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Lecture 3

Space components of the 4-velocity  
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Quite obviously, this velocity is larger than υ and is not limited by c. 
Note that in this case position and time are measured in different frames. 

A rocket has velocity υ in the reference frame where the road is at rest
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At this moment the observer on 
the rocket reads the sign on the 
road side and gets the “distance”
he/she has travelled .

Then the “driver” calculates his/her velocity by dividing the time interval on the clock 
attached to the rocket by the distance read from the signs standing along the road. 
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Transformation of the 3-velocity
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4-velocity is transformed according 
to the general rules for 4-vectors:

When written using explicit definition of 
the 4-velicity, these transformations read  

1
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Solve the first 3 equations for υ′ to get

The equality 2
1

( ) ( ) 1

( ) 1 /

u

u c

γ γ υ
γ υ υ

=
′ −

can be obtained from the transformation of V4

Final result: 

Quotient rule
4 4 1 1 2 2 3 3A Y AY A Y A Y− − − is invariant

4 4 4 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
1 1 1 1

n n n n n n n n
n n n n

p A Y p A Y p A Y p A Y AY A Y A Y A Y
= = = =

′ ′ ′ ′− − − + = − − − +∑ ∑ ∑ ∑

11 1 21 2 31 3 41 4 1

12 1 22 2 32 3 42 4 2

13 1 23 2 33 3 43 4 3

14 1 24 2 34 3 44 4 4

p Y p Y p Y p Y Y

p Y p Y p Y p Y Y

p Y p Y p Y p Y Y

p Y p Y p Y p Y Y

′ ′ ′ ′− − − + = −
′ ′ ′ ′− − − + = −
′ ′ ′ ′− − − + = −
′ ′ ′ ′− − − + =

Because ( )det 0mnp ≠ this system of linear equation for {Ym} has only one solution.

But we know that if 
4

1
n nm m

m

Y p Y
=

′ =∑ , that is if the {Ym}  is transformed as a vector, then 

the equations are satisfied. Therefore {Ym} must be a vector.  

(independent on the choice of the coordinate system), then Y is a vector. Proof: 

If for any vector A in Minkovski space

for any choice of A. Therefore the following system of equations must be satisfied
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Doppler effect, aberration, and wave 
velocity transformations 

( )0 sinF tω − ⋅k r
� �
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x y z x y zt k x k y k z t k x k y k zω ω′ ′ ′ ′ ′ ′ ′ ′− − − = − − −
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In an experiment, a recorder (filled box in the Figure) measures
oscillating variable F related to a wave propagating with phase 
velocity υ. This experiment can be described using any reference 
frame. The phase of these oscillations (that is ωt-kr) should have 
the same value in all these frames because its change divided by
2π tells how many maxima have been recorded by the recorder. 
This outcome of the experiment should not depend on the choice 
of the reference frame. Therefore the following equality holds

x y zc t k x k y k z
c

ω ∆ − ∆ − ∆ − ∆ is invariant.

,
c

ω ≡   
K k
�

Therefore (see the quotient rule) 

is a 4-wave vector and must be transformed according to the Lorentz transformations

2
;   ;   ;   x x y y z z x

u u
k k k k k k k

c c c c

ω ωγ ω γ′   ′ ′ ′= − = = = −   
   

In other words, 

/ .  cosxk k kω υ θ= = −

yk
xk

Note that 0⋅ =K K
� �

for EM waves in vacuum

is the phase velocity of 
the wave

υ

Lecture 4
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Doppler effect
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 1 cos
uω γ θ ω
υ

 ′ = + 
 

 x

u
k

c c c

ω ωγ′  = − 
 

From 

one gets

This is a Doppler frequency shift for any wave. For EM waves in vacuum: 

 1 cos
u

c
ω γ θ ω ′ = + 

 

The difference between the non relativistic Doppler shift and relativistic one is the factor 
gamma.  Because of this factor, the Doppler shift is also present if θ equals 90 degree. 
Transverse Doppler shift has been observed experimentally (spectroscopically) for atoms 
in motion.  

and / ;   cosxk k kω υ θ= = −

Aberration effect
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2
 ;   x x y y

u
k k k k

c
γ ω ′ ′= − = 
 

From 

one gets the direction of the wave vector in the primed reference frame. 

