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Chapter 1

Introduction

Lecturer: Dr Matthew Davis.
Room: 6-403 (Physics Annexe, ARC Centre of Excellence for Quantum-Atom Optics)
Phone: (334) 69824
email: mdavis@physics.uq.edu.au
Office hours: Friday 8-10am, or by appointment.

Useful texts

• Rasband: Chaotic dynamics of nonlinear systems. Q172.5.C45 R37 1990.
• Percival and Richards: Introduction to dynamics. QA614.8 P47 1982.
• Baker and Gollub: Chaotic dynamics: an introduction. QA862 .P4 B35 1996.
• Gleick: Chaos: making a new science. Q172.5.C45 G54 1998.
• Abramowitz and Stegun, editors: Handbook of mathematical functions: with formulas, graphs,
and mathematical tables. QA47.L8 1975

The lecture notes will be complete: However you can only improve your understanding by reading
more. We will begin this section of the course with a brief reminder of a few essential conncepts
from the first part of the course taught by Dr Karen Dancer.

1.1 Basics

A mechanical system is known asconservativeif
∮

F · dr = 0. (1.1)

Frictional or dissipative systems do not satisfy Eq. (1.1).

Using vector analysis it can be shown that Eq. (1.1) implies that there exists a potential function
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such that

F = −∇V (r). (1.2)

for someV (r). We will assume that conservative systems havetime-independentpotentials.

A holonomic constraintis a constraint written in terms of an equality e.g.

|r| = a, a > 0. (1.3)

A non-holonomic constraint is written as an inequality e.g.|r| ≥ a.

1.2 Lagrangian mechanics

For a mechanical system ofN particles withk holonomic constraints, there are a total of3N − k
degrees of freedom.

The system can be represented by3N − k generalised coordinatesq1, q2, . . . , q3N−k, such that

r = r(q1, q2, . . . , q3N−k, t).

For aconservativesystem withV = V (q1, q2, . . . , q3N−k), the Lagrangian is defined as

L = T − V, (1.4)

and the dynamics of the system can be found from the Euler-Lagrange equations

d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0 (1.5)

[If V is a function ofq̇i then an extra term is required.]

1.3 Hamiltonian mechanics

The Hamiltonian formulation of mechanics does not add any new physics. However it provides a
method that is more powerful and versatile than the Lagrangian approach. It is particular useful
for extending the theory into other fields such as statistical mechanics and quantum mechanics:
fundamental areas of physics that are covered in detail at 3rd year at UQ.

Lagrange’s equations form a system ofn = 3N − k second-orderdifferential equations requiring
2n initial conditions to obtain a unique solution. The Hamiltonian formulation is based upon
Hamilton’s equations

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

, (1.6)
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which form a system of2n first-order differential equations, again requiring2n boundary condi-
tions for a unique solution. We define the generalised momentum

pi =
∂L
∂q̇i

(1.7)

and the Hamiltonian for the system is

H(q,p, t) =
∑

i

q̇ipi − L(q, q̇, t) (1.8)

whereq = (q1, q2, . . . , qn) andp = (p1, p2, . . . , pn). Note thatq andp areindependentvariables.

For simple mechanical systems you will have shown that

H = T + V, (1.9)

which says thatH is the total mechanical energy of the system, and this will bethe case for the
majority of systems that we look at. It is also worth noting that the Hamiltonian of a conservative
system has no explicit time dependence i.e.H = H(q,p).
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Chapter 2

Phase space

The “space” of the (q,p) coordinates specifying a dynamical system is referred to as the “phase
space”, and is a very important concept in physics. The complete specification of all phase space
co-ordinates is sometimes called a “microstate” and contains all you can possibly know about the
system.

In Hamiltonian mechanics, the dynamics is defined by the evolution of points in phase space. For
a system withn degress of freedom, the phase space coordinates are made up of n generalised
position coordinatesq andn generalised momentum coordinatesp, and so phase space has a total
of 2n dimensions.

2.1 Flow vector field

Example: Bead on a wire.

The trajectory of the bead is a curve in(q, p) space parameterised by time. It can be drawn out by
following a point travelling with a certain “velocity”. It is not a true velocity as its components are
time derivatives of generalised position and momentum coordinates.

