
Chapter 3

Canonical transformations

3.1 Volume preserving flows

The concept of the conservation of volume in phase space is very important in Hamiltonian me-
chanics. For a system withn degrees of freedom, volume is defined as

V =
∫

Ω
dq dp, (3.1)

whereΩ is the integration volume. Thus for a system with one degree of freedom, the volume is
an “area” with unitskg m2 s−1 ≡ J s.

Liouville’s theorem: The volume of a phase space flow is conserved for Hamiltonian systems.

We can show this explicity for a 1D conservative Hamiltoniansystem.

Consider a small rectangular region bounded by two paths in phase space, with energies given by
H andH + δH respectively as depicted in Fig. 3.1. The magnitude of the flow vector field is given
by
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= |∇H|, (3.2)

So the lengthx of the areaA is simply

x ≈ |v| δt = |∇H| δt. (3.3)

As∇H is perpendicular to curves of constantH then it follows that

|∇H| ≈ δH

y
. (3.4)

21



q

p

H+δH

H

x

y

Figure 3.1: Volume preserving flows in phase space.

Thus the areaA is given by

A = xy = |∇H| δt × y =
δH

y
δt × y = δH δt. (3.5)

So what this means is that foranypoint along the two trajectories, the area will be given byδH δt,
and these quantities are chosen by us. Thus the area of the element is conserved as it moves through
phase space.

This result also holds of non-conservative Hamiltonian systems, and for any number of degrees of
freedom.

3.2 Change of coordinates

There are many choices of coordindates to represent a particular Hamiltonian system. A good
choice will

1. Reduce Hamilton’s euqations to the simplest possible form.

2. Preserve the integrity of Hamilton’s equations.

So given a system described by coordinatesq andp with HamiltonianH(q, p) where

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
, (3.6)
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Figure 3.2: Coordinate transform of areaAR in (q, p) to areaAS in (Q,P ).

we wish to find a transformation(q, p) → (Q,P ) that simplifies the analysis of the system and
also ensures that

Q̇ =
∂H̄(Q,P )

∂P
, Ṗ = −∂H̄(Q,P )

∂Q
, H(q, p) = H̄(Q,P ). (3.7)

Such a transformation is called acanonical transformation.

To determine if a transformation is canonical we exploit thearea preserving nature of a Hamil-
tonian system. Consider a regionR with areaAR in (q, p) space. Suppose it is transformed to a
regionS with areaAS in the(Q,P ) system, as depicted in Fig. 3.2. The area of the regionR is

AR =
∫

R
dq dp, (3.8)

and the area of regionS is

AS =
∫

S
dQdP, (3.9)

In general there is no reason to assume thatAR andAS will be the same. In fact, it can be shown
that

∫

S
dQdP =

∫

R
dq dp

∂(Q,P )

∂(q, p)
. (3.10)

where∂(Q,P )
∂(q,p)

is known as the Jacobian of the transformation. It is defined by
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. (3.11)
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Example

We again consider a freely rotating mass. We may choose our set of generalised coordinates as
(q, p) whereq is the distance around the circumference of the pivot from a fixed point, andp =
mq̇. An alternative set of coordinates is(φ, ℓ) as considered in Section 2.5.3. The transformation
between the coordinates is

φ =
q

a
, ℓ = ma2φ̇ = maq̇ = ap. (3.12)

The Jacobian is

∂(φ, ℓ)

∂(q, p)
=
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∣
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=
1

a
× a − 0 × 0 = 1. (3.13)

Thus the areas in phase space are identical in the two coordinate systems.

An important result of classical mechanics is that for a flow to be area preserving then the area
must be independent of the coordinate system. This can be compactly expressed as

{Q,P}(q,p) = 1. (3.14)

where we have introduced thePoisson bracketnotation.

Poisson brackets

For any two functionsf(q, p) andg(q, p) the Poisson bracket is defined as

{f, g}(q,p) =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (3.15)

Another important result is that if the Jacobian of a transformation is unity then the Poisson bracket
of any two functionsf andg is also independent of the representation. That is

∂(Q,P )

∂(q, p)
= 1 ⇒ {f, g}(q,p) = {f, g}(Q,P ). (3.16)

Proof of this fact is left to an exercise.

The Poisson bracket also provides a means of determing time dependence. For example, we see
that

{q,H}(q,p) =
∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= 1 × ∂H

∂p
− 0 × ∂H

∂q
=

∂H

∂q
= q̇, (3.17)

where we have used the fact thatq andp are independent variables and Hamilton’s equations.
Similarly it can be shown that

ṗ = {p,H}. (3.18)

24



For any functionf(q, p, t) it can be shown that

ḟ = {f,H} +
∂f

∂t
, (3.19)

and you are asked to prove this in your tutorial sheet.

