constant.

Density and momentum distributions of fermionized Bose gases
The particle density n(x) coincides with that of non-interacting fermions, as the JWTmaps
the corresponding bosonic observable onto the same fermionic one (that is a†

‘a‘ ! c†
‘c‘).

Under the Thomas–Fermi approximation we have:

nðxÞ ¼
1

p
arccos max

m2 bx2

22J
;21

� �� �

if m 2 bx2 . 22J and zero otherwise. The size L of the cloud is L ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ mÞ=4b

p
, and m

is determined by imposing the condition that the total number of particles is N. When
m $ 2J a Mott phase is produced at the centre of the trap, and n(x ¼ 0) is equal to 1. At this
point the average filling factor of the system�n ¼ lN=2L < 3=

ffiffiffi
2

p
p, a value which is close to

1/2.
The momentum distribution n̂ðpÞ is related to the one-particle correlation function

ka†
‘a‘ 0 l through:

n̂ðpÞ ¼ jFðpÞj
2

X1
‘;‘ 0 ¼21

e2ipð‘2‘
0 Þ a†

‘a‘ 0


 �

where F(p) is the Fourier transform of the Wannier function, and p denotes momentum in
units of "k. Using the JWT, the bosonic one-particle correlation function can be re-
expressed as:

a†
‘a‘ 0


 �
¼ c†

‘ð21Þ
P

‘.m.‘ 0 c†
m cm c‘ 0

D E
;‘. ‘

0

Making extensive use of Wick’s theorem, one can re-express this quantity as a Töplitz
determinant a†

‘a‘ 0


 �
¼ det½G‘;‘ 0 �, where G‘;‘ 0 is a ‘–‘

0
, ‘–‘

0
matrix with elements

ðG‘;‘ 0 Þx;y ¼ c†
‘ 0 þy21

c‘ 0 þx

D E
2 dx;y21=2.

Therefore, in order to evaluate the momentum distribution at a finite temperature T
one has to determine the one-particle correlation functions for a non-interacting Fermi

letters to nature

NATURE | VOL 429 | 20 MAY 2004 | www.nature.com/nature280 ©  2004 Nature  Publishing Group



system at that temperature. We have used the grand canonical Fermi–Dirac distribution
and the exact eigenstates Ji(x) of the single-particle hamiltonian to determine the
momentum distribution in this way.

Averaging over the array of 1D quantum gases
In order to give a quantitative prediction for the experimental situation, we have
averaged the momentum distribution for different tubes. To determine the atomic
distribution, we have assumed that during the ramp up of the 2D optical lattice
potential, tunnelling becomes negligible, and we have an array of independent 1D gases.
For each tube, we have assumed a Thomas–Fermi density profile. Minimizing the total
energy of the array with respect to the number of atoms in each of the tubes, we obtain

Ni;j ¼ N0;0 12 5N
2pN0;0

ði2 þ j2Þ
� �3=2

, where Ni,j is the number of atoms in a tube located at

position (i, j) in the 2D optical lattice, N is the total number of particles in the array, and
N0,0 is the number of particles in the central tube. It follows that the probability of having a
tube with M particles is:

PðMÞ ¼
2

3

1

N
2=3
0;0 M1=3

; M # N0;0:

Remarkably, this distribution only depends on one parameter, namely, the number of
particles in the central tube, which is the only adjustable parameter in our model.

The temperature of each 1D quantum gas has been calculated assuming adiabatic
evolution of the system during the ramp up of the axial lattice. Owing to the presence of
the harmonic confinement, the ratio k BT/J is not conserved in the adiabatic evolution.
Given the temperature at Vax ¼ 4.6 E r (see Supplementary Information), the conservation
of entropy allows us to determine the temperature at the final lattice depth Vax. The
entropy of the TG gas coincides with that of the non-interacting Fermi gas, as both have
the same spectrum and density of states. This results in the same temperatures for a TG gas
and an ideal Fermi gas, but a different temperature for the ideal Bose gas when the axial
lattice depth is increased. Note that tubes with different number of particles also have
different temperatures at the same lattice depth.
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14. Moritz, H., Stöferle, T., Köhl, M. & Esslinger, T. Exciting collective oscillations in a trapped 1D gas.

Phys. Rev. Lett. 91, 250402 (2003).

15. Laburthe Tolra, B., et al. Observation of reduced three-body recombination in a fermionized 1D Bose

gas. Preprint at khttp://xxx.lanl.gov/cond-mat/0312003l (2003).

16. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D

superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

17. Efetov, K. B. & Larkin, A. I. Correlation functions in one-dimensional systems with strong

interactions. Sov. Phys. JETP 42, 390–396 (1976).

18. Korepin, V. E., Bogoliubov, N. M. & Izergin, A. G. Quantum Inverse Scattering Method and Correlation

Functions (Cambridge Univ. Press, Cambridge, 1993).

19. Ovchinnikov, Y. B. et al. Diffraction of a released Bose-Einstein condensate by a pulsed standing light

wave. Phys. Rev. Lett. 83, 284–287 (1999).

20. Astrakharchik, G. E. & Giorgini, S. Correlation functions and momentum distributions of one-

dimensional Bose systems. Phys. Rev. A 68, 031602 (2003).

21. Olshanii, M. & Dunjko, V. Short-distance correlation properties of the Lieb-Liniger system and

momentum distributions of trapped one-dimensional atomic gases. Phys. Rev. Lett. 91, 090401 (2003).

22. Cazalilla, M. A. Bosonizing one-dimensional cold atomic gases. J. Phys. B 37, S1–S47 (2004).

23. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-

insulator transition. Phys. Rev. B 40, 546–570 (1989).

24. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices.

Phys. Rev. Lett. 81, 3108–3111 (1998).
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Chirality is widely expressed in organic materials, perhaps most
notably in biological molecules such as DNA, and in proteins,
owing to the homochirality of their components (D-sugars and
L-amino acids). But the occurrence of large-scale chiral pores in
inorganic materials is rare1. Although some progress has been
made in strategies to synthesize helical and chiral zeolite-like
materials1–3, the synthesis of enantiomerically pure mesoporous
materials is a challenge that remains unsolved4. Here we report
the surfactant-templated synthesis of ordered chiral mesoporous
silica, together with a general approach for the structural analysis
of chiral mesoporous crystals by electron microscopy. The
material that we have synthesized has a twisted hexagonal rod-
like morphology, with diameter 130–180 nm and length 1–6 mm.
Transmission electron microscopy combined with computer
simulations confirm the presence of hexagonally ordered chiral
channels of 2.2 nm diameter winding around the central axis of
the rods. Our findings could lead to new uses for mesoporous
silica and other chiral pore materials in, for example, catalysis
and separation media, where both shape selectivity and enantio-
selectivity5 can be applied to the manufacturing of enantiomer-
ically pure chemicals and pharmaceuticals.

We recently discovered a templating route for preparing well-
ordered mesoporous silicas based on the self-assembly of chiral
anionic surfactants and inorganic precursors by using aminosilane
or quaternized aminosilane as a co-structure-directing agent
(CSDA)6, which provided a potential method to synthesize meso-
porous materials with inherent chirality. Among the anionic sur-
factants tested in our previous work, N-acyl-L-alanine is a chiral
organic molecule that can form a chiral nematic phase in the
presence of small amounts of decanol7,8. This phenomenon has
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