If we consider a system with one degree of freedom, the velocity is

v = (q̇, ṗ), (2.1)

and making use of Hamilton’s equations

v =

(

∂H

∂p
,−∂H

∂q

)

. (2.2)

For a general system withn degrees of freedom

v(q,p) = (q̇1, q̇2, . . . , q̇n), (2.3)
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Figure 2.1: Vector flow field for the SHO withm = ω = 1.

=

(

∂H

∂q1

,
∂H

∂q2

, . . . ,
∂H

∂qn

,
∂H

∂p1

,
∂H

∂p2

, . . . ,
∂H

∂pn

)

. (2.4)

(2.5)

So Hamilton’s equations are enough to definev(q,p).

For every point of phase space there is a velocity vector — in other words there exists a velocity
field v(q,p), usually referred to as the “flow vector field”.

In principle the flow vector field enables the dynamics of the system completely.

Example: Simple Harmonic Oscillator (SHO) in 1D

H =
p2

2m
+

mω2

2
q2. (2.6)

Hamilton’s equations give

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −mω2q, (2.7)

so the vector flow field is

v =
(

p

m
,−mω2q

)

. (2.8)

If we setm = ω = 1 then we can represent this graphically:v = (p,−q) as in Fig. 2.1.

Note that we have been assuming that the flow vector fieldv is not a function of time. This is true
whenH is time independent. But if, for example we have

H =
p2

2m
+ q cos ωt (2.9)
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Figure 2.2: Lines of constant H for the SHO

then

v = (p/m,− cos ωt), (2.10)

which is atime-varyingflow vector field.

2.2 Phase portraits

Most of our focus will be on systems with time independent Hamiltonians, for which there is the
useful result that the velocity vectorsv are always tangential to lines of constantH (energy). For
the SHO example withm = ω = 1 then the Hamiltonian is

H =
1

2
(p2 + q2), (2.11)

which describes a circle of radius
√

2H as in Fig. 2.2 To prove thatv is tangential to the lines of
constantH, you need to make use of the well known result from vector calculus that the gradient
of a scalar functionf is perpendicular to lines of constantf . Then we find that

v · ∇H = 0 (2.12)

sov is perpendicular to∇H. But∇H is also perpendicular to lines of constantH, sov must be
tangentialto lines of constantH.

Lines of constantH are extremely important for time independent Hamiltoniansas they define
trajectories(or paths) through phase space for the system. To demonstrate this we first shown that
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if H has no explicit time dependence (∂H/∂t = 0) then it has no implicit time dependent either
(dH/dt = 0).

If ∂H/∂t = 0 then

d

dt
H(q, p) =

∂H

∂q
q̇ +

∂H

∂p
ṗ,

=
∂H

∂q

∂H

∂p
+

∂H

∂p
×−∂H

∂q
,

= 0. (2.13)

where we have used Hamilton’s equations in the second line. Thus we must have thatH =
constant, and that a particle will move along a line of constant H.

In systens with one degree of freedom, and hence a 2D phase space, lines of constantH are call
phase portraits. They are simply paths in phase space.

Our analysis here has essentially been a proof that energy isconserved in a system with a time
dependent Hamitonian. (Note that it was assumed thatH was not a function oḟp or q̇.)

Phase portraits are an excellent means of visualising the dynamics of a mechanical system.

2.3 Fixed points

For many systems there may be special points in phase space where the velocity vectorv is zero.
These are known asfixed points, and provide a starting point for the analysis of dynamical systems.

If v = (0, 0) thenq̇ = 0 andṗ = 0 and hence∇H = (∂H/∂q, ∂H/∂p) = (0, 0). When the system
resides at a fixed point it is inmechanical equilibrium.

Fixed points only occur forp = 0 in simple mechanical systems where we haveT = p2/2m and
the potentialV = V (q) only.

2.4 Examples

Unless otherwise specified, we consider Hamiltonians of theform

H(q, p) =
p2

2m
+ V (q). (2.14)
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Figure 2.3: Phase portrait for a linear potential(a = m = 1) andH = −1, 0, 1, 2. Note that all
trajectories in a phase portrait must have an arrow indicating the direction.