So far we have shown that a flow is area preserving if

{Q,P}(q,p) = 1. (3.20)

We now show that if Eq. (3.20) is satisfied then the transformation (q, p) → (Q,P ) is canonical
i.e. Hamilton’s equations remain valid under the transformation according to Eq. (3.7).

Beginning withQ̇, we have

Q̇(q, p) =
∂Q

∂q
q̇ +

∂Q

∂p
ṗ, (3.21)

=
∂Q

∂q

∂Q

∂q
+

∂Q

∂p

(

−∂H

∂q

)

. (3.22)

As we haveH = H̄, then it follows that

∂H

∂p
=

∂H̄

∂Q

∂Q

∂p
+

∂H̄

∂P

∂P

∂p
, (3.23)

∂H

∂q
=

∂H̄

∂Q

∂Q

∂q
+

∂H̄

∂P

∂P

∂q
, (3.24)

Subsituting Eqs. (3.23) and (3.24) back into Eq. (3.22) gives

Q̇(q, p) =
∂Q

∂q

(

∂H̄

∂Q

∂Q

∂p
+

∂H̄
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∂P

∂p

)
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∂H̄

∂P
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∂q

)

, (3.25)

=
∂H̄

∂Q

(

∂Q

∂q

∂Q

∂p
− ∂Q

∂p

∂Q

∂q

)

+
∂H̄

∂P

(

∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

)

, (3.26)

=
∂H̄

∂P
{Q,P}(q,p) =

∂H̄

∂P
, (3.27)

where in the final line we have made use of Eq. (3.20). Similarly it can be shown that (see tutorial
sheet)

Ṗ (q, p) = −∂H̄

∂Q
. (3.28)

Thus in summary, we have shown that if{Q,P}(q,p) = 1 then the transformation(q, p) → (Q,P )
preserves Hamilton’s equations and is thus known as a canonical transformation.

Aside: A lot of the formalism of classical Hamiltonian mechanics carries through to quantum
mechanics. In particular, the Poisson bracket is replaced by the commutator. When it comes to
considering the dynamics of an operatorÂ (in what is called the Heisenberg picture), we find that

dÂ

dt
= [Â, Ĥ] +

∂Â

∂t
, (3.29)
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whereĤ is the Hamiltonian operator for the system, and we have the definition of the commutator
is

[Â, Ĥ] = ÂĤ − ĤÂ. (3.30)

This is equivalent to the classical expression

dA

dt
= {A,H} +

∂A

∂t
. (3.31)

where nowA andH are functions on phase space andH is the Hamiltonian of the system.

3.3 Action-angle variables

One of the main uses of a canonical transformation is to transform to a set of coordinates for which
the equations of motion take on a particularly simple form.

For example, suppose we find a transformation(q, p) → (Q,P ) such that

∂H̄

∂Q
= 0. (3.32)

This has two important consequences:

1. SinceṖ = −∂H̄/∂Q thenP is a constant of the motion, and̄H = H̄(P ) only.

2. SinceQ̇ = ∂H̄/∂P , then Q̇ = constant as∂H̄/∂P is a function ofP alone. Thus the
solution forQ has the simple form

Q(t) = a1t + a2. (3.33)

for some constantsa1 anda2 that are determined by the boundary conditions.

Theaction-anglevariables(I, θ) are designed specifically to be a transformation of this type. They
are particularly powerful for application to systems displaying periodic motion.

Consider a conservative system with Hamiltonian

H = H(q, p) =
p2

2m
+ V (q). (3.34)

We have already shown thatH is a constant of the motion. This can be rearranged to give

p(q,H) = ±[2m(H − V (q)]1/2 (3.35)

where you should think ofH as a constant value that defined a particular trajectory. Thesign ofp
depends on the region of phase space the solution is in.
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We now define the action variable

I =
1

2π

∮

p dq (3.36)

where the integral is over a complete period of motion. From Eqs. (3.35) and (3.36) we can see
thatI is a function ofH alone i.e.I = I(H). SinceH is a constant of motion, then so too willI.

Inverting the relationship, we can also see thatH will be a function ofI alone i.e.H = H(I). If
we defin the generalised coordinate conjugate toI asθ, then from Hamilton’s equations we have

θ̇ =
∂H

∂I
= ω ⇒ θ(t) = ωt + δ, (3.37)

for some (as yet undetermined) constantsω andδ.

