Home Research
Publications
CV
Teaching
Downloads
Links
Personal stuff

Summary citation metrics (Web of Science, last updated March 2020)

h-index: 35
Total citations: 3777

More than 2000 citations in the last eight years
.
Total number of refereed journal articles: 86


For full citation metrics and a listing of all my publications, see my page at publons.com

Google Scholar records my h-index as 42, with 6285 citations.

Book (edited)

Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics
Edited by: Nick Proukakis, Simon Gardiner, Matthew Davis, Marzena Szymańska.
World Scientific
Amazon.com

"This book should be the first reference point for learning about various theoretical approaches to describing quantum gases. The editors and contributors have created a unique book with well-written articles, meaningful comparisons of various approximation schemes, a uniform notation and more than one thousand references. In addition, the book features introductory chapters and up-to-date review articles of experimental methods and current frontiers. The completeness and depth of the presentation are impressive." --Wolfgang Ketterle, MIT-Harvard Center for Ultracold Atoms & Nobel Laureate

Quantum Gases: Cover


Preprints

Dynamical mechanisms of vortex pinning in superfluid thin films
Oliver R. Stockdale, Matthew T. Reeves, Matthew J. Davis

arXiv:2102.04712

Bistability and nonequilibrium condensation in a driven-dissipative Josephson array: a c-field model
Matthew T. Reeves, Matthew J. Davis
arXiv:2102.02949

Emergence of off-axis equilibria in a quantum vortex gas
Matthew T. Reeves, Kwan Goddard-Lee, Guillaume Gauthier, Oliver R. Stockdale, Hayder Salman, Timothy Edmonds, Xiaoquan Yu, Ashton S. Bradley, Mark Baker, Halina Rubinsztein-Dunlop, Matthew J. Davis, Tyler W. Neely
arXiv:2010.10049

Superfluid critical velocity of an elongated harmonically trapped Bose-Einstein condensate
Chao Feng, Matthew J. Davis
arXiv:1909.13657

2020

86. Universal expansion of vortex clusters in a dissipative two-dimensional superfluid
Oliver R. Stockdale, Matthew T. Reeves, Xiaoquan Yu, Guillaume Gauthier, Kwan Goddard-Lee, Warwick P. Bowen, Tyler W. Neely, Matthew J. Davis
Phys. Rev. Research 2, 033138 (2020).
arXiv:1912.09535

85. Truncated Airy beam dynamics in wavelet-based representations
David Colas, Fabrice P. Laussy, Matthew J. Davis
Phys. Rev. Research 2, 023337 (2020).
arXiv:1912.10408

84. Thermalization of a quantum Newton's cradle in a one-dimensional quasicondensate,
Kieran F. Thomas, Matthew J. Davis, Karen. V. Kheruntsyan
Physical Review A 101, 033615 (2020).
arXiv:
1812.01585

83. Influence of quantum fluctuations on the superfluid critical velocity of a one-dimensional Bose gas
Chao Feng, Matthew J. Davis
European Journal of Physics D 74, 86 (2020).
arXiv:1910.12347

82. Floquet analysis of time-averaged trapping potentials
Oliver A. D. Sandberg, Matthew T. Reeves, Matthew J. Davis
Physical Review A 101,
033615 (2020).
arXiv:1909.13623

81. Decaying quantum turbulence in a two-dimensional Bose-Einstein condensate at finite temperature
Andrew J. Groszek, Matthew J. Davis, Tapio P. Simul
a
SciPost Phys. 
8, 039 (2020).
arXiv:1903.05528


2019

80. Quantitative acoustic models for superfluid circuits
Guillaume Gauthier, Stuart S. Szigeti, Matthew T. Reeves, Mark Baker, Thomas A. Bell, Halina Rubinsztein-Dunlop, Matthew J. Davis, Tyler W. Neely
Physical Review Letters. 123, 260402 (2019).

arXiv:1903.04086

79. Coherent vortex dynamics in a strongly-interacting superfluid on a silicon chip
Yauhen P. Sachkou, Christopher G. Baker, Glen I. Harris, Oliver R. Stockdale, Stefan Forstner, Matthew T. Reeves, Xin He, David L. McAuslan, Ashton S. Bradley, Matthew J. Davis, Warwick P. Bowen
Science 366, 1480 (2019).
arXiv:1902.04409

78. Formation of nonlinear X-waves in condensed matter systems
David Colas, Fabrice P. Laussy, Matthew J. Davis
Physical Review B 99, 214301 (2019).
arXiv:1903.12357

77.
Giant Vortex Clusters in a Two-Dimensional Quantum Fluid
G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. Baker, T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, T. W. Neely
Science 364, 1264 (2019).
arXiv:1801.06951