2.4.1 Linear potential

V (q) = aq, a > 0. (2.15)

The phase portrait can be found by fixingH and plottingp as a function ofq (or vice versa). In
general we have

p(q) = ±
√

2m
√

H − V (q). (2.16)

For the current example we have

p = ±
√

2m(H − aq), or q =
H

a
− p2

2ma
. (2.17)

Thus the trajectories are parabolas, which makes sense seeing as the potential is like the gravita-
tional potential. The phase portrait is in Fig. 2.3.

Note also that this potential has no fixed points (the proof isin tutorial problems).

We now solve Hamilton’s equations for this potential. We have

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −a. (2.18)

We need boundary conditions to find a specific solution: let’ssay that at timet = t0 we have
q = q(t0) andp = p(t0). For this simple situation we can directly integrate the equation for ṗ in
Eqs. (2.18) to give

p(t) = p(t0) +
∫ t

t0
(−a)dt′ = p(t0) − a(t − t0). (2.19)
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Figure 2.4: Phase portrait for a SHO(m = ω = 1), for H = 0.25 to H = 2 in steps of 0.25. Note
that in general the trajectories are ellipses.

We can use Eq. (2.19) to solve for q(t)

q(t) = q(t0) +
∫ t

t0
dt′

p(t′)

m

= q(t0) +
1

m

∫ t

t0
dt′ [p(t0) − a(t′ − t0)] ,

= q(t0) +
p(t0)

m
(t − t0) −

a

2m
(t − t0)

2. (2.20)

It is not difficult to show that if the solutions Eqs. (2.19) and (2.19) are substituted back into the
Hamiltonian that the result is time independent.

2.4.2 Quadratic potential (SHO)

The simple harmonic oscillator (or SHO) is an extremely important model in physics. The Hamil-
tonian is

H =
p2

2m
+

mω2

2
q2, (2.21)

and the phase portrait is shown in Fig. 2.4. We first determinethe fixed points. Hamilton’s equa-
tions are

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −mω2q, (2.22)
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so thatq̇ = 0 whenp = 0 and ṗ = 0 whenq = 0. Hence there is only one fixed point for this
system at the origin:(q, p) = (0, 0). This is classified as anelliptic fixed point — a fixed point that
is encircled by a line of constantH. Elliptic fixed points arestable— any small perturbation away
from equilibrium remains contained in a small region about the fixed point.

We can now solve for arbitrary trajectories by differentiating the equation foṙq with respect tot
and substituting in foṙp. This gives

q̈ = −ω2q, (2.23)

which has the general solution

q(t) = A cos(ωt + δ), (2.24)

where the constantsA andδ are determined by the boundary conditions.

The momentum is then determined from the equation forq̇ as

p(t) = mq̇(t) = −mωA sin(ωt + δ). (2.25)

The motion is obviously oscillatory with periodT = 2π/ω which is independent ofA. This may
not seem like a big deal, but for a general potential the period of motion usually depends on the
amplitude, and we will spend quite some time later developing a method to calculate the period of
motion for confining potentials.

The energyH of the system is determined by the amplitudea. By substituting the solutions into
the Hamiltonian we find (you should check this!)

H =
1

2
mω2A2. (2.26)

At the elliptic fixed point it is clear thatH = 0.

The phase space trajectories are in general ellipses in phase space, withpmax =
√

2mH and
qmax =

√

2H/mω2. The area of the ellipse in phase space we denoteI and find

I = π × 2H

mω2
×
√

2mH =
2π

ω
H. (2.27)

Thus we find that here we have

ω = 2π
∂H

∂I
, (2.28)

which is a specific example of a general result that we will derive later.

2.4.3 Linear Repulsive Force

In this situation we have

F (q) = −aq, a > 0. (2.29)
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Figure 2.5: Phase portrait for a linearly repulsive force(m = a = 1) for H = 0,±1.

SinceF (q) = −∂V/∂q we can integrate to find

V (q) = −1

2
aq2. (2.30)

which is an inverted parabola. (Question for you: what aboutthe constant of integration?). Thus
the Hamiltonian is

H =
p2

2m
− 1

2
aq2. (2.31)

To plot the phase portrait, we rearrange Eq. 2.31 to obtain

2mH = p2 − m2γ2q2,
(

γ =
a

m

)

. (2.32)

This is the equation of a hyperbola.

