
Chapter 4

Introduction to chaotic dynamics

We begin this section with a quote from the Introduction ofChaotic Dynamics of Nonlinear Sys-
tems, by S. Neil Rasband (Wiley, New York, 1990):

“Arguably the most broad based revolution in the worldview of science in the twentieth century will
be associated with chaotic dynamics. Yes, I know about Quantum Mechanics and Relativity, and
for physicists and philosophers these theories must rank above Chaos for their impact on the way
we view the world. My assertion, however, refers to science in general, not just to physics. Leaving
improved diagnostic instrumentation aside, it is not clearthat Quantum Mechanics or Relativity
have had any appreciable effect whatever on medicine, biology, or geology. Yet chaotic dynamics
is having an important impact in all these fields, as well as many others, including chemistry and
physics.

Surely part of the reason for this broad application is that chaotic dynamics is not something that is
part of a specific physical model, limited in its applicationto one small area of science. But rather
chaotic dynamics is a consequence of mathematics itself andhence appears in a broad range of
physical systems. Thus, although the mathematical representations of these physical systems can
be very different, the often share common properties.”

The concept of chaos can be quite hard to define. For our purposes, the best definition is that a
dynamical system is chaotic if it displays dynamics that arehighly sensitive to initial conditions.
It is important to note that there is no probability or chanceinvolved: chaotic dynamics are deter-
ministic. However, due to the sensitivity to initial condidtions, after a certain time it may appear
that the results are totally unrelated to one another.

The main emphasis of this part of the course has been the dynamics of Hamiltonian systems with
one degree of freedom. It turns out that such systems do not display chaotic dyanmics, as they
areintegrable — they have as many conserved quantities as degrees of freedom. In this case, the
conserved quantity is the energy. If we introduce a time-dependence into the potentialV (q) of the
system, then the energy is no longer conserved and chaotic dynamics can arise. In particular, we
will be looking at the case of the driven pendulum.
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However, studying chaos in Hamiltonian dynamics requires the integration of two first order differ-
ential equations, which introduces a significant amount of complexity. To begin our introduction
to chaotic dynamics, we will look at one-dimensional nonlinear maps which display many of the
important features chaos in a very simple system.

4.1 One-dimensional linear maps

One dimensional maps are extremely simple: the are of the form

xn+1 = f(xn), 0 ≤ xn ≤ 1, (4.1)

i.e. they take a value ofx and transform it to another value ofx. Linear maps are of the form

xn+1 = axn + b, (4.2)

for some constantsa, b. Such maps are one-to-one, and they cannot display chaotic behaviour.
However, nonlinear maps are many-to-one, and can display chaos. The most commonly studied
example of a 1D nonlinear map is thelogisitic map

f(x) = µx(1 − x), 0 ≤ x ≤ 1. (4.3)

It is easy to show that forf(x) to be bounded by zero and one, that we must haveµ ≤ 4. The
constant parameterµ dramatically affects the behaviour of the map.

4.1.1 Relation to population dynamics

The logistic map is a discretisation of thelogistic equation

ẋ = bx − cx2, (4.4)

which is a very simple model of the dynamics of a biological populationx. The populations of
insects, birds, fish, and mammals are increased by births anddecreased by deaths, the rates of
which depend on a very complicated interplay of huge range ofinfluences. The simplest model
you can come up with is that the rate equation for the population can be written

ẋ = [B(x) − D(x)]x, (4.5)

where we have assumed that the birth rateB(x) and the death rateD(x) may depend on the
current population, but not on space, time, or any other factors. Of course we must have that
B(x), D(x) ≥ 0, and also there is a natural boundary ofx ≥ 0.

The simplest assumption is that the birth and death rate are constants independent of the population,
so that

ẋ = [B − D]x. (4.6)
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The solution to this equation is exponential growth forB > D, or exponential decay forB < D.

However, in practice a population in a confined region of space cannot increase without bound
forever, as there will be limiting factors such as competition for food and other resources. The next
simplest assumption is to suppose that such factors leave the birth rate unchanged, but give a death
rate per individual proporation to the population, so that

B(x) = b, D(x) = cx, (4.7)

which gives the logisitic equation (4.4). It turns out that some actual populations do follow such
an equation closely.

