Chapter 3

Canonical transformations

3.1 Volume preserving flows

The concept of the conservation of volume in phase spaceysivgortant in Hamiltonian me-
chanics. For a system witlhhdegrees of freedom, volume is defined as

V= / dq dp, (3.1)
Q

where(? is the integration volume. Thus for a system with one degfdesedom, the volume is
an “area” with unitscgm? s~ = J s.

Liouville’s theorem: The volume of a phase space flow is conserved for Hamiltonjstess.
We can show this explicity for a 1D conservative Hamiltonsgstem.

Consider a small rectangular region bounded by two pathsasebkpace, with energies given by
H andH + 0 H respectively as depicted in Fig. 3.1. The magnitude of the ¥fiector field is given

by
2 271/2
| — ‘ <8H 8H> ' _ [(%f;f) n (%Z) ] — |VH], (3.2)

So the length: of the aread is simply
=~ |v|dt = |VH]|ot. (3.3)
As V H is perpendicular to curves of constdtitthen it follows that

OH
v~ (3.4)
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Figure 3.1: Volume preserving flows in phase space.

Thus the ared is given by
0H
A=xy=|VH|dt xy=—0t xy=09Hdt. (3.5)
Y

So what this means is that fany point along the two trajectories, the area will be giverli ét,
and these quantities are chosen by us. Thus the area of thergles conserved as it moves through
phase space.

This result also holds of non-conservative Hamiltoniartays, and for any number of degrees of
freedom.

3.2 Change of coordinates

There are many choices of coordindates to represent a partielamiltonian system. A good
choice will

1. Reduce Hamilton’s eugations to the simplest possibla .for

2. Preserve the integrity of Hamilton’s equations.

So given a system described by coordinatesidp with HamiltonianH (¢, p) where

. _ 0H(q,p) _OH(q,p)
q 9 9

p= (3.6)
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Figure 3.2: Coordinate transform of ardg, in (¢, p) to areads in (Q, P).

we wish to find a transformatiofy, p) — (Q, P) that simplifies the analysis of the system and

also ensures that

0H(Q, P)
oP

0H(Q, P)
~ e

Such a transformation is calleccanonical transformation

Q= P= H(q,p) = H(Q. P). (3.7)

To determine if a transformation is canonical we exploit #nea preserving nature of a Hamil-
tonian system. Consider a regidhwith areaAr in (¢, p) space. Suppose it is transformed to a
regionS with areaAg in the (Q, P) system, as depicted in Fig. 3.2. The area of the reglas

Ar = /qu dp, (3.8)
and the area of regiofi is
Ag = / dQ dP, (3.9)
S

In general there is no reason to assume thatand A5 will be the same. In fact, it can be shown
that

9(Q, P)
dQdP = | dqd : 3.10
/S Q /R 190 500 ) (3.10)
Where%(gzg) is known as the Jacobian of the transformation. It is defined b
AQ.P) _ | % % | _0Qor oQop 3.1
9(q,p) & % dq dp  Op 9q '
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Example

We again consider a freely rotating mass. We may choose owf ggeneralised coordinates as
(q¢,p) whereq is the distance around the circumference of the pivot fronxedfipoint, and =

mq. An alternative set of coordinates(ig, /) as considered in Section 2.5.3. The transformation
between the coordinates is

¢ = g, (= ma%b = maq = ap. (3.12)
a
The Jacobian is
9¢  9¢ 1/a O 1
(6, 0) _ % % | _ / = —xa—0x0 = 1. (3.13)
9(q,p) % o 0 a “

Thus the areas in phase space are identical in the two cabedsgstems.

An important result of classical mechanics is that for a flowbe area preserving then the area
must be independent of the coordinate system. This can bpauiip expressed as

{Q, P}(qp) =L (3.14)

where we have introduced tiR®isson brackemotation.

Poisson brackets

For any two functions (¢, p) andg(q, p) the Poisson bracket is defined as

{f.9Yan =575 —5-7- (3.15)

Another important result is that if the Jacobian of a transi@tion is unity then the Poisson bracket
of any two functionsf andg is also independent of the representation. That is

0@, P) _
d(q, p)

Proof of this fact is left to an exercise.

