Exercise: A particle moves on the inside surface of a cone of half angle o. The axis of
the cone is vertical with the vertex downwards. Determine the condition on the angular
velocity w such that the particle can describe a horizontal circle h above the vertex. Show
that the period of small oscillations about this circular path is
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Solution: The kinetic and potential energies are given by
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where z is the vertical distance of the particle from the apex and m the mass of the
particle. Then
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The equations of motion are:
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If the particle is to describe a horizontal circle h above the vertex then 2 = 2 = 0.
Solving the second equation of motion, we find
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Now consider a small deviation around this circular path, so z = h + 6z where dz is
small. Then Z = §z. Now from the first equation of motion we have
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Substituting into the second equation of motion, we find
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This describes simple harmonc motion with angular frequency wy = cosa 379 and

: _ 2 _ 2 [h
period T' = 5 = cosa\/3g°

49



