

Lecture 1

Forces between a moving electrical charge and an electrical current

The speed of EM wave is c. But in which reference frame?

Does the wave equation hold true in all inertial frames?
If we take a wave equation and apply Galilean transformations a problem arises.

In which reference frame does the wave equation take its conventional form?

This question is easy to answer for other waves. For example, sound waves or waves on the surface of water have obvious preferred reference frames. These are the frames where the two media in which the waves propagate do not move as a whole. Electromagnetic waves propagate in a vacuum (apparently no propagation medium). Is the vacuum not empty? May be the vacuum is filled with Ether.

Ether and Michelson - Morley experiment

Lorentz transformations

Lorentz transformations provide a systematic approach to transformation from one reference frame to another of a physical event space location and its time. No internal contradiction can arise as a result of postulating this transformation (as well as Galilean transformation). Only an experiment (a real one but not a "thought experiment") can test the validity of Lorentz transformations. Up to date all experiments within their accuracy are in agreement with Lorentz transformations.

Standard set of reference frames used in this course. Describing events in two coordinate systems

 Each clock is at rest in the corresponding reference frame.

Events are described by four numbers in each reference frame: x, y, z, and t in O and $x^{\prime}, y^{\prime}, z^{\prime}$, and t^{\prime} in O^{\prime}. Event coordinates will be written as (x, y, z, t) or $\left(x_{1}, x_{2}, x_{3}, t\right)$ or $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

Conventionally, when the two origins O and O^{\prime} coincide, the two clocks are assumed to be set to zero.
If the speed of light is formally set to infinity, the Lorentz transformations should be equivalent to the Galilean transformations.

Einstein's postulates

Einstein formulated his version of special relativity in 1905 after Lorentz-Poincare theory was published

Einstein's postulated

1. Absolute uniform motion cannot be detected

2. The speed of light is the same for all observers

Then he derived the Lorentz transformation
There is no ether in the Einstein's model. Electromagnetic waves propagate in vacuum. Instead of talking about properties of ether he is talking about properties of space and time. The two theories (by Lorentz-Poincare and by Einstein) are mathematically equivalent. It is more or less a philosophical (not mathematical) question what to postulate - directly Lorentz transformations or the constancy of the speed of light.

Deriving the Lorentz transformations form the Einstein's postulates

Because space-time is homogeneous and isotropic the transformations should be linear.
This is why.
Take a particle moving with a constant velocity and sending signals with a constant rate (see Fig.). The time intervals between the signals as measured by Clock I should not change as the particle continues its motion. This is also true for Clock II. Therefore $d t / d t^{\prime}=A$,
where A is a constant. We also demand that if a particle moves
 with a time independent velocity in one inertial frame, then this particle should have a time independent velocity in any other inertial reference frame.
Assume that there are three function g_{1}, g_{2}, and g_{3} which relate coordinates of the moving object in the primed reference frame to coordinates and time of this object in the not primed reference

Fig. Both clocks are stationary in the corresponding reference frames.

$$
x_{i}^{\prime}=g_{i}\left(x_{1}, x_{2}, x_{3}, t\right), \quad i=1,2,3
$$

Because $v_{i}^{\prime} \equiv \frac{d x_{i}^{\prime}}{d t^{\prime}}=\frac{\partial g_{i}}{\partial t} \frac{d t}{d t^{\prime}}+\sum_{k=1}^{3} \frac{\partial g_{i}}{\partial x_{k}} \frac{d x_{k}}{d t} \frac{d t}{d t^{\prime}}=A\left(\frac{\partial g_{i}}{\partial t}+\sum_{k} v_{k} \frac{\partial g_{i}}{\partial x_{k}}\right)$ should be a constant for any constant values of v_{k}, each partial derivative should be a constant. Therefore the functions g are linear functions of x_{1}, x_{2}, x_{3}, and t.

