Errata for PHYS2100 notes, Hamiltonian dynamics and chaos 2006.

Last updated: Tuesday 17th October 2006.

- Page 10: There is a square root missing in Eq. (2.27), which should read

$$
I=\pi \times \sqrt{\frac{2 H}{m \omega^{2}}} \times \sqrt{2 m H}=\frac{2 \pi}{\omega} H
$$

- Page 10: The sign of Eq. (2.29) is incorrect. It should read

$$
F(q)=a q, \quad a>0 .
$$

- Page 11: The m^{2} that is present in Eq. (2.32) should not be there. The equation should be

$$
2 m H=p^{2}-\gamma^{2} q^{2}, \quad\left(\gamma=\frac{a}{m}\right)
$$

- Page 11: In Fig 2.5, the arrowheads for the $H=-1$ trajectories are pointing in the wrong direction.
- Page 14: In Fig 2.6, the four arrowheads on the furthest right are pointing in the wrong direction.
- Page 17: In Eq. (2.72) the ω_{0} should actually be ω_{0}^{2}, i.e.

$$
\ddot{\gamma}=\omega_{0}^{2} \gamma
$$

- Page 24: In Eq. (3.17) the second to last term on the right should be $\partial H / \partial p$, rather than $\partial H / \partial q$. Thus the full equation is

$$
\{q, H\}_{(q, p)}=\frac{\partial q}{\partial q} \frac{\partial H}{\partial p}-\frac{\partial q}{\partial p} \frac{\partial H}{\partial q}=1 \times \frac{\partial H}{\partial p}-0 \times \frac{\partial H}{\partial q}=\frac{\partial H}{\partial p}=\dot{q}
$$

- Page 25: In Eq. (3.22) the second term on the RHS should be $\partial H / \partial p$, rather than $\partial Q / \partial q$. Thus the full equation should read

$$
=\frac{\partial Q}{\partial q} \frac{\partial H}{\partial p}+\frac{\partial Q}{\partial p}\left(-\frac{\partial H}{\partial q}\right) .
$$

- Page 27: In Eq. (3.39) the integration should be over a dummy position variable, and thus should read

$$
W=\int_{0}^{q} p\left(I, q^{\prime}\right) d q^{\prime}
$$

Likewise, Eq. (3.40) should be

$$
\text { Area } \delta W=\int_{0}^{q} \delta p d q^{\prime}=\delta I \theta
$$

and Eq. (3.42)

$$
\theta=\frac{\partial}{\partial I} \int_{0}^{q} p\left(I, q^{\prime}\right) d q^{\prime}
$$

- Page 27: Eq. (3.43) is missing a $\partial / \partial I$ in front of the last integral on the line, i.e.

$$
\Delta \theta=\oint \frac{\partial \theta}{\partial q} d q=\oint \frac{\partial^{2} W}{\partial q \partial I} d q=\frac{\partial}{\partial I} \oint \frac{\partial W}{\partial q} d q
$$

- Page 28: The ℓ s in the arguments of the functions in Eq. (3.46) should be I s

$$
\phi(\theta+2 \pi, I)=\phi(\theta, I), \quad \ell(\theta+2 \pi, I)=\ell(\theta, I)
$$

- Page 29: Eq. (3.56) is missing a ω in the denominator

$$
\frac{2 H}{\pi \omega} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi d \phi
$$

- Page 29: Eq. (3.58) is missing some brackets

$$
\theta(t)=\omega t+\delta .
$$

- Page 32: The LHSs of Eq. (3.79) are missing some brackets

$$
\begin{array}{lll}
\omega(\Lambda) \rightarrow \omega_{0} & \text { as } & \Lambda \rightarrow 0 \\
\omega(\Lambda) \rightarrow 0 & \text { as } & \Lambda \rightarrow 1 \\
\omega(\Lambda) \rightarrow 2 \Lambda \omega_{0} & \text { as } & \Lambda \rightarrow \infty
\end{array}
$$

- Page 34: The y-axis label of Fig 3.6(b) and 3.6(c) have been switched. However, the caption gives the corrected description.