Hamilton’s equations for the system are

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= aq (2.33)

Setting these to zero to finc the fixed points we find that there is only one and it is at the origin
(q, p) = (0, 0). This is a different type of fixed point compared to the one we found for the SHO
— it is known as ahyperbolicfixed point. Hyperbolic fixed points areunstable, as any small
perturbation from equilibrium will grow.

Any curve in phase space that meets a hyperbolic fixed point isknown as aseparatrix, as they
“separate” different types of motion. The determination ofseperatrices is an important part of
determining global dynamics.
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Solutions for this system can be found by the same method as for the SHO. We find

q̈ = γq, (2.34)

which has the general solution

q(t) = A1e
γt + A2e

−γt, (2.35)

with the constantsA1 andA2 determined by the boundary conditions. Correspondingly themo-
mentum is

p(t) = mγ(A1e
γt + A2e

−γt). (2.36)

A tutorial problem asked you to show that

H = −2aA1A2. (2.37)

Note that the motion is unbounded in general asq(t) andp(t) → ±∞.

2.4.4 Cubic potentials

V (q) =
1

2
mω2q2 − 1

3
Amq3, A > 0. (2.38)

Hamilton’s equations are

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −mω2q + Amq2, (2.39)

Fixed points

q̇ = p/m = 0 ⇒ p = 0, (2.40)

ṗ = mq(Aq − ω2) = 0 ⇒ q = 0, ω2/A. (2.41)

So there are two fixed points(q, p) = (0, 0), (ω2/A, 0).

To determine if they are elliptic or hyperbolic it is sufficient to analyse their local region in phase
space.

Fixed point (0, 0)

In the vicinity of q = 0 we have|q| ≪ 1, and so to a good approximation

H =
p2

2m
+

mω2

2
q2 (2.42)

This is the Hamiltonian for the SHO: and we have found alreadythat the fixed point for this type
of potential is a elliptic fixed point that is stable.
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Fixed point (ω2/A, 0)

The analysis for this point is a little more complicated, andwe will write q1 = ω2/A for short. We
consider a Taylor series ofṗ(q) about the pointq = q1.

Remember: a Taylor series of a functionf(x) about the pointx = a is

f(x) ≈ f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + . . . (2.43)

So we have

ṗ(q) = ṗ(q1) + (q − q1)
∂ṗ

∂q

∣

∣

∣

∣

q=q1

+
(q − q1)

2

2

∂2ṗ

∂q2

∣

∣

∣

∣

q=q1

+ . . . (2.44)

As we are carrying out the expansion about a fixed point, the first term is zero. Keeping the first
non-zero term, we find that

ṗ(q) = (q − q1)(−mω2 + 2Amq1). (2.45)

Substituting inq1 = ω2/A we have

ṗ(q) = mω2(q − q1), (2.46)

and combining this with the the equation forq̇ we finc that in the vicinity ofq = q1 we have the
equation of motion

q̈ = ω2(q − q1), (2.47)

with the general solution

q(t) = q1 + a1e
ωt + A2e

−ωt. (2.48)

So in generalq(t) increases exponentially with time and hence the solutions are unstable. As this
corresponds to the situation with the linear repulsive force, this means(ω2/A, 0) is a hyperbolic
fixed point.

This result could also have been found by linearising the Hamiltonian about the pointq = q1,
and finding that in this region the system corresponded to theHamiltonian for the linear repulsive
force.

The phase portrait for the system is shown in Fig. 2.6 The energy at each fixed point can be found
by substitution into the Hamiltonian. We find

For (q, p) = (0, 0) : H = 0, (2.49)

For (q, p) = (ω2/A, 0) : H =
mω2

2

ω4

A2
− 1

3
Am

ω6

A3
=

mω6

6A2
. (2.50)

Since all paths in phase space for this system have fixed values of H, this means the separatrices
are defined by the equation

mω6

6A2
=

p2

2m
+

1

2
mω2q2 − 1

3
Amq3. (2.51)
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Figure 2.6: Phase portrait for a cubic potential withm = ω = A = 1.

2.4.5 Summary

Through the previous four examples we have introduced the methods typically used in the analysis
of a conservative Hamiltonian system with one degree of freedom. For this course a complete
analysis can be summarised as follows:

1. Construct the HamiltonianH(q, p) where

H = T + V, p =
∂L
∂q̇

.