Lectures by Taras Plakhotnik, Email: taras@physics.uq.edu.au

Point O^{\prime} has coordinates $(0,0,0)$ in the $x^{\prime} y z^{\prime}$ 'reference frame and $(u t, 0,0)$ in the $x y z$ reference frame therefore the most general linear transformation reads

$$
x^{\prime}=\gamma(x-u t)+\alpha y+\beta z
$$

$x^{\prime}=\gamma(u)(x-u t)$ axes, this changes the sign of the $\tilde{x}^{\prime}=\gamma(-u)(\tilde{x}+u t)$ velocity u and the transformation for the new pair of reference frames can be written as $\tilde{x}^{\prime}=\gamma(-u)(\tilde{x}+u t)$
On the other hand, the relation between the old coordinates and new is $\tilde{x}^{\prime}=-x^{\prime}$

$$
\text { and consequently } \quad-x^{\prime}=\gamma(-u)(-x+u t) \quad \text { or } \quad x^{\prime}=\gamma(-u)(x-u t)
$$

Therefore $\gamma(u)=\gamma(-u)$

Because the two reference frames are can be treaded equivalently, transformation from reference frame O^{\prime} to frame O can be obtained by replacing u with $-u$.

$$
x=\gamma(-u)\left(x^{\prime}+u t^{\prime}\right)=\gamma(u)\left(x^{\prime}+u t^{\prime}\right)
$$

Because the speed of light is the same in the two reference frames, the following two equations $\quad x^{\prime}=c t^{\prime}$ and $x=c t$ should hold simultaneously.

Substituting these equations into $x=\gamma\left(x^{\prime}+u t^{\prime}\right)$ and $x^{\prime}=\gamma(x-u t)$ we obtain

$$
c t=\gamma\left(c t^{\prime}+u t^{\prime}\right)=\gamma t^{\prime}(c+u) \text { and } c t^{\prime}=\gamma(c t-u t)=\gamma t(c-u)
$$

We multiply these two equations to obtain an equation for γ

$$
c^{2} t^{\prime} t=\gamma^{2} t t^{\prime}(c-u)(c+u)=\gamma^{2} t t^{\prime}\left(c^{2}-u^{2}\right)
$$

$$
\gamma=\sqrt{\frac{c^{2}}{c^{2}-u^{2}}}=\frac{1}{\sqrt{1-u^{2} / c^{2}}}
$$

$$
\begin{aligned}
& x^{\prime}=\gamma(x-u t) \\
& x=\gamma\left(x^{\prime}+u t^{\prime}\right)
\end{aligned}
$$

We substitute the first equation into the second and solve it for t^{\prime}

$$
x=\gamma\left(\gamma(x-u t)+u t^{\prime}\right)=\gamma^{2} x-\gamma^{2} u t+\gamma u t^{\prime}
$$

$$
t^{\prime}=\gamma t+\frac{1-\gamma^{2}}{\gamma u} x=\gamma t+\frac{1-\frac{1}{1-u^{2} / c^{2}}}{\gamma u} x=\gamma\left(t-\frac{u}{c^{2}} x\right)
$$

Sometimes the sign in the equations

$$
t^{\prime}=\gamma\left(t-\frac{u}{c^{2}} x\right) \quad t=\gamma\left(t^{\prime}+\frac{u}{c^{2}} x^{\prime}\right)
$$ may be confusing. Remember that u, t, and x on one side are referred to the same frame. The velocity simply changes sign in the other frame

Lorentz transformations (summary)

For two reference frames whose clocks are set to zero when their origins coincide

$$
\begin{aligned}
& x^{\prime}=\gamma(x-u t) \\
& y^{\prime}=y ; \quad z^{\prime}=z \\
& t^{\prime}=\gamma\left(t-\frac{u}{c^{2}} x\right)
\end{aligned}
$$

Gamma

A parameter that appears a lot in relativity

$$
\gamma(u) \equiv \frac{1}{\sqrt{1-u^{2} / c^{2}}}
$$

Approximate Values for γ	
at Various Speeds	

Lectures by Taras Plakhotnik, Email: taras@physics.uq.edu.au

Interval

An square of an interval Δs between two events $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$ is defined by the expression

$$
\Delta s^{2}=c^{2} \Delta t^{2}-\Delta x^{2} \equiv c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}
$$