= {f:9taw = {1 9}a@p): (3.16)

The Poisson bracket also provides a means of determing taperdlence. For example, we see
that

_ 9q0H  9q0H 0H 0H _ 0H

H S S Sl BN — = — = 3.17
{a, }(qyp) dq Op  dp g X dp 0x Jq Jq 7 ( )

where we have used the fact thaind p are independent variables and Hamilton’s equations.
Similarly it can be shown that

p={p, H}. (3.18)
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For any functionf (g, p, t) it can be shown that

: 0

f=trmy 2 319)
and you are asked to prove this in your tutorial sheet.

So far we have shown that a flow is area preserving if

{Qa P}(q,p) =L (3.20)

We now show that if Eq. (3.20) is satisfied then the transfoiong ¢, p) — (Q, P) is canonical
i.e. Hamilton’s equations remain valid under the transfation according to Eqg. (3.7).

Beginning withQ, we have

0Q .  0Q .

Qg,p) = 200" B3P (3.21)
C0QoQ 0Q ( 0H
__%%+%<aﬂ. (3.22)

As we haveH = H, then it follows that
OH OHOQ OHOP

" 9qoy op oy 829
OH  OHOQ 0HOP
90 T 90 09q " ap g’ (3.24)

Subsituting Egs! (3.23) and (3.24) back into Eqg. (3.22)gjive

oy — 0Q(0HOQ  0HOPY 00 (0H0Q  OHOP
Qlg,p) = dq <0Q op + P (‘)p> op (8@ dq + oP 6(])7 (3.25)
_ O0H (0Q0Q _0Q0Q\  0H (0QOP 0QOP (3.26)
—9Q\ogap pog) P \ogap opag)’ '
oH oH
= aip{QaP}(q,p) = OP’ (3.27)

where in the final line we have made use of Eq. (8.20). Simyiiadan be shown that (see tutorial
sheet)
- OH
P = ——.
(¢:p) 20

Thus in summary, we have shown tha{d, P}, = 1 then the transformatio(y, p) — (Q, P)
preserves Hamilton’s equations and is thus known as a cealdransformation.

(3.28)

Aside: A lot of the formalism of classical Hamiltonian mechanicsrigss through to quantum
mechanics. In particular, the Poisson bracket is replagethé commutator. When it comes to
considering the dynamics of an operatb(in what is called the Heisenberg picture), we find that

(3.29)



whereH is the Hamiltonian operator for the system, and we have tfiaitien of the commutator
IS

[A,H] = AH — HA. (3.30)
This is equivalent to the classical expression

dA 0A
— ={AH —. 31

where nowA and H are functions on phase space dids the Hamiltonian of the system.

3.3 Action-angle variables

One of the main uses of a canonical transformation is to foamsto a set of coordinates for which
the equations of motion take on a particularly simple form.

For example, suppose we find a transformatigm) — (Q, P) such that

i (3.32)

This has two important consequences:

1. SinceP = —9H /0Q thenP is a constant of the motion, aridl = H (P) only.

2. SinceQ) = 0H/OP, thenQ = constant a$)H /dP is a function of P alone. Thus the
solution for@ has the simple form

Qt) = art + as. (3.33)

for some constanig, anda, that are determined by the boundary conditions.

Theaction-anglevariables(I, #) are designed specifically to be a transformation of this.tyijey
are particularly powerful for application to systems daphg periodic motion.

Consider a conservative system with Hamiltonian

H = Hgp =2 +Vv(. (3.34)

2m
We have already shown that is a constant of the motion. This can be rearranged to give
p(g, H) = £[2m(H — V(q)]'/? (3.35)

where you should think off as a constant value that defined a particular trajectory.sidgreofp
depends on the region of phase space the solution is in.
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We now define the action variable

_ 1 7? pdg (3.36)
2

where the integral is over a complete period of motion. Frams.E3.35) and (3.36) we can see
that/ is a function ofH alonei.e.l = I(H). SinceH is a constant of motion, then so too will

Inverting the relationship, we can also see tHawill be a function of] alone i.e.H = H(I). If
we defin the generalised coordinate conjugaté as¢, then from Hamilton’s equations we have

9:‘lew = ) =wt+, (3.37)

for some (as yet undetermined) constantndo.

Note that the actiord is simply the aread enclosed by the trajectory with the particular value of
H divided by27. Thus, we can equivalently write

1 1 .
- %./Adqdp = gf{p(%H)dq = %j{Q(P,H)dP- (3.38)

To determing and its connection to the parameters of periodic motion idenghe functioniV’
known as Hamilton’s characteristic function

q
W= [p(I,q)da. (3.39)
0
To determing) we need only impose the area preserving condition of a caabmmansformation
Area 6W — / Yopdg = 6l6. (3.40)
0
As the area is preserved (see Fig. 3.3)
ow
W =616 = 0= A (3.41)
le.
0 ra
0= 2 | p(l.q)da (3.42)

To obtain a physical interpretation 8ft), consider the change thover one period of motion

a0 0PW ow
Af = —dq = dg = ¢ —d 3.43
aq % aq01 1 g 10 (3.43)
where we have used Eqg. (3/41) and the fact fhatconstant during the motion. From the definition
of the characteristic function Eg. (3.39) we can see that

—dq - f pdq = 2rl. (3.44)
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Figure 3.3: Determination of the varialden action-angle coordinates

So this means that over the period of motibchanges byr. But from Eq. [(3.37) this means that
w must be2r multiplied by the inverse of the periofl. That is,w is the frequency of periodic

motion

o _ oM

T oI
Thus, one of the advantages of the action-angle coordigatera becomes cleawithout solving
the equations of motion we can find the angular frequency afibtgon.

(3.45)

w =

Furthermore, sincé changes byr through one period of motion then for any other set of coordi-
nates that we may wish to use to describe the systemdg/gt follows that

o0 +2m, 1) = ¢(0,0),  £(0+2m,1) = £(0, 0). (3.46)

Example: simple harmonic oscillator

Hamiltonian is

1
=2 + —mw?¢?, (3.47)
2m 2
and so
p=+(2mH — m2*¢*)2. (3.48)
The action variable is
1
1= o fpdq, (3.49)
1 1 —q1
= 5 {/q (2mH — m2w2q2)1/2dq+/ ! —(2mH — m2W¢®)Y?dq| . (3.50)
T V=@ q
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However, because
/a @) = — / flz)da, (3.51)
then Eq./(3.50) becomes
;= 1 / " omH — m?w?¢?)2dq. (3.52)
T J-q

The limit of integrationg; is a turning point of the motion whege= 0. So from the Hamiltonian
Eq. (3.48) we see that

2H
2

@ (3.53)

mw

If we make the variable substitution

2H 2H
q= 5 Sin ¢ = dq = \| — cos ¢dg, (3.54)
mw mw

then Eqg./(3.52) becomes

1 /2 2H 2 [ oH
I = - / <2mH—m2w2sin2 ¢> cos ¢ do, (3.55)

T J—n/2 mw? mw?
2H /2

= — cos® ¢ do, (3.56)
™ —7/2
H

—— (3.57)
w

where we have used the result that

/2 7r
2 40
/ cos q§—2.

—7/2

The frequency of oscillation is given Y /01 and thus it is clear that represents the frequency
of oscillation as before. Also

ot = wt + 0, (3.58)

whereé is determined by the boundary conditions. Thus we have ddive SHO in the action-
angle coordinate system.

3.4 Application to the pendulum

We now use action-angle coordinates to find the generalisokifor the dynamics of the pendu-
lum. Remember the Hamiltonian is
2

H(p,l) = 2€J — mga cos ¢. (3.59)
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We define a new parameter

2 g\ /2
A= (wl i ) , w1 = VJwy = \/myga. (3.60)

2
2w7

whereH represents the energy of a particular trajectory. Noteftioat Eq. (2.75)07 is the energy
of the system on the separatrix. It follows that

A = 1, = on the separatrices,
A < 1, = libration (within separatrices),
A > 1, = rotation (outside separatrices).