2. Write down Hamilton’s equations for the system

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
,

3. Find all of the fixed points(q, p) such that(q̇, ṗ) = (0, 0).

4. Determine the stability of the dynamics in the vicinity ofthe fixed point. If the coordinate
q(t) does not, in general, become large with increasing time thenit is stable, otherwise it is
unstable. For systems we consider stable points are elliptic fixed points, and unstable points
are hyperbolic fixed points.

5. For hyperbolic fixed points determine the equations of theseparatrices.

6. Plot the phase portrait.

7. Solve Hamilton’s equations.
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8. If you manage to complete all these steps, you deserve a beer for a job well done.

Aside: In the study of dynamical systems other types of fixed points are possible, in particular
stable or unstable “nodes”, “stars” and “spirals”. However, these do not occur for conservative
Hamiltonian systems.

2.5 Periodic motion

There are two types of periodic motion that can occur in Hamiltonian dynamics. —libration and
rotation.

2.5.1 Libration

Libration is closed motion, where the system retraces its steps periodically so thatq andp are
periodic functions of time with the same frequency. The name“libration” comes from astronomy.
A pendulum in a clock is a classical example, and the trajectories are closed loops in a phase
portrait.

2.5.2 Rotation

Herep is some periodic function ofq with a periodq0, butq is not a periodic function of time. The
most familiar example is rotation of a rigid body, withq as the angle of rotation andq0 = 2π.

2.5.3 Free particle rotating in a plane

Imagine a particle of massm attached to one end of a rigid, massless rod of lengtha that is able
to pivot about the other end that is fixed. The configuration space of the system can be represented
by the angleφ that it makes to the vertical axis as shown in Fig. 2.7. This isa simple system that
can display rotational dynamics, for which we already know

Moment of inertia: J = ma2, (2.52)

Angular momentum: ℓ = |ℓ| = Jφ̇, (2.53)

Lagrangian: L = T =
1

2
Jφ̇2. (2.54)

For the generalised coordinateφ the generalised momentum is∂L/∂φ̇ = Jφ̇, which is simply the
angular momentumℓ as given above. Thus we have

H =
ℓ2

2J
. (2.55)
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Figure 2.7: Configuration for a free particle rotating in a plane. The configuration is the same for
a pendulum, with the addition of the gravitational forcemg acting downwards.

Hamilton’s equations

ℓ̇ = −∂H

∂φ
= 0 ⇒ ℓ is conserved. (2.56)

φ̇ =
∂H

∂ℓ
=

ℓ

J
, (2.57)

which is consistent with what we wrote down above. Asℓ is constant, Eq. (2.57) can be solved to
give

φ(t) = φ(t0) +
ℓ

J
(t − t0). (2.58)

2.5.4 Pendulum

The configuration for the pendulum is again as in Fig. 2.7, butwith the graviational force acting
on the mass in the downwards direction. The gravitational potential is in this case given by

V (φ) = −mga cos φ, (2.59)

Thus the Lagrangian is

L =
1

2
Jφ̇2 + mga cos φ (2.60)

The conjugate momentum is the same as in the previous sectionand so the Hamiltonian is

H(φ, ℓ) =
ℓ2

2J
− mga cos φ. (2.61)

Hamilton’s equations

ℓ̇ = −∂H

∂φ
= −mga sin φ, (2.62)

φ̇ =
∂H

∂ℓ
=

ℓ

J
. (2.63)
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The fixed points are where(φ̇, ℓ̇ = (0, 0), and so we have

φ̇ = 0 when ℓ = 0, (2.64)

ℓ̇ = 0 when φ = 0,±π,±2π, . . . , (2.65)

however of courseφ is periodic and so there are only two physically distinct fixed points(φ, ℓ) =
(0, 0) and(π, 0). These correspond to the pendulum hanging down and hanging up.

Intuitively you might guess that(0, 0) is a stable fixed point and that(π, 0) is unstable. To show
this mathematically we need only consider motion in the vicinity of the fixed point.

Fixed point (0, 0)

For smallφ we can approximatesin φ ≈ φ, and so Eq. (2.63) becomes

ℓ̇ = −mgaφ. (2.66)

Differentiating Eq. (2.63) with respect to time, and substituting in Eq. (2.66) gives

φ̈ = −mga

J
φ, (2.67)

which has the general solution of the SHO

φ(t) = A cos(ω0t + δ), ω0 =
(

mga

J

)1/2

=

√

g

a
, (2.68)

and again the constantsA andδ are determined by the boundary conditions. As the solution is the
same as for the SHO then this must be a stable elliptic fixed point.