2018

76. Phase and micromotion of Bose-Einstein condensates in a time-averaged ring trap,
Thomas A. Bell, Guillaume Gauthier, Tyler W. Neely, Halina Rubinsztein-Dunlop, Matthew J. Davis, Mark A. Baker

Physical Review A 98, 013604 (2018).
arXiv:1802.05488

75.
Negative-mass effects in spin-orbit coupled Bose-Einstein condensates
D. Colas, F. P. Laussy, M. J. Davis,
Physical Review Letters 120, 034504 (2018).
arXiv:1801.04779


74. Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
J. C. Zill, T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, M. J. Davis,
SciPost Physics 4, 011 (2018).

arXiv:1705.09168

73. Vortex Thermometry for Turbulent Two-Dimensional Fluids,
A. J. Groszek, M. J. Davis, D. M. Paganin, K. Helmerson, T. P. Simula,
Physical Review Letters 120, 034504 (2018).
arXiv:1702.05229

2016

72. Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap
C. J. E. Straatsma, V. E. Colussi, M. J. Davis, D. S. Lobser, M. J. Holland, D. Z. Anderson, H. J. Lewandowski, E. A. Cornell,

Physical Review A 94, 043640 (2016).
arXiv:1608.07248


71. Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing mode oscillations as a case study,
I. Bouchoule, S. S. Szigeti, M. J. Davis, K. V. Kheruntsyan

Physical Review A 94, 051602(R) (2016).

arXiv:1602.07889

70. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,
G. Gauthier, I. Lenton, N. McKay Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop and T. W. Neely,
Optica 3, 1136 (2016).
arXiv
:1605.04928

69. A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium correlations of the one-dimensional Bose gas,
J. C. Zill, T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, and M. J. Davis,
New Journal of Physics 18, 045010 (2016).

arXiv:1601.00434

68. Bose-Einstein condensation in large time-averaged optical ring potentials
T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, H. Rubinsztein-Dunlop,

New Journal of Physics 18, 035003 (2016).
arXiv:1512.05079

67. Quantum Enhanced Measurement of Rotations with a Spin-1 Bose-Einstein Condensate in a Ring Trap,
S. P. Nolan, J. Sabbatini, M. W. J. Bromley, M. J. Davis, and S. A. Haine,
Phys. Rev. A 93, 023616 (2016).
arXiv:1511.03364

Growth of Bose-Einstein condensates,
M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner, N. P. Proukakis,
Chapter in "Universal Themes of Bose-Einstein Condensation",
edited by D. W. Snoke, N. P. Proukakis and P. B. Littlewood (Cambridge University Press, 2016).  arXiv:1601.06197


2015

66. Coherence and linewidth of a continuously pumped atom laser at finite temperature,
G. M. Lee, S. A. Haine, A. S. Bradley, and M. J. Davis,
Phys. Rev. A 92, 013605 (2015).
arXiv:1506.00321

65. Spin-orbit coupled Bose-Einstein condensates in a one-dimensional optical lattice,
C. Hamner, Yongping Zhang, M. A. Khamehchi, Matthew J. Davis, and P. Engels

Phys. Rev. Lett. 114, 070401 (2015).
arXiv:1405.4048

64. Relaxation dynamics of the Lieb-Liniger gas following an interaction quench: A coordinate Bethe-ansatz analysis
Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, and Matthew J. Davis,

Phys. Rev. A 91, 023611 (2015).
arXiv:1407.4998


2014

63. Emergence of order from turbulence in an isolated planar superfluid,
Tapio Simula, Matthew J. Davis, Kristian Helmerson

Phys. Rev. Lett. 113, 165302 (2014).
arXiv:1405.3399

62. The miscible-immiscible quantum phase transition in coupled two-component Bose-Einstein condensates in 1D optical lattices,
Fei Zhan, Jacopo Sabbatini, Matthew J. Davis, Ian P. McCulloch
Phys. Rev. A 90, 023630 (2014).
arXiv:1403.4823

61. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: Complete relaxation of one-body observables
Tod M. Wright, Marcos Rigol, Matthew J. Davis, Karen V. Kheruntsyan

Phys. Rev. Lett. 113, 050601 (2014).

arXiv:1312.4657


History matters for a stirred superfluid, (Commentary)
Matthew J. Davis and Kristian Helmerson,

Nature 506, 166 (2014).