Now we calculate Δs^{2} in two reference frames when time and spatial coordinates obey Lorentz's transformations: $t=\gamma\left(u x^{\prime} / c^{2}+t^{\prime}\right)$ and $x=\gamma\left(x^{\prime}+u t^{\prime}\right)$

$$
\begin{aligned}
& c^{2} \Delta t^{2}-\Delta x^{2}=c^{2} \gamma^{2}\left(\Delta t^{\prime}+u \Delta x^{\prime} / c^{2}\right)^{2}-\gamma^{2}\left(u \Delta t^{\prime}+\Delta x^{\prime}\right)^{2}= \\
& =\gamma^{2} c^{2} \Delta t^{\prime 2}+\gamma^{2} \frac{u^{2}}{c^{2}} \Delta x^{\prime 2}+2 \gamma^{2} u \Delta t^{\prime} \Delta x^{\prime}-\gamma^{2} u^{2} \Delta t^{\prime 2}-\gamma^{2} \Delta x^{\prime 2}-2 \gamma^{2} u \Delta t^{\prime} \Delta x^{\prime}=
\end{aligned}
$$

$$
\gamma^{2}\left(c^{2}-u^{2}\right) \Delta t^{\prime 2}-\gamma^{2}\left(1-\frac{u^{2}}{c^{2}}\right) \Delta x^{\prime 2}=\Delta t^{\prime 2}-\Delta x^{\prime 2}
$$

$$
c^{2} \Delta t^{2}-\Delta x^{2}=c^{2} \Delta t^{\prime 2}-\Delta x^{2}
$$

Generally: $c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}-\Delta y^{\prime 2}-\Delta z^{\prime 2}$
Interval does not change (it is an invariant) under Lorentz transformation
Note 1: Classical length is not invariant under Lorentz transformation
Note 2: The interval is also invariant under rotation in ordinary 3D space
Lectures by Taras Plakhotnik, Email: taras@physics.uq.edu.au

Lecture 2

Proper time

A proper time interval is defined by the relation

$$
\Delta \tau^{2}=\frac{\Delta s^{2}}{c^{2}}
$$

1. Obviously the proper time is an invariant under Lorentz transformations.
2. This time corresponds to the time shown by a clock which does not move.

$$
\Delta \tau^{2} \equiv \frac{\Delta s^{2}}{c^{2}} \equiv \Delta t^{2}-\frac{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}{c^{2}}=\Delta t^{2}
$$

Because if the clock does not move $\Delta x^{2}+\Delta y^{2}+\Delta z^{2}=0$
3. In the reference frame where the clock is moving $\Delta t=\gamma \Delta \tau$ Generally $\Delta t=\gamma\left(u \Delta x^{\prime} / c^{2}+\Delta t^{\prime}\right)$

But for a clock measuring the proper time $\Delta x^{\prime} \equiv 0$ and $\Delta t^{\prime} \equiv \Delta \tau$

Absolute future and absolute past

If Δs^{2} is larger than zero in one reference frame it is larger than zero in all other inertial reference frames.
$\Delta s^{2}>0 \quad \begin{aligned} & \text { Note: in Newton's mechanics } c \text { is infinitely large } \\ & \text { and this inequality always holds. }\end{aligned}$
Two such events can have the same location in a specially selected reference frame
Lorentz transformations relate "new" and "old" displacements $\Delta x^{\prime}=\gamma(\Delta x-u \Delta t)$
Therefore $\Delta x^{\prime}=0$ if $u=\Delta x / \Delta t$
Because $|u|$ must be smaller than c one gets $\Delta x^{2} / \Delta t^{2}<c^{2}$, that is $\Delta s^{2}>0$

There is absolute future and absolute past for such events!
If $\left\{c^{2} \Delta t^{2}-\Delta x^{2}>0\right\} \rightarrow\left\{\frac{|\Delta x|}{c}<|\Delta t|\right\} \rightarrow\left\{\left|\frac{u}{c} \frac{\Delta x}{c}\right|<|\Delta t|\right\}$ remember that $|u|<c$
Therefore sign of $\Delta t^{\prime}=\gamma\left(\Delta t-\frac{u}{c^{2}} \Delta x\right)$ coincides with sign of Δt.