However, the situation is rarely so simple. In particular, often one species preys on another, and so
their population equations are coupled together leading tomore complicated systems.

Another possible feature is that often individual species have a definite reproductive season, so that
the change in population is not represented by a differential equation, but instead by a difference
equation or map. By discretising and scaling Eq. (4.4) we canwrite

∆x

x0

= b
x

x0

∆t − c
(

x

x0

)2

∆t, (4.8)

⇒ x + ∆x = (b∆t − 1)x −
c∆t

x0

x2. (4.9)

By identifyingµ = b∆t − 1 and choosingx0 = c∆t/µ, then we have derived the logistic map

xn+1 = µxn(1 − xn). (4.10)

This can cause completely new phenomena to appear in the timedependence of the population as
compared to the logisitic equation.

4.1.2 Geometrical representation

Let’s take a particular example, withµ = 1.8 andx0 = 0.7. Then we find that

x0, x1, x2, x3, . . . = 0.7, 0.1680, 0.1118, 0.0795, 0.0585, . . . , 0, 0, . . .

which eventually converges to the fixed value0. The mapping can be represented geometrically
as in Fig 4.1 and described in the caption. You will have had the opportunity to investigate the
logistic map numerically in a computer lab. What you would have found is that forµ < 1, then the
mapping eventually converges to0. Then up untilµ = 3, the mapping converges to a finite value of
x. Forµ > 3, sometimes the mapping settles down to a regular pattern, but other times it doesn’t.
So it is obvious that some stable fixed points exist in the mapping. The behaviour for particular
selections with iteration numbern are show in Fig. 4.2. A so called “bifurcation diagram” that
attempts to plot the fixed points for the full range of values of µ is shown in Fig. 4.3
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Figure 4.1: Geometical representation of the logistic map for a number of combinations ofµ and
x0 for ten iterations. We begin atx0 on the horizontal axis, and move vertically until we hit
x1 = f(x0). This is mapped back to an initial condition by moving horizontally we hit the curve
x. Then move vertically to givex2 = f(x1), and so on.

40



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

µ = 0.8,   x
0
 = 0.7

n

x n

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

µ = 2.8,   x
0
 = 0.2

n

x n

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

µ = 3.4,   x
0
 = 0.2

n

x n

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

µ = 3.5,   x
0
 = 0.2

n

x n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

µ = 3.8,   x
0
 = 0.3

n

x n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

µ = 4,   x
0
 = 0.2

n

x n

Figure 4.2: Evolution of the logistic map with iteration numbern for some particular values ofx0

andµ.
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Figure 4.3: Bifurcation diagram for the logistic map for theregion2.8 ≤ µ ≤ 4.
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4.1.3 Fixed points

The fixed points of a 1D mapxf are found by setting

xf = f(xf ) (4.11)

which for the logistic map is

xf = µxf (1 − xf ), ⇒ xf (1 − (µ − 1)xf ) = 0. (4.12)

So the fixed points are

xf = 0, 1 −
1

µ
. (4.13)

These are just the intercepts of the two curves in Fig. 4.1. Aswe have0 ≤ x ≤ 1, then the second
fixed point can only exist forµ ≥ 1.

Lets consider the stability of the fixed points. We define the distance ofxn from the fixed point at
xf by

δn = xn − xf , (4.14)

and we consider this quantity in a small neighborhood of the fixed pointxf . We have

|δn+1| = |xn+1 − xf | = |f(xn) − xf | = |f(xf + δn) − xf |, (4.15)

=
∣

∣

∣

∣

f(xf ) + δnf
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∣
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∣

=
∣

∣

∣

∣

f ′(xf )
∣

∣

∣

∣

|δn|, (4.16)

where we have made a first order Taylor series expansion off(x) about the fixed point. Clearly
|δn+1| < |δn| and the fixed point is stable if and only if

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

x=xf

< 1. (4.17)

For the logistic map

df

dx
= µ(1 − 2x) (4.18)

For the first fixed pointxf = 0 then
∣

∣

∣

∣

df

dx

∣

∣

∣

∣

x=0

= |µ| (4.19)

and so this fixed point is stable forµ < 1 as we discovered numerically. For the second fixed point
xf = 1 − 1/µ and

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

x=1−1/µ
= |µ(1 − 2 + 2/µ)| = |2 − µ|, (4.20)

and so this is stable in the range1 < µ < 3. Thus neither of the fixed points are stable for
3 ≤ µ ≤ 4.
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4.1.4 Unstable fixed points

Let us consider the case forµ ≥ 3. From Fig. 4.2 we can see that for some values ofµ it looks like
the map settles down to some sort of periodic behaviour, but for others it seems there is no pattern
at all. This is confirmed in the bifurcation diagram Fig. 4.3.