2013

60. Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid
T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney, E. M. Wright, K. J. H. Law, R. Carretero-González, P. G. Kevrekidis, M. J. Davis, and B. P. Anderson

Phys. Rev. Lett. 111, 235301, (2013).

arXiv:1204.1102

59. Dynamical tunnelling with ultracold atoms in magnetic microtraps
M. Lenz, S. Wüster, C. J. Vale, N. R. Heckenberg, H. Rubinsztein-Dunlop, C. A. Holmes, G. J. Milburn and M. J. Davis,
Phys. Rev. A 88, 013535 (2013).
arXiv:1011.0242

58. Condensation and quasicondensation in an elongated three-dimensional Bose gas,
Michael C. Garrett, Tod M. Wright, and Matthew J. Davis,
Phys. Rev. A 87, 063611 (2013).
arXiv:1209.3297

Reconciling the Classical-Field Method with the Beliaev Broken Symmetry Approach
Tod M. Wright, Matthew J. Davis, Nick P. Proukakis
arXiv:1206.5472
Chapter in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series). N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. Imperial College Press, London (2013)


C-Field Methods for Non-Equilibrium Bose Gases
Matthew J. Davis, Tod M. Wright, P. Blair Blakie, Ashton S. Bradley, Rob J. Ballagh, Crispin W. Gardiner
arXiv:1206.5470
Chapter in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series). N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. Imperial College Press, London (2013).


2012

57. Causality and defect formation in the dynamics of an engineered quantum phase transition in a coupled binary Bose–Einstein condensate,
J. Sabbatini, W. H. Zurek, and M. J. Davis,
New Journal of Physics, 14, 095030 (2012).
arXiv:1208.5295  

56. Macroscopic Quantum Self-Trapping in Dynamical Tunnelling
Sebastian Wüster, Beata J.
Dąbrowska-Wüster, Matthew J. Davis
Phys. Rev. Lett. 109, 080401 (2012).
arXiv:1112.2086

55. Quantum kinetic theory model of a continuous atom laser
G. R. Dennis, Matthew J. Davis, J. J. Hope
Phys. Rev. A 86, 013640 (2012).
arXiv:1011.5296

54. Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas,
M. J. Davis, P. B. Blakie, A. H. van Amerongen, N. J. van Druten, K. V. Kheruntsyan,
Phys. Rev. A 85, 031604(R) (2012).
arXiv:1108.3608

2011

53. Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate,
J. Sabbatini, W. H. Zurek, and M. J. Davis,
Physical Review Letters 107, 230402 (2011).

arXiv:1106.5843

52. Many-body physics in the classical-field description of a degenerate Bose gas
T. M. Wright, N. P. Proukakis, and M. J. Davis
Physical Review A 84, 023608 (2011).
arXiv:1011.6289

51. Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling,
M. C. Garrett, A. Ratnapala, E. D. van Ooijen, C. J. Vale, K. Weegink, S. K. Schnelle, O. Vanio, N. R. Heckenberg, H. Rubinsztein-Dunlop and M. J. Davis,
Phys. Rev. A 83, 013630 (2011).
arXiv:1011.0296

2010

50. Multimode analysis of non-classical correlations in double-well Bose-Einstein condensates
A. J. Ferris and M. J. Davis,
New J. Phys. 12, 055204 (2010).
arXiv:1001.2041

49. Observation of vortex dipoles in an oblate Bose-Einstein condensate
T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson
Phys. Rev. Lett. 104, 160401 (2010).
arXiv:0912.3773
Physics Viewpoint by Peter Engels: Observing the dance of a vortex−antivortex pair, step by step

48. Vortex pairing in 2D Bose gases
C. J. Foster, P. B. Blakie, and M. J. Davis
Phys. Rev. A 81, 023623 (2010).
arXiv:0912.1675


2009

47. Observation of shock waves in a large Bose-Einstein condensate
R. Meppelink, S. B. Koller, J. M. Vogels, P. van der Straten, E. D. van Ooijen, N. R. Heckenberg, H. Rubinsztein-Dunlop, S. A. Haine and M. J. Davis
Phys. Rev. A 80, 043606 (2009).
arXiv:0907.3989

46. Quantum-limited metrology and Bose-Einstein condensates
S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla and C. M. Caves,
Phys. Rev. A 80, 032103 (2009).
arxiv:0906.0962

45. Numerical method for evolving the dipolar projected Gross-Pitaevskii equation
P. B. Blakie, C. Ticknor, A. S. Bradley, A. M. Martin, M. J. Davis and Y. Kawaguchi
Phys. Rev. E 80, 016703 (2009).
arXiv:0904.3440


44. Drag force on an impurity below the superfluid critical velocity in a quasi-one-dimensional Bose-Einstein condensate
A. G. Sykes, M. J. Davis and D. C. Roberts
Phys. Rev. Lett. 103, 085302 (2009).
arXiv:0904.0995

43. Dynamical formation and interaction of bright solitary waves and soliton in the collapse of a Bose-Einstein condensate with attractive interactions

