PHYS2100: Hamiltonian mechanics tutorial sheet 2
 Due 5pm Friday 13th October 2006.

** \equiv To be handed in.

1. Prove that for any function $f(q, p, t)$ then

$$
\dot{f}=\{f, H\}+\frac{\partial f}{\partial t} .
$$

2. Show that if $\{Q, P\}_{(q, p)}=1$ then

$$
\dot{P}=-\frac{\partial \bar{H}}{\partial Q}
$$

where $\bar{H}(Q, P)=H(q, p)$.
3. Show that the following transformation is canonical

$$
\begin{aligned}
& Q=e^{\lambda}(q \cos \theta+p \sin \theta) \\
& P=e^{-\lambda}(-q \sin \theta+p \cos \theta) .
\end{aligned}
$$

4. Show that the area enclosed by the separatrix of the vertical pendulum with Hamiltonian

$$
H=\frac{l^{2}}{2}-\alpha^{2} \cos \theta,
$$

is 16α. Deduce that the maximum value of the action for librating motion is $8 \alpha / \pi$.
$5^{* *}$. A particle of mass m experiences the potential

$$
\begin{aligned}
& V(\psi)=A \psi, \quad(0 \leq \psi \leq \alpha) \\
& V(\psi)=A \alpha, \quad(\alpha \leq \psi \leq \pi) \\
& V(\psi)=V(-\psi)
\end{aligned}
$$

which is defined to be periodic outside the range ($-\pi \leq \psi \leq \pi$).
(a) Sketch a graph of this potential, and draw the phase portrait for the system. What is the energy that separates the librations and rotations?
(b) Find the action-angle variables for each type of motion, and determine the frequency ω of motion for a trajectory of energy E. Sketch a graph of the frequency ω versus E.