For the regime3 < µ < 3.44 it appears that rather than having a single fixed point, the map
oscillates about two values ofx, such thatxn+2 = xn. As the number of steps between identical
values ofxn is now two rather than one, the period is said to vhavedoubled.

As µ is further increased, we can see that aroundµ = 3.45 then there are four stable values ofx,
and we havexn+4 = xn. So the period has doubled again. Asµ is further increased the period
doubling mechanism continues until the system is chaotic. The points at which the splits occur in
Fig. 4.3 are known aspitchfork bifurcations.

The period doubling mechanism is a typical route to chaotic dynamics, and can in general be char-
acterised by certain numbers that in general do not depend onthe nature of the map. For example,
the ratio of the spacings between consecutive values ofµ at the bifurcation points approaches a
universal constant called the Feigenbaum constant, that was only discovered in 1980

δ = lim
k→∞

(

µk − µk−1

µk+1 − µk

)

= 4.669201609 . . . . (4.21)

The values ofµ for which bifurcations occur for the logistic map are found to be

µ1 = 3 µ2 = 3.449490 . . .
µ3 = 3.544090 . . . µ4 = 3.564407 . . .
µ5 = 3.568759 . . . µ6 = 3.569692 . . .
µ7 = 3.569891 . . . µ8 = 3.569934 . . .

Extrapolating we can see that we haveµ∞ = 3.5699456 . . ..

However, beyond this value it is obvious from Fig. 4.3 that there are still values ofµ for which
there are stable periodic cycles, the biggest being aroundµ = 3.828427 . . . where there is a stable
period-3 cycle. Outside these windows, the map appears chaotic.

4.1.5 Lyapunov exponent

It would be of use to be able to define parameters that can be used to characterise chaos. Remember
that we defined chaos as being the rapid divergence of nearby points in phase space. This diver-
gence has been parameterised by theLyapunov exponent λ, probably the most popular measure of
chaotic behaviour.
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Consider a one-dimensional system with initial statesx andx+ǫ, whereǫ ≪ 1 is a small parameter.
After n iterations their divergencyǫ(n) may be approximated as

ǫ(n) ≈ ǫenλ. (4.22)

Thus the Lyapunov exponent gives the average rate of divergence. Ifλ < 0 then separate trajecto-
ries converge and the system is not chaotic. However, ifλ > 0 then separate trajectories diverge
and the system is chaotic.

For a 1D map

xn+1 = f(xn). (4.23)

So in going from the initial valuex0 to xn+1 the mapf has been appliedn times

xn+1 = fn(x0). (4.24)

The difference in the “state” of the system aftern steps is

fn(x0 + ǫ) − fn(x0) ≈ ǫenλ, (4.25)

and so

λ ≈
1

n
ln

[

fn(x0 + ǫ) − fn(x0)

ǫ

]

. (4.26)

In the limit thatǫ → 0 then we have

λ =
1

n
ln

[

dfn(x)

dx

∣

∣

∣

∣

x=x0

]

. (4.27)

Using the chain rule andln ab = ln a + ln b we can show

λ = lim
n→∞

1

n

n−1
∑

i=0

ln |f ′(xi)|. (4.28)

The Lyapunov exponent for the logistic map is shown in Fig. 4.4.

45



2.8 3 3.2 3.4 3.6 3.8 4
−4

−3

−2

−1

0

1

Ly
ap

un
ov

 e
xp

on
en

t  
 λ

(µ
)

µ

Figure 4.4: Lyapunov exponent for the logistic map for the region2.8 ≤ µ ≤ 4.
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