Chapter 4

Introduction to chaotic dynamics

We begin this section with a quote from the IntroductiorCbiotic Dynamics of Nonlinear Sys-
tems, by S. Neil Rasband (Wiley, New York, 1990):

“Arguably the most broad based revolution in the worldviéws@ence in the twentieth century will

be associated with chaotic dynamics. Yes, | know about Qumamiechanics and Relativity, and
for physicists and philosophers these theories must raokeaGhaos for their impact on the way
we view the world. My assertion, however, refers to scienageineral, not just to physics. Leaving
improved diagnostic instrumentation aside, it is not cksat Quantum Mechanics or Relativity
have had any appreciable effect whatever on medicine, ¢pfplar geology. Yet chaotic dynamics
is having an important impact in all these fields, as well asyr@hers, including chemistry and
physics.

Surely part of the reason for this broad application is timatatic dynamics is not something that is
part of a specific physical model, limited in its applicatiorone small area of science. But rather
chaotic dynamics is a consequence of mathematics itselhande appears in a broad range of
physical systems. Thus, although the mathematical reptatsens of these physical systems can
be very different, the often share common properties.”

The concept of chaos can be quite hard to define. For our pesptise best definition is that a
dynamical system is chaotic if it displays dynamics thathaghly sensitive to initial conditions.

It is important to note that there is no probability or chaimelved: chaotic dynamics are deter-
ministic. However, due to the sensitivity to initial condidtions,eafs certain time it may appear
that the results are totally unrelated to one another.

The main emphasis of this part of the course has been the dgmafHamiltonian systems with
one degree of freedom. It turns out that such systems do sptagi chaotic dyanmics, as they
areintegrable — they have as many conserved quantities as degrees of medddhis case, the
conserved quantity is the energy. If we introduce a timeedejgnce into the potenti#l(q) of the
system, then the energy is no longer conserved and chaotanaigs can arise. In particular, we
will be looking at the case of the driven pendulum.
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However, studying chaos in Hamiltonian dynamics requinesntegration of two first order differ-
ential equations, which introduces a significant amountoofglexity. To begin our introduction
to chaotic dynamics, we will look at one-dimensional noeéinmaps which display many of the
important features chaos in a very simple system.

4.1 One-dimensional linear maps

One dimensional maps are extremely simple: the are of time for
Tnt1 = f(zn), 0<uz, <1, (4.1)
i.e. they take a value af and transform it to another value of Linear maps are of the form
Tpi1 = ax, + b, (4.2)

for some constants, b. Such maps are one-to-one, and they cannot display chast@viour.
However, nonlinear maps are many-to-one, and can displagschThe most commonly studied
example of a 1D nonlinear map is thagisitic map

f(x) = px(1l —x), 0<z<l1. 4.3)

It is easy to show that fof(x) to be bounded by zero and one, that we must have 4. The
constant parameter dramatically affects the behaviour of the map.

4.1.1 Relation to population dynamics

The logistic map is a discretisation of thmgistic equation
& = br — ca?, (4.4)

which is a very simple model of the dynamics of a biologicapplationz. The populations of
insects, birds, fish, and mammals are increased by birthslaaskased by deaths, the rates of
which depend on a very complicated interplay of huge rangafafences. The simplest model
you can come up with is that the rate equation for the popratan be written

t = [B(x) — D(x)]x, (4.5)

where we have assumed that the birth r&te:) and the death rat®(x) may depend on the
current population, but not on space, time, or any otherofact Of course we must have that
B(z), D(x) > 0, and also there is a natural boundary:of 0.

The simplest assumption is that the birth and death ratecastants independent of the population,
so that

i =[B — Dla. (4.6)
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The solution to this equation is exponential growth #r> D, or exponential decay faB < D.

However, in practice a population in a confined region of spe&nnot increase without bound

forever, as there will be limiting factors such as competitior food and other resources. The next
simplest assumption is to suppose that such factors leavarti rate unchanged, but give a death
rate per individual proporation to the population, so that

B(z) = b, D(z) = cx, 4.7)

which gives the logisitic equation (4.4). It turns out thatre actual populations do follow such
an equation closely.

However, the situation is rarely so simple. In particuldtgn one species preys on another, and so
their population equations are coupled together leadimgdre complicated systems.

Another possible feature is that often individual specigha definite reproductive season, so that
the change in population is not represented by a differeatjaation, but instead by a difference
equation or map. By discretising and scaling Eq. (4.4) weveaie

A 2
L N (x> At (4.8)
Zo X Zo
At
—z+Ar = (bAt—1)z— Cx—xQ. (4.9)
0

By identifying u = bAt — 1 and choosing, = cAt/u, then we have derived the logistic map

This can cause completely new phenomena to appear in thelépendence of the population as
compared to the logisitic equation.