We have already found the solution for motion on the sepaesr We now consider motion inside
and outside.

Librations: A <1

We begin by calculating the action

1
I(H) = 5 f pda (361
For the pendulum the generalised coordinate and momenteimard/ and therefore
1 ¢>1 7¢)1
M= 5 </—¢1 g [ 0 d¢> ’ (3.62)
— 1 o1 5 —¢1 5
= 5 </_¢1 \/QJ(H—i-M Ccos ¢) d¢+/¢1 \/2J(H+w1 cos @) dgzb) , (3.63)

where we have divided the integral over a complete periaaltind integrals for whichd > 0 and
¢ < 0. Due to the symmetry of the integrals this reduces to

I(H) = 71T /_ Z V2J(H + w3 cos ) do. (3.64)

The limit of integratione; is the angle at the turning point of the motion, for which= 0. By
making this substituion into the Hamiltonian we find that

¢ = cos ! <_lj> = 2sin" ' A. (3.65)
wi
The evaluation of the integral is rather lengthy, and indt@a simply quote the result
I(H) = 8‘;“’0 [B(A%) — (1-A)K(AY)], A<, (3.66)
where
K(m) = | ™21~ msin? 0)12d0), (3.67)
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Figure 3.4: Complete elliptic integrals of the fistm) and seconds(m) kind.

is a complete elliptic integral of the first kind, and
w/2
E(m) :/ (1 — msin? 6)V/2dp, (3.68)
0

is a complete elliptic integral of the second kind. (See:Htt@athworld.wolfram.com for a handy
reference to special functions such as these.) These dmsciire plotted in Fig. 3.4.

Earlier we showed that the angular frequency of motias given by

w =

(3.69)

Using the properties of elliptic integrals we can diffeiate Eq.|(3.66) with respect t to find

™  Wo

H) = — A <1. 3.70
This result is plotted in Fig. 3.5.
Rotations: A > 1
As before we have
1 1 g~
IH:—fd:— 0do. 3.71
(H) = grprda =g ) tdo (3.71)

where now the pendulum explores all values¢of We shall assume that the motion is in the
anticlockwise direction, and o> 0. Thus

I(H) = ;ﬂ | [ 7; V2J(H +w? cos ) do. (3.72)
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Figure 3.5: Angular frequency of a pendulum as a functioN @ ).

Using the fact that cosine is an even functie® ¢ = cos(—¢) and the resultos¢ = 1 —
2sin?(¢/2), we can write Eq! (3.72) as

I(H) = 71T /O " [2J(H +w? - 207 sin? /2)] 7 do, (3.73)
7 - 9 1/2
_ \/j_(wa)l/? /0 [1— Hzilw% sin’ 2] d¢ (3.74)

Making the change of variabl¢ = ¢/2 we find

2J x 2w? (H 2\ 1/2 /2 1 1/2
() = v ] ( +“’1> X9 / {1 — o sin? gb’] d¢,  (3.75)
0

T 2w?

- 4“’“/7AE(1 JA?). (3.76)

™

We find the angular frequency again according to Eq. (3.66 il
_ Twy A

) =7 Ry

Combining this result with the frequency far < 1 from Eq. (3.70) we get Fig. 3.5. As well as
producing this plot on a computer, we can get it from the segipansion of< (k)

A>1. (3.77)

™ 1\2 1-3\2 , /1-3-5\% ,
K(m)—2[1+<2) m+(2_4>m+<2'4‘6>m+... : (3.78)
and so we se& (m) — m/2 asm — 0. Thus we have the three limiting cases for the frequency
wA — wy as A — 0,
wA — 0 as A—1, (3.79)
wA — 2Awy as A — 0.

32



You should try to derive these results yourself.

Thus, we have exploited one of the advantages of actioreaswirdinates: we have found the
angular frequency of the pendulum without actually solvimg equations of motion.