For any wave, the aberration effect (change of the direction of the phase front propagation) 

2 2 2

1
sin sin

tan
1

cos cos

y y

x
x

k k

u u uk k
c c c

θ θυθ
υγ ω γ θ γ θ

υ

−′
′ = = = =

′      − − − +     
     

( )
sin

tan
cos /u c

θθ
γ θ

′ =
+

For EM waves in vacuum
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Other useful relations for EM waves in vacuum:
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k c
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θ
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+′−′ = =
′ +

1 /
tan tan

2 1 / 2

u c

u c
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+

The first two are easy to derive. To derive the last one, you need the identity
sin

tan
2 1 cos

θ θ
θ

=
+

and / ;   cos ;    sinx yk k k k kω υ θ θ= = − = −
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Wave velocity transformation

2 2

2 2 1 cos 1 cos
u u

c c

γ θ ω γ θ ωω ω υ υ
υ υ

      + +                − = −    ′       
   
   

⋅K K
� �

2 2 2 2

c c

ω ω ω ω
υ υ

′ ′       − = −       ′       
is invariant. Therefore

We substitute the expression for the frequency transformation

( )

22 2

22
1

cos

c c

u

υ
υγ υ θ

−  − =  ′ +

and solve it for the phase velocity υ′

( )
( )22 2 2
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cos

u c

u c

γ υ θ
υ

γ υ θ υ

+
′ =

+ − +

For EM waves in vacuum:
( )

( )22 2 2

cos

cos

c u c
c

c u c c

γ θ
υ

γ θ

+
′ = =

+ − +

2 2 2/k ω υ=where we have used the equality 

4-momentum
Definition of 4-momentum

[ ]
2 2

, , , ,
1 /

x y z

m
m m mc c

c
γ υ υ υ

υ
 ≡ = =  −

P V υ

� � �

Axioms of relativistic mechanics

, ,n before n after
n n

=∑ ∑P P
� �

The 4-momentum is the same before and after collision of n particles

By splitting into two parts we get

constantn n nmγ =∑ υ
� constantn nmγ =∑and

Relativistic version of 
3-momentum conservation

Relativistic version of 
mass conservation
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In these lectures m is the rest mass of a particle. Note that in some textbooks  the 
rest mass is labelled as m0 and γ m0  is called “relativistic mass”.    
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Relativistic 3-momentum and total 
energy

From Newton’s physics we know two quantities (one vector and a scalar) which are 
conserved in any collision. These quantities are momentum and total energy (kinetic 
energy is conserved only in elastic collisions). 

mγ ≡υ p
� �

as relativistic 3-momentum. Therefore we identify the vector 

2mcγ -- can be identified with relativistic total energy. This value looks like 
energy (mass times square of velocity), it is conserved in all collisions, it 
looks nice,  and it gives correct value for the kinetic energy in a non 
relativistic limit. Note that when the 3-velocity of the particle is zero, its 
total energy is mc2. Therefore, the kinetic energy K is given by 

2 2 2
2 2 2

22

2

1
1 ....

2 2
1

mc m
K mc mc mc

c

c

υ υ
υ

 
= − ≈ + + − ≈ 

 −

2mc Eγ ≡

mγ υ
�

Now the 4-momentum can now be also written as ( ), /E c≡P p
� �

Note: For photons E pc= and therefore 
2 2 2 2/E c p≡ −P
�

2 0=P
�

3. The scalar product of 4-acceleration and 4-velocity of the same particle is 
always zero. To prove this note that in the reference frame where the 3-
velocity is zero, the 4-velocity is 

4-acceleration

[ ] [ ]2 2, ,0 ,
d dt d d d d

c c
dt d dt dt dt dt

γ γ γγ γ γ γ γ γ
τ

 = = = + = +  

V V
A υ a υ a

� �
� � � � �

Definition of 4-acceleration:

Examples and simple results: 
1. If the length of the 3-velocity is time independent  then 

2 ,0γ =  A a
� �

2. If the 3-velocity is zero then
2 ,0γ =  A a

� �

,c  0
�

( ) ( )
2

1/ 2 3/ 22 2 2 2

1 /

1 / 1 /

d d c d

dt dt dtc c

γ υ υ
υ υ

= =
− −

Note:
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d

dτ
≡ V

A

�
�
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4-force

Definition of 4-force:
d

dτ
≡F P
� �

( )d d dm d dm
m m m

d d d d dτ τ τ τ τ
≡ = = + = +V

F P V V V A

�
�� � � � �

3-force and 4-force ( ) 1
, ,

d d E dt dE

d dt c d c dt
γ υ

τ τ
   ≡ = =      

F P p f
� � � �

υ
�

X

Y f
�
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2 2dm dm
c m c

d dτ τ
⋅ = + ⋅ =F V A V

�� � �
On the other hand 

2 2dE

dt
γ γ⋅ = − ⋅F V f υ

�� � �

Therefore 2 2 2dm dE
c

d dt
γ γ

τ
= − ⋅f υ

� � if 0
dm

dτ
= then 

dE

dt
= ⋅f υ
� �

Relation between force 
and acceleration:

Note: p is a relativistic 3-momentum mγ=p υ
� �

υυυυ is an ordinary 3-velocity [ ], , .dx dt dy dt dz dt≡υ�

A bit confusing, indeed.  Useful equalities related to the 4-force are derived below. 

.d dt≡f p
� �

3-force is a time derivative of the relativistic 3-momentum

and represents first 3 coordinates of ,P
�

Multiply it by γ to get , ,x y zF F F  
Multiply it by γ to get , ,x y zV V V  

, ,x y zP P P  i e

and

Transformation of 3-force

Transformation of 4-force

1 1 4

2 2 3 3

4 4 1

;     

u
F F F

c

F F F F

u
F F F

c

γ

γ

 ′= − 
 

′ ′= =

 ′ = − 
 

( ) 1
,

dE

c dt
γ υ  =   

F f
��

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2

2 2 3 3

1

;    

1 1

u dE
f u f

c dt

f f f f

dE dE u
u f

c dt c dt c

γ υ γ γ υ γ υ

γ υ γ υ γ υ γ υ

γ υ γ γ υ γ υ

 ′ ′= − 
 

′ ′ ′ ′= =

′  ′ = − ′  

( )
( ) ( ) 2

1 xuu
c

γ υ υγ
γ υ

′  = − 
 

υ
�

u X ′

Y ′

X

Y f
�

( ) ( )
( )

( )
( )

( )
( )

( ) ( )
( )

1 1 2 2 3 32

1

;      ;      
u u dE

f f f f f f
c dt

udE dE
uf

dt dt

γ γ υ γ υ γ υ
γ υ γ υ γ υ
γ γ υ

γ υ

 ′ ′ ′= − = = ′ ′ ′ 

′  = − ′ ′  

This can be simplified using the identity (see velocity transformations)

According to the standard Lorentz transformations

We express the 4-force components 
using the 3-force components and the power:

After obvious algebra ane gets:
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Transformation of 3-force (cont)

υ
�

u X ′

Y ′

X

Y f
�

( ) ( )

( ) ( )

1 12 2
1

2 22
1

3 32
1

12
1

1

1 /

1
;   

1 /

1
 

1 /

1

1 /

u dE
f f

u c c dt

f f
u u c

f f
u u c

dE dE
uf

dt u c dt

υ

γ υ

γ υ

υ

 ′= − −  

′ =
−

′ =
−

′  = − ′ −  

After simplification:
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If ( )1,0,0 ,  ,  and / 0f dm dτ≡ =f f υ

� � �
� 1 1f f′=then

1 12 2
1

1

1 /

u
f f

u c cυ
 ⋅′= − −  

f υ
� �

If 0
dm

dτ
= then 

A rest mass preserving force

See derivation of 
dE

dt
= ⋅f υ
� �

on the 4-force page

Two special cases:  

1. 

2. 

( ) 2

1
,

dE
c

c dt
γ υ   =   

  
F f

��

( )[ ],cγ υ=V υ

� �

The transformations of 
the 3-force are similar to 
the transformation of the 
3-velocity. This is not 
surprising because there 
is a clear analogy in the 
expressions for a 4-force 
and a 4-velocity.  

Transformation of magnetic and 
electrical fields

1q =For briefness we set 

The Lorentz 3-force reads q q= × +f υ b e

The Lorentz force can be used to define the electrical and magnetic fields

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1b b b b b bυ υ υ υ υ υ× = − + − + −υ B i j k

1 2 3 3 2 1f b b eυ υ= − +

2 3 1 1 3 2f b b eυ υ= − +

3 1 2 2 1 3f b b eυ υ= − +

Because

the components of the 3-force 
read

In a primed reference frame 
these components are 

1 2 3 3 2 1f b b eυ υ′ ′ ′ ′ ′ ′= − +

2 3 1 1 3 2f b b eυ υ′ ′ ′ ′ ′ ′= − +

3 1 2 2 1 3f b b eυ υ′ ′ ′ ′ ′ ′= − +

Note: The form of this equation depends on the units used. For example, in the 
Gaussian units the Lorentz force is q c q= × +f υ b e
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Transformation of magnetic and 
electrical fields