4.1.2 Geometrical representation

Let’s take a particular example, with= 1.8 andz, = 0.7. Then we find that
To, T1, Ta, Ts,... = 0.7, 0.1680, 0.1118, 0.0795, 0.0585, ...,0, 0,...

which eventually converges to the fixed valueThe mapping can be represented geometrically
as in Fig 4.1 and described in the caption. You will have haddpportunity to investigate the
logistic map numerically in a computer lab. What you wouldénfound is that fop: < 1, then the
mapping eventually converges@oThen up until, = 3, the mapping converges to a finite value of
x. Foru > 3, sometimes the mapping settles down to a regular pattetrmtber times it doesn't.
So it is obvious that some stable fixed points exist in the nmgppThe behaviour for particular
selections with iteration number are show in Fig. 4.2. A so called “bifurcation diagram” that
attempts to plot the fixed points for the full range of valuég @s shown in Fig. 4.3
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Figure 4.1: Geometical representation of the logistic n@apmfnumber of combinations of and
xo for ten iterations. We begin at, on the horizontal axis, and move vertically until we hit
1 = f(x0). This is mapped back to an initial condition by moving honially we hit the curve
x. Then move vertically to give, = f(z;), and so on.
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Figure 4.2: Evolution of the logistic map with iteration nberrn for some particular values af,
andy.
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Figure 4.3: Bifurcation diagram for the logistic map for tfegion2.8 < u < 4.
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4.1.3 Fixed points

The fixed points of a 1D map; are found by setting
xy = [f(xy) (4.11)
which for the logistic map is
vy =prg(l—zg), = x(l—(p—1)z) =0. (4.12)
So the fixed points are

1
xp =0, 1—;. (4.13)

These are just the intercepts of the two curves in[Fig. 4.lwA$fave) < x < 1, then the second
fixed point can only exist fop > 1.

Lets consider the stability of the fixed points. We define tis¢athce ofr,, from the fixed point at
Ty by

Op = Ty, — Tf, (4.14)

and we consider this quantity in a small neighborhood of tkedfpointz ;. We have
bl = Jtas —ag] = 1f(0n) =] = |flag+6.) — s (4.15)
= |fap) + 6uf wg) — ag] = |Flap|laal, (4.16)

where we have made a first order Taylor series expansigii:of about the fixed point. Clearly
|0n+1] < |0,| @and the fixed point is stable if and only if

4 < 1. (4.17)
Az lo=z,
For the logistic map
df
— =pu(l1-2 4.1
g = Ml = 22) (4.18)
For the first fixed point:; = 0 then
d
A (4.19)
L lz=0

and so this fixed point is stable for< 1 as we discovered numerically. For the second fixed point
ry=1-—1/pand

a
dx

= [p(1=2+2/p)| = |2—4pl, (4.20)

z=1-1/p

and so this is stable in the rande< 1 < 3. Thus neither of the fixed points are stable for
3<p<4
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4.1.4 Unstable fixed points

Let us consider the case far> 3. From Fig. 4.2 we can see that for some valueg iflooks like
the map settles down to some sort of periodic behaviour,dsutthers it seems there is no pattern
at all. This is confirmed in the bifurcation diagram Fig. 4.3.

For the regime3 < u < 3.44 it appears that rather than having a single fixed point, thp ma
oscillates about two values ef such that:,, ., = z,,. As the number of steps between identical
values ofz,, is now two rather than one, the period is said to vhdmabled.

As p is further increased, we can see that around 3.45 then there are four stable valuesagf
and we haver,,., = z,,. So the period has doubled again. Ass further increased the period
doubling mechanism continues until the system is chaoti@ Joints at which the splits occur in
Fig./4.3 are known apitchfork bifurcations.

The period doubling mechanism is a typical route to chaagtieathics, and can in general be char-
acterised by certain numbers that in general do not depetiseomature of the map. For example,
the ratio of the spacings between consecutive valugs atfthe bifurcation points approaches a
universal constant called the Feigenbaum constant, thebws discovered in 1980

5 = lim (“’“_“’“‘1> — 4.669201609 . ... (4.21)
k=00 \ fli1 — [k

The values of: for which bifurcations occur for the logistic map are foudie

=3 11s = 3.449490 . ..
[z = 3.544090 ... g = 3.564407. ..
fis = 3.568759 ... g = 3.569602. ..
fr = 3.569891... g =3.569934...

Extrapolating we can see that we have = 3.5699456 . . ..

However, beyond this value it is obvious from Fig. 4.3 thatréhare still values of: for which
there are stable periodic cycles, the biggest being arpuad3.828427 . .. where there is a stable
period-3 cycle. Outside these windows, the map appeardichao

4.1.5 Lyapunov exponent

It would be of use to be able to define parameters that can logaisbaracterise chaos. Remember
that we defined chaos as being the rapid divergence of neaibispn phase space. This diver-

gence has been parameterised byliyapunov exponent \, probably the most popular measure of
chaotic behaviour.
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Consider a one-dimensional system with initial statesdz+¢, wheree < 1 is a small parameter.
After n iterations their divergency(n) may be approximated as

e(n) ~ ee™. (4.22)

Thus the Lyapunov exponent gives the average rate of dimeegdf A < 0 then separate trajecto-
ries converge and the system is not chaotic. Howevex,¥ 0 then separate trajectories diverge
and the system is chaotic.

For a 1D map

i1 = f(@n). (4.23)
So in going from the initial value to =, ., the mapf has been applied times

Tpi1 = f"(w0). (4.24)

The difference in the “state” of the system aftesteps is

(o +€) — fM(x0) = ce™, (4.25)
and so
Ar L lf (To+e) = f (%)]. (4.26)
n €
In the limit thate — 0 then we have
A=l [df (z) ] . (4.27)
n dx =10

Using the chain rule anbh ab = In a + In b we can show
1 n—1
A=1im =Y In|f'(2)]. (4.28)

n—oo
n o

The Lyapunov exponent for the logistic map is shown in Fig. 4.
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Figure 4.4: Lyapunov exponent for the logistic map for thgioa 2.8 < ;1 < 4.
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