Note that the actionI is simply the areaA enclosed by the trajectory with the particular value of
H divided by2π. Thus, we can equivalently write

I =
1

2π

∫

A
dq dp =

1

2π

∮

p(q,H) dq =
1

2π

∮

q(p,H) dp. (3.38)

To determineθ and its connection to the parameters of periodic motion consider the functionW
known as Hamilton’s characteristic function

W =
∫ q

0
p(I, q) dq. (3.39)

To determineθ we need only impose the area preserving condition of a canonical transformation

Area δW =
∫ q

0
δp dq = δI θ. (3.40)

As the area is preserved (see Fig. 3.3)

δW = δI θ ⇒ θ =
∂W

∂I
, (3.41)

i.e.

θ =
∂

∂I

∫ q

0
p(I, q) dq. (3.42)

To obtain a physical interpretation ofθ(t), consider the change inθ over one period of motion

∆θ =
∮ ∂θ

∂q
dq =

∮ ∂2W

∂q∂I
dq =

∮ ∂W

∂q
dq, (3.43)

where we have used Eq. (3.41) and the fact thatI is constant during the motion. From the definition
of the characteristic function Eq. (3.39) we can see that

∮ ∂W

∂q
dq =

∮

p dq = 2πI. (3.44)
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Figure 3.3: Determination of the variableθ in action-angle coordinates

So this means that over the period of motionθ changes by2π. But from Eq. (3.37) this means that
ω must be2π multiplied by the inverse of the periodT . That is,ω is the frequency of periodic
motion

ω =
2π

T
=

∂H

∂I
. (3.45)

Thus, one of the advantages of the action-angle coordinate system becomes clear:without solving
the equations of motion we can find the angular frequency of themotion.

Furthermore, sinceθ changes by2π through one period of motion then for any other set of coordi-
nates that we may wish to use to describe the system (e.g.φ, ℓ it follows that

φ(θ + 2π, I) = φ(θ, ℓ), ℓ(θ + 2π, I) = ℓ(θ, ℓ). (3.46)

Example: simple harmonic oscillator

Hamiltonian is

H =
p2

2m
+

1

2
mω2q2, (3.47)

and so

p = ±(2mH − m2ω2q2)1/2. (3.48)

The action variable is

I =
1

2π

∮

p dq, (3.49)

=
1

2π

[
∫ q1

−q1

(2mH − m2ω2q2)1/2dq +
∫

−q1

q1

−(2mH − m2ω2q2)1/2dq
]

. (3.50)
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However, because
∫

−a

a
f(x)dx = −

∫ a

−a
f(x)dx, (3.51)

then Eq. (3.50) becomes

I =
1

π

∫ q1

−q1

(2mH − m2ω2q2)1/2dq. (3.52)

The limit of integrationq1 is a turning point of the motion wherep = 0. So from the Hamiltonian
Eq. (3.48) we see that

q1 =

√

2H

mω2
(3.53)

If we make the variable substitution

q =

√

2H

mω2
sin φ ⇒ dq =

√

2H

mω2
cos φdφ, (3.54)

then Eq. (3.52) becomes

I =
1

π

∫ π/2

−π/2

(

2mH − m2ω2 2H

mω2
sin2 φ

)1/2
√

2H

mω2
cos φ dφ, (3.55)

=
2H

π

∫ π/2

−π/2
cos2 φ dφ, (3.56)

=
H

ω
, (3.57)

where we have used the result that
∫ π/2

−π/2
cos2 φ =

π

2
.

The frequency of oscillation is given by∂H/∂I and thus it is clear thatω represents the frequency
of oscillation as before. Also

θt = ωt + δ, (3.58)

whereδ is determined by the boundary conditions. Thus we have solved the SHO in the action-
angle coordinate system.

3.4 Application to the pendulum

We now use action-angle coordinates to find the general solutions for the dynamics of the pendu-
lum. Remember the Hamiltonian is

H(φ, ℓ) =
ℓ2

2J
− mga cos φ. (3.59)
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We define a new parameter

Λ =

(

ω2
1 + H

2ω2
1

)1/2

, ω1 =
√

Jω0 =
√

mga. (3.60)

whereH represents the energy of a particular trajectory. Note thatfrom Eq. (2.75)ω2
1 is the energy

of the system on the separatrix. It follows that

Λ = 1, ⇒ on the separatrices,

Λ < 1, ⇒ libration (within separatrices),

Λ > 1, ⇒ rotation (outside separatrices).

We have already found the solution for motion on the separatrices. We now consider motion inside
and outside.

Librations: Λ < 1

We begin by calculating the action

I(H) =
1

2π

∮

p dq. (3.61)

For the pendulum the generalised coordinate and momentum areφ andℓ and therefore

I(H) =
1

2π

(

∫ φ1

−φ1

ℓ dφ +
∫

−φ1

φ1

ℓ dφ

)

, (3.62)

=
1

2π

(

∫ φ1

−φ1

√

2J(H + ω2
1 cos φ) dφ +

∫

−φ1

φ1

−
√

2J(H + ω2
1 cos φ) dφ

)

, (3.63)

where we have divided the integral over a complete period into two integrals for whichℓ > 0 and
ℓ < 0. Due to the symmetry of the integrals this reduces to

I(H) =
1

π

∫ φ1

−φ1

√

2J(H + ω2
1 cos φ) dφ. (3.64)

The limit of integrationφ1 is the angle at the turning point of the motion, for whichℓ = 0. By
making this substituion into the Hamiltonian we find that

φ1 = cos−1

(

−H

ω2
1

)

= 2 sin−1 Λ. (3.65)

The evaluation of the integral is rather lengthy, and instead we simply quote the result

I(H) =
8Jω0

π

[

E(Λ2) − (1 − Λ2)K(Λ2)
]

, Λ < 1, (3.66)

where

K(m) =
∫ π/2

0
(1 − m sin2 θ)−1/2dθ, (3.67)
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Figure 3.4: Complete elliptic integrals of the firstK(m) and secondE(m) kind.

is a complete elliptic integral of the first kind, and

E(m) =
∫ π/2

0
(1 − m sin2 θ)1/2dθ, (3.68)

is a complete elliptic integral of the second kind. (See http://mathworld.wolfram.com for a handy
reference to special functions such as these.) These functions are plotted in Fig. 3.4.

Earlier we showed that the angular frequency of motionω is given by

ω =
∂H

∂I
=

[

∂I(H)

∂H

]

−1

. (3.69)

Using the properties of elliptic integrals we can differentiate Eq. (3.66) with respect toH to find

ω(H) =
π

2

ω0

K(Λ2)
, Λ < 1. (3.70)

This result is plotted in Fig. 3.5.

Rotations: Λ > 1

As before we have

I(H) =
1

2π

∮

p dq =
1

2π

∫ π

−π
ℓ dφ. (3.71)

where now the pendulum explores all values ofφ. We shall assume that the motion is in the
anticlockwise direction, and soℓ > 0. Thus

I(H) =
1

2π

∫ π

−π

√

2J(H + ω2
1 cos φ) dφ. (3.72)
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Figure 3.5: Angular frequency of a pendulum as a function ofΛ(H).

Using the fact that cosine is an even functioncos φ = cos(−φ) and the resultcos φ = 1 −
2 sin2(φ/2), we can write Eq. (3.72) as

I(H) =
1

π

∫ π

0

[

2J(H + ω2
1 − 2ω2

1 sin2 φ/2)
]1/2

dφ, (3.73)

=

√
2J

π
(H + ω2

1)
1/2
∫ π

0

[

1 − 2ω2
1

H + ω2
1

sin2 φ

2

]1/2

dφ (3.74)

Making the change of variableφ′ = φ/2 we find

I(H) =

√

2J × 2ω2
1

π

(

H + ω2
1

2ω2
1

)1/2

× 2
∫ π/2

0

[

1 − 1

Λ2
sin2 φ′

]1/2

dφ′, (3.75)

=
4ω1

√
J

π
ΛE(1/Λ2). (3.76)

We find the angular frequency again according to Eq. (3.69) and find

ω(H) =
πω1√

J

Λ

K(1/Λ2)
, Λ > 1. (3.77)

Combining this result with the frequency forΛ < 1 from Eq. (3.70) we get Fig. 3.5. As well as
producing this plot on a computer, we can get it from the series expansion ofK(k)

K(m) =
π

2

[

1 +
(

1

2

)2

m +
(

1 · 3
2 · 4

)2

m2 +
(

1 · 3 · 5
2 · 4 · 6

)2

m3 + . . .

]

. (3.78)

and so we seeK(m) → π/2 asm → 0. Thus we have the three limiting cases for the frequency

ωΛ → ω0 as Λ → 0,
ωΛ → 0 as Λ → 1,
ωΛ → 2Λω0 as Λ → ∞.

(3.79)
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You should try to derive these results yourself.

Thus, we have exploited one of the advantages of action-angle coordinates: we have found the
angular frequency of the pendulum without actually solvingthe equations of motion.