Full solution: ¢(t)

We can now work out the full solution to Hamilton’s equatidios ¢(¢) and ¢(t). We apply
Eq. (3.42) to the pendulum to find

o [0
0(0) = 57 || U6 H)do (3.80)
If we solve this forg(#, H) and substitute in
0(t) = w(H)t + 6(0), (3.81)
then the solutions are
o(t) { ggﬁf—_ll E&%ﬁﬁ }k?)}, Ao (3.82)

where we have taken the boundary condition tat® = 0. Here we have introduced tldacobi
elliptic functionsdn and sn.

Aside: Jacobi elliptic functions

Adapted from http://mathworld.wolfram.com/JacobiHilgk-unctions.html (11/10/2006):

The Jacobi elliptic functions are standard forms of eltiftinctions. The three basic functions are
denoted cn(, m), dn(u, m), and sng, m), wherem = k? andk is known as the elliptic modulus.
They arise from the inversion of the elliptic integral of thst kind

(3.83)

u =

¢ dt
Kom) = || ey
where0 < m < 1, and¢ = am(u, m) = am(u) is the Jacobi amplitude, giving= K~ !(u,m) =
am(u, m).
From this, it follows that
sing = sin(amu,m)) = sn(u,m), (3.84)
cos¢p = cos(@amu,m)) = cn(u,m), (3.85)
J1—k2sin¢ = /1 —msin2(@m(u,m)) == dn(u,m). (3.86)
These functions are doubly periodic generalizations oftigpnometric functions satisfying
sn(u, 0) = sinu, cn(u, 0) = cos u, dn(u,0) = 1. (3.87)
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Figure 3.6: Solutions for the pendulum. ) ) and (b)/(t) for A = 0.2 (solid), A = 0.6 (dashed),
andA = 0.99 (dotted). (c)¢(t) and (d)¢(t) for A = 1 (solid), A = 1.02 (dashed), andh = 1.2

(dotted).
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Full solution: £(t)

With the boundary condition(0) = 0, then we can see that@at 0

*(0) _Ho

H = — W2 (3.88)

oy YT Tag
Inserting this into the definition of from Eq. (3.60) we have

2 2 2
A2 wi 4+ £(0)%/2J w17 (3.89)

2
2w3

= 0) = £2VJAw. (3.90)

Using this as the boundary condition we can then show tharigelar momentum is

2wy J A en(wot, A?)], A<,

“) = {2w0JAdn(w0t,1/A2)], A1 (3.91)

This can be derived by, for example, substituting the sofukg. (3.82) into the Hamiltonian and
solving for/(t). Examples of the solutions are shown in Fig. 3.6.

Limiting cases

The Jacobi elliptic functions can be written in terms of iitBrexpansions which allow us to find
simple expressions fa#(¢) and/(¢) in limiting cases.

3 5

snu,m) = u—(1+m)%+(1+14m+m2)%+..., (3.92)
U2 . U4 . u6
cn(u,m) = 1— o T (1+4m)— — (1 +44m + 16m?)a +..., (3.93)
. L L
dn(u,m) = 1-— moy +m(4+ m)E —m(16 + 44m + m2)a +.... (3.94)
Case:A <1
In this limit we find that
u2 U4 ’LL6
Cn(u,A—>0):1—§+J—a+...:cosu, (3.95)
and so we find for the angular momentum
0(t) = 2wy J A cos(wpt), (3.96)

which is the same as the SHO solution in the limit of small ltsodns.
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Case:A =1

Here we find
u? u? u® 1
=1) = 1—— 45— —61— +... = 3.97
on(u, A =1) L 21 +54! 61 6! * coshu’ ( )
and so we have
2w0J
() = ——F—— 3.98
(t) cosh(wot)’ (3.98)
as we have already derived for the separatrix.
Case:A > 1
Here we have
1 u? 1 u? 1 b
2 ~ ~
Ignoring the terms of Q(/A?) and higher we have
2
(t) = QX’J, (3.100)

which is constant rotation as we might have expected.
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