Relativity of simultaneity

$$
\Delta s^{2}<0
$$

If Δs^{2} is smaller than zero in one reference frame it is smaller than zero in all other inertial reference frames. Two events for which Δs^{2} is smaller than zero can always be made simultaneous in a specially selected reference frame
For two events in the "primed" reference frame, equality

$$
\Delta t^{\prime}=\gamma \Delta t-\gamma u \Delta x / c^{2}=0
$$

holds if $u=c^{2} \frac{\Delta t}{\Delta x} \quad$ Because $|u|<c$ one gets $\left|\frac{\Delta t}{\Delta x}\right|<\frac{1}{c}$
and consequently $\Delta s^{2} \equiv c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}<c^{2} \Delta t^{2}-\Delta x^{2}<0$

Vectors

Geometrical vectors

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \\
& \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{a}} \equiv \overrightarrow{\mathbf{0}}
\end{aligned}
$$

Given a coordinate system, each vector is identified with its 3 components: $\overrightarrow{\mathbf{a}} \rightarrow\left(a_{1}, a_{2}, a_{3}\right)$
A set of numbers can be identified with a vector but only if these numbers can be transformed to a different coordinate system according to vector coordinate transformation.
Such transformations are given by relations
$a_{m}^{\prime}=\sum_{n=1}^{3} p_{m n} a_{n}$, where 9 numbers p_{mn} are the same for all 3-number sets.
There must be one to one correspondence between triplets $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ and $\left(a_{1}, a_{2}, a_{3}\right)$.
Therefore $\operatorname{det}\left(p_{m n}\right) \neq 0$
Vectors can be added and can be multiplied by a number
$\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \rightarrow \overrightarrow{\mathbf{c}} \equiv\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right) \quad$ and $\quad \alpha \overrightarrow{\mathbf{c}} \equiv\left(\alpha c_{1}, \alpha c_{2}, \alpha c_{3}\right)$

3-vectors (example)

If transformation of a coordinate system includes translation, then an example of a vector is a displacement vector

$(\Delta x, \Delta y, \Delta z) \quad$ are transformed to $\quad\left(\Delta x^{\prime}, \Delta y^{\prime}, \Delta z^{\prime}\right) \quad$ by rotation of the coordinate system
We can get other vectors from a displacement-vector. For example,
3-velocity: $\quad \frac{d \overrightarrow{\mathbf{r}}(t)}{d t}=\frac{d}{d t}\left(x_{12}(t), y_{12}(t), z_{12}(t)\right) \equiv\left(v_{x}, v_{y}, v_{z}\right) \equiv \overrightarrow{\mathbf{v}}$

3-momentum: $\overrightarrow{\mathbf{p}} \equiv m \overrightarrow{\mathbf{u}}$
3-acceleration: $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t) \equiv \overrightarrow{\mathbf{a}}$
3-force:
$\frac{d}{d t} \overrightarrow{\mathbf{p}} \equiv \overrightarrow{\mathbf{f}}$
Velocity, momentum, acceleration, and force are vectors because t, m are scalars (that is they are numbers which do not change under rotation of coordinates). Recollect that multiplication of a vector by a number (or division by a number as in the case of the derivative calculations) results in a new vector.

Vectors in Euclidian space

Under certain transformations of the coordinate system (3D rotation and translation), the following quantity

$$
|\overrightarrow{\mathbf{a}}|^{2} \equiv a_{x}^{2}+a_{y}^{2}+a_{z}^{2}
$$

is preserved for every ordinary 3D vector. Note that this is a not negative number.

Because

1) $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=\left(a_{x}+b_{x}\right)^{2}+\left(a_{y}+b_{y}\right)^{2}+\left(a_{z}+b_{z}\right)^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2\left(a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right)$
2) $|\overrightarrow{\mathbf{a}}|^{2},|\overrightarrow{\mathbf{b}}|^{2}$ and $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}$ do not change after rotation and/or translation,
$a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ should be also invariant. This invariant is called a scalar product

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \equiv a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

$\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$
This scalar product has the properties:

$$
\begin{gathered}
(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \\
\overrightarrow{\mathbf{a}} \cdot(\alpha \overrightarrow{\mathbf{b}})=\alpha \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}
\end{gathered}
$$

Definition of 4-vectors

4-vectors can be added:

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}} \equiv\left(A_{x}, A_{y}, A_{z}, A_{t}\right), \overrightarrow{\mathbf{B}} \equiv\left(B_{x}, B_{y}, B_{z}, B_{t}\right) \\
& \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\left(A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}, A_{t}+B_{t}\right)
\end{aligned}
$$

Coordinates of 4-vectors are transformed according Lorentz transformation

Lorentz transformations for a 4- Lorentz transformations for a
displacement displacement Lorentz transformations for a
general 4 -vector $\overrightarrow{\mathbf{A}} \equiv\left(A_{x}, A_{y}, A_{z}, A_{t}\right)$
$\Delta \overrightarrow{\mathbf{R}} \equiv(\Delta x, \Delta y, \Delta z, c \Delta t)$
$\Delta x^{\prime}=\gamma\left(\Delta x-\frac{u}{c} c \Delta t\right)$
$A_{x}^{\prime}=\gamma\left(A_{x}-\frac{u}{c} A_{t}\right)$
$\Delta y^{\prime}=\Delta y ; \quad \Delta z^{\prime}=\Delta z$
$A_{y}^{\prime}=A_{y} ; \quad A_{z}^{\prime}=A_{z}$
$c \Delta t^{\prime}=\gamma\left(c \Delta t-\frac{u}{c} \Delta x\right)$

$$
A_{t}^{\prime}=\gamma\left(A_{t}-\frac{u}{c} A_{x}\right)
$$

Note: Sometimes (when convenient) we will use for 4-vectors the notation $\overrightarrow{\mathbf{A}} \equiv\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$

4-vectors in Minkovski space

$$
\text { We define } \quad \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{A}} \equiv A_{t}^{2}-A_{x}^{2}-A_{y}^{2}-A_{z}^{2}
$$

This definition coincides with the definition of the interval and therefore does not change under Lorentz transformations. Correspondingly, a scalar product is defined by

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} \equiv A_{t} B_{t}-A_{x} B_{x}-A_{y} B_{y}-A_{z} B_{z}
$$

Lorentz transformations preserve the scalar product: $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}^{\prime} \cdot \overrightarrow{\mathbf{B}}^{\prime}$

Other properties of scalar products are $\quad \overrightarrow{\mathbf{A}} \cdot(\alpha \overrightarrow{\mathbf{B}})=(\alpha \overrightarrow{\mathbf{A}}) \cdot \overrightarrow{\mathbf{B}}=\alpha(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}})$ identical to the properties of ordinary scalar products in 3D space

$$
\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}
$$

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}
$$

4-velocity

Definition of 4-velocity

$$
\begin{gathered}
\overrightarrow{\mathbf{V}} \equiv \frac{d}{d \tau}(x, y, z, c t)=\frac{d}{d t}(x, y, z, c t) \frac{d t}{d \tau}=\gamma(v) \cdot\left(v_{x}, v_{y}, v_{z}, c\right) \\
\text { where } \quad \gamma(v)=\left(1-v^{2} / c^{2}\right)^{-1 / 2}
\end{gathered}
$$

Square of 4 -velocity equals c^{2}.

$$
\overrightarrow{\mathbf{V}}^{2} \equiv V_{4}^{2}-V_{1}^{2}-V_{2}^{2}-V_{3}^{2}=\frac{c^{2}-v_{x}^{2}-v_{y}^{2}-v_{z}^{2}}{1-v^{2} / c^{2}}=c^{2}
$$

This also can be seen almost immediately if we do calculations in a reference frame where the $\mathbf{3}$-velocity is zero.