Full solution: φ(t)

We can now work out the full solution to Hamilton’s equationsfor ℓ(t) and φ(t). We apply
Eq. (3.42) to the pendulum to find

θ(φ) =
∂

∂I

∫ φ

0
ℓ(φ′, H) dφ′. (3.80)

If we solve this forφ(θ,H) and substitute in

θ(t) = ω(H)t + θ(0), (3.81)

then the solutions are

φ(t) =
{

2 cos−1[dn(ω0t, Λ
2)], Λ ≤ 1,

2 sin−1[sn(Λω0t, 1/Λ
2)], Λ > 1,

(3.82)

where we have taken the boundary condition to beφ(0) = 0. Here we have introduced theJacobi
elliptic functionsdn and sn.

Aside: Jacobi elliptic functions

Adapted from http://mathworld.wolfram.com/JacobiEllipticFunctions.html (11/10/2006):

The Jacobi elliptic functions are standard forms of elliptic functions. The three basic functions are
denoted cn(u,m), dn(u,m), and sn(u,m), wherem = k2 andk is known as the elliptic modulus.
They arise from the inversion of the elliptic integral of thefirst kind

u = K(φ,m) =
∫ φ

0

dt√
1 − m sin2 t

, (3.83)

where0 < m < 1, andφ = am(u,m) = am(u) is the Jacobi amplitude, givingφ = K−1(u,m) =
am(u,m).

From this, it follows that

sin φ = sin(am(u,m)) ≡ sn(u,m), (3.84)

cos φ = cos(am(u,m)) ≡ cn(u,m), (3.85)
√

1 − k2 sin2 φ =
√

1 − m sin2(am(u,m)) ≡ = dn(u,m). (3.86)

These functions are doubly periodic generalizations of thetrigonometric functions satisfying

sn(u, 0) = sin u, cn(u, 0) = cos u, dn(u, 0) = 1. (3.87)
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Figure 3.6: Solutions for the pendulum. (a)φ(t) and (b)ℓ(t) for Λ = 0.2 (solid),Λ = 0.6 (dashed),
andΛ = 0.99 (dotted). (c)φ(t) and (d)ℓ(t) for Λ = 1 (solid), Λ = 1.02 (dashed), andΛ = 1.2
(dotted).
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Full solution: ℓ(t)

With the boundary conditionφ(0) = 0, then we can see that att = 0

H =
ℓ2(0)

2J
− mga =

ℓ(0)2

2J
− ω2

1. (3.88)

Inserting this into the definition ofΛ from Eq. (3.60) we have

Λ2 =
ω2

1 + ℓ(0)2/2J − ω2
1

2ω2
1

, (3.89)

⇒ ℓ(0) = ±2
√

JΛω1. (3.90)

Using this as the boundary condition we can then show that theangular momentum is

ℓ(t) =
{

2ω0JΛ cn(ω0t, Λ
2)], Λ ≤ 1,

2ω0JΛ dn(ω0t, 1/Λ
2)], Λ > 1.

(3.91)

This can be derived by, for example, substituting the solution Eq. (3.82) into the Hamiltonian and
solving forℓ(t). Examples of the solutions are shown in Fig. 3.6.

Limiting cases

The Jacobi elliptic functions can be written in terms of infinite expansions which allow us to find
simple expressions forφ(t) andℓ(t) in limiting cases.

sn(u,m) = u − (1 + m)
u3

3!
+ (1 + 14m + m2)

u5

5!
+ . . . , (3.92)

cn(u,m) = 1 − u2

2!
+ (1 + 4m)

u4

4!
− (1 + 44m + 16m2)

u6

6!
+ . . . , (3.93)

dn(u,m) = 1 − m
u2

2!
+ m(4 + m)

u4

4!
− m(16 + 44m + m2)

u6

6!
+ . . . . (3.94)

Case:Λ ≪ 1

In this limit we find that

cn(u, Λ → 0) = 1 − u2

2!
+

u4

4!
− u6

6!
+ . . . = cos u, (3.95)

and so we find for the angular momentum

ℓ(t) = 2ω0JΛ cos(ω0t), (3.96)

which is the same as the SHO solution in the limit of small oscillations.
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Case:Λ = 1

Here we find

cn(u, Λ = 1) = 1 − u2

2!
+ 5

u4

4!
− 61

u6

6!
+ . . . =

1

cosh u
, (3.97)

and so we have

ℓ(t) =
2ω0J

cosh(ω0t)
, (3.98)

as we have already derived for the separatrix.

Case:Λ ≫ 1

Here we have

dn(u, 1/Λ2 → 0) ≈ 1 − 1

Λ2

u2

2!
+

1

Λ4

u4

4!
− 1

Λ6

u6

6!
+ . . . ≈ 1. (3.99)

Ignoring the terms of O(1/Λ2) and higher we have

ℓ(t) =
2ω0J

Λ
, (3.100)

which is constant rotation as we might have expected.
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