We use the velocity transformations 

( ) ( )
1 2 3

1 2 32 2 2
1 1 1

;  ; 
1 / ( ) 1 / ( ) 1 /

u

u c u u c u u c

υ υ υυ υ υ
υ γ υ γ υ
−′ ′ ′= = =

− − −

to express the transformed force in terms of non transformed velocity. For example, for 
the first component of the transformed force we get

( ) ( )
2 3

1 3 2 12 2
1 1( ) 1 / ( ) 1 /

f b b e
u u c u u c

υ υ
γ υ γ υ

′ ′ ′ ′= − +
− −

On the other hand, we can use general relativistic force transformation  for the first 
component of the force. 

2
1

1 2
1

/

1 /

f u c
f

u cυ
− ⋅′ =
−

f υ

Transformation of magnetic and 
electrical fields

( ) 2
2 3 3 2 1 1 1 2 2 3 3

1 2
1

2 2 2
2 3 3 2 1 1 1 2 2 3 3

2
1

2 2
3 2 2 3

2 3 12 2
1 1

/

1 /

/ / /

1 /

/ /

1 / 1 /

b b e u e e e c
f

u c

b b e e u c e u c e u c

u c

b e u c b e u c
e

u c u c

υ υ υ υ υ
υ

υ υ υ υ υ
υ

υ υ
υ υ

− + − + +
′ = =

−

− + − − −= =
−

− += − +
− −

This can be compared to the expression 

derived using the velocity transformations. Such comparison gives the following relations

( ) ( )
3 2

1 2 3 12 2
1 11 / 1 /

b b
f e

u c u c
υ υ

γ υ γ υ
′ ′′ ′= − +

− −

( )2
3 3 2 /b b e u cγ′ = − ( )2

2 2 3 /b b e u cγ′ = + 1 1e e′ =

We substitute the expressions for f in the not primed reference frame and get 

( )
⋅ =

= × ⋅ + ⋅ =
= ⋅

f υ

υ b υ e υ

e υ

Note that
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Transformation of magnetic and 
electrical fields (summary)

x xb b′ =x xe e′ =

( )2/y y zb b e u cγ′ = +( )y y ze e ubγ′ = −

( )2/z z yb b e u cγ′ = −( )z z ye e ubγ′ = +
u X ′

Y ′

X

Y

0div ;   curl
t

ρ ε ∂= = −
∂
b

e e

�
� �

0 0 0div 0;         curl
t

µ ε µ ∂= = − +
∂
e

b b j
��� � ( ) ( )

( )

1/2 1/ 2
0 0

1/ 2 2
0 0 0

4      4

4 ;    1/

SI G SI G

SI G c

µ π πε

ρ πε ρ ε µ

−= =

= =

b b e e
� � � �

The Maxwell equations in vacuum  (SI units) 

stay valid if the Lorentz transformations of space-time are used, the e and b field is changed as 

given above, and the current density j and the charge density ρ are changed as components of 

a 4-current density [ ]0 0 , ,c cρ ρ γ ρ ≡ = ≡  J V υ j
�� � �

Conversion to Gaussian units

One can also introduce an electromagnetic field tensor (a generalization of a 4-vector) and 
write the Maxwell equations in a 4-tensor form).  

where ρ0 is the proper charge density.

Lorentz force revisited

i
�

-
υ
�

0
22 r

µ
π

×= i r
b

� �
�

++ + + + ++- - - -
-

-- -+

eq q= × +f υ b e
� �� �

x
y

z

1

2

3

0

0

0

x

y

z

f f

f f

f f

≡ =
≡ =

≡ ≠

1 12 2

2

2 2

3 3 32 2 2 2

1
0

1 /

0 

1 / 1
  

1 / 1 /

f f
u c c

f

u c
f f f

u c u c

υ
υ

 ′= − ⋅ = −  

′ =

−′ = =
− −

f υ
� �

0

=

⋅ =

u υ

υ f

��

��

This result can be obtained 
by direct consideration of 
relativistic kinematics (see 
Problem 1, Assignment)

Lectures by Taras Plakhotnik, Email: taras@physics.uq.edu.au

3 2 2 2 2

1
 and 

1 / 1 /
y y ye b b b

c c

υ
υ υ

′ ′= =
− −


