1. A “classical” spin can be defined by a three-dimensional vector \mathbf{S} which has fixed magnitude $S = |\mathbf{S}|$ and can point in any direction. This is in contrast to a quantum spin which has the property that the component of its spin in the z-direction can have only certain discrete values. The state of each classical spin in a non-interacting paramagnet is defined by the co-ordinates θ (polar angle) and ϕ (azimuthal angle). Hence, in the presence of a magnetic field in the z-direction the energy of a spin with magnetic moment $\mathbf{m} = \gamma \mathbf{S}$ is

$$E(\theta, \phi) = -\mathbf{m} \cdot \mathbf{B} = -\gamma BS \cos \theta$$

(a) Evaluate the partition function for a set of N non-interacting spins in thermal equilibrium at temperature T.

(b) Evaluate the internal energy U as function of B and T.

(c) Show that the magnetisation is $M(B, T) = M(B, T) \hat{z}$ where

$$\frac{M(B, T)}{N} = \gamma S \coth \left(\frac{\gamma BS}{k_B T} \right) - \frac{k_B T}{B}$$

(d) Find expressions for $M(B, T)$ at high and low temperatures. Explain why your expressions make physical sense.

(e) Sketch the magnetisation as a function of temperature, for two different values of the magnetic field, B_1 and B_2, where $B_2 = 2B_1$.

2. Schroeder: Problem 7.5