Fixed point (π, 0)

In the vicinity ofφ = π, we have

sin(φ) = sin(π − φ) ≈ π − φ, (2.69)

so Eq. (2.63) becomes

ℓ̇ = mga(π − φ). (2.70)

Differentiating Eq. (2.63) with respect to time, and substituting in Eq. (2.70) gives

φ̈ =
mga

J
(φ − π). (2.71)

If we make the change of coordinateγ = φ − π then Eq. (2.71) becomes

γ̈ = ω0γ, (2.72)
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Figure 2.8: Phase portrait for the pendulum. The separatrices are indicated by the dashed lines.

that has the general solution

γ(t) = A1e
ω0t + A2e

−ω0t. (2.73)

Thus we have

φ(t) = π + A1e
ω0t + A2e

−ω0t. (2.74)

This is the same situation as we had for the repulsive linear force: this is a hyperbolic fixed point
and is unstable.

Phase portrait

The phase portrait for the pendulum is shown in Fig. 2.8. The separatrix divides the phase space
into three types of motion

1. Above the upper separatrix the pendulum rotates about itspivot point in an anticlockwise
direction.

2. Below the lower separatrix the pendulum rotates about itspivot point in an clockwise direc-
tion.

3. Between the separatrices the pendulum oscillates (librates) back and forth.

Note that the pendulum is NOT the simple harmonic oscillatorexcept for the limiting case where
the amplitude of oscilation is very small and hence|φ| ≪ 1 (you should check this!)
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Separatrices

The energy of the system on the separatrices is given by substituting the coordinates of the hyper-
bolic fixed point(φ, ℓ) = (π, 0) back into the expression for the Hamiltonian Eq. (2.61). We find
that

H(π, 0) = mga, (2.75)

which would have been expected: this is the gravitational potential energy at this point.

Thus, when the energy of the system exceedsmga the the pendulum rotates and the motion is of
type (1) or (2) described earlier. If the energy is less thatmga then the motion is of type (3).

The general solution of Hamilton’s equations for the pendulum cannot be expressed in terms of
simple functions. However, they can be for the special case of the separatrices, where from the
Hamiltonian Eq. (2.61) we have

mga =
ℓ2

2J
− mga cos φ, (2.76)

⇒ ℓ = ±[2Jmga(1 + cos φ)]1/2. (2.77)

However, using the double angle formulacos 2θ = cos2 θ − sin2 θ we can have

(1 + cos φ)1/2 =
√

2 cos(φ/2), (2.78)

and so

ℓ = ±2(Jmga)1/2 cos(φ/2). (2.79)

Substituting Eq. (2.79) into Eq. (2.64) forφ̇ gives the differential equation

φ̇ = ±2ω0 cos(φ/2). (2.80)

and made use of the definition ofω0 from Eq. (2.68). Equation (2.80) is a seperable differential
equation of first order and can be written

dφ

cos(φ/2)
= ±2ω0dt. (2.81)

Integrating both sides with the help of the result from tables that
∫ dz

cos z
= ln[tan(π/4 + z/2)], (2.82)

gives

2 ln[tan(π/4 + φ/4)] = ±2ω0t + C, (2.83)

whereC is a constant that depends on the boundary conditions. If we chooseφ(t = 0) = 0 then
on rearranging Eq. (2.83) we have

φ(t) = 4 tan−1[exp(±ω0t)] − π. (2.84)
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Figure 2.9: The solutions forφ(t) andℓ(t) for the pendulum on the separatrix

Physically this corresponds to travelling from the bottom of the separatrix to the hyperbolic point

We can now find the solution for the momentum. From Eq. (2.63) we have

ℓ(t) = Jφ̇(t). (2.85)

Using the chain rule on Eq. (2.84) and

d

dz
tan−1 z =

1

1 + z2
, (2.86)

we find that

ℓ(t) = ± 2Jω0

cosh(ω0t)
. (2.87)

Note that ast → ∞ thenℓ(t) → 0. These solutions are shown in Fig 2.9.

In the next section of the notes we will find the general solution of the pendulum using action-angle
variables.
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