B. J. Dąbrowska-Wüster, S. Wüster, and M. J. Davis

New J. Phys. 11, 053017 (2009).
arXiv:0812.0493

42. A comparative study of dynamical simulation methods for the dissociation of molecular Bose-Einstein condensates
S. L. W. Midgley,
S. Wüster, M. K. Olsen, M. J. Davis and K. V. Kheruntsyan
Phys. Rev. A 79, 053632 (2009).
arXiv:0811.2030


41. Atomic entanglement generation and detection via degenerate four-wave-mixing of a Bose-Einstien condensate in an optical lattice
A. J. Ferris, M. K. Olsen and M. J. Davis
Phys. Rev. A 79, 043634 (2009).
arXiv:0902.1793

40. Non-local pair correlations in the 1D Bose gas at finite temperature
P. Deuar, A. G. Sykes, D. M. Gangardt, M. J. Davis, P. D. Drummond, and K. V. Kheruntsyan
Phys. Rev. A 79, 043619 (2009).
arXiv:0812.4447


39. Quasi-condensation and coherence in the quasi-two-dimensional trapped Bose gas
R.N. Bisset, M.J. Davis, T.P. Simula and P.B. Blakie, ,
Phys. Rev. A 79, 033626 (2009).
arXiv:0804.0286

2008

38.  Detection of continuous variable entanglement without coherent local oscillators
A. J. Ferris, M. K. Olsen, E. G. Cavalcanti and M. J. Davis
Phys. Rev. A  78, 060104(R) (2008). (Rapid Communication)
arXiv:0806.3120

37. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh and C. W. Gardiner
Advances in Physics 57, 363 (2008).
arXiv:0809.1487

36. Spontaneous vortices in the formation of Bose-Einstein condensates
C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson
Nature 455, 948 (2008).
arXiv:0807.3323
News and Views article by Kris Helmerson: Surviving the transition
Full listing of online news items about this paper

35. Quantum Metrology: Dynamics vs. Entanglement
S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji and C. M. Caves
Phys. Rev. Lett. 101, 040403 (2008).
arXiv:0805.2180

34. Spatial Nonlocal Pair Correlations in a Repulsive 1D Bose Gas
A. G. Sykes, D. M. Gangardt, M. J. Davis, K. Viering, M. G. Raizen, and K. V. Kheruntsyan
Phys. Rev. Lett. 100, 160406 (2008).
arXiv:0710.5812

33. Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation
A. S. Bradley, C. W. Gardiner and M. J. Davis,
Phys. Rev. A 77, 033616 (2008)
arXiv:0712.3436

32. Superfluidity of an interacting trapped quasi-2D Bose gas
T. P. Simula, M. J. Davis, and P. B. Blakie
Phys. Rev. A 77, 023618 (2008)
arXiv:0711.1423

31. Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates
M. J. Davis, S. J. Thwaite, M. K. Olsen and K. V. Kheruntsyan
Phys. Rev. A 77, 023617 (2008)
arXiv:0710.4257

30. Versatile two-dimensional potentials for ultra-cold atoms
S. K. Schnelle, E. D. van Ooijen, M. J. Davis, N. R. Heckenberg, and H. Rubinsztein-Dunlop
Opt. Express 16, 1405 (2008).
arXiv:0801.2791


29. Dynamical instabilities of Bose-Einstein condensates at the band-edge in one-dimensional optical lattices
A. J. Ferris, M. J. Davis, R W. Geursen, P. B. Blakie and A. C. Wilson

Phys. Rev. A 77, 012712 (2008)
arXiv:0706.2744

2007

28. Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz
A. G. Sykes, P. D. Drummond, and M. J. Davis
Phys. Rev. A 76, 063620 (2007).
arXiv:0707.2422

27. Calorimetry of Bose-Einstein condensates
P. B. Blakie, E. Toth, and M. J. Davis,
J. Phys. B 40, 3273 (2007).

arXiv:0704.1735

26. Classical Region of a Trapped Bose Gas
P. B. Blakie and M. J. Davis,
J. Phys. B 40, 2043-2053 (2007).
doi:10.1088/0953-4075/40/11/007
cond-mat/0508669

25. Quantum depletion of collapsing Bose-Einstein condensates
S. Wüster, B. J. Dąbrowska-Wüster,  A. S. Bradley, M. J. Davis, P. B. Blakie, J. J. Hope, and C. M Savage.
Phys. Rev. A 75, 043611 (2007).
doi:10.1103/PhysRevA.75.043611
cond-mat/0609417


24. Monte Carlo techniques for real-time quantum dynamics
M. R. Dowling,
M. J. Davis, P. D. Drummond and J. F. Corney
J. Comp. Phys
. 220, 549 (2007).
quant-ph/0507003

23. Population and Phase Coherence during the Growth of an Elongated Bose-Einstein Condensate
M. Hugbart, J. A. Retter, A. Varòn, P. Bouyer, A. Aspect and M. J. Davis,
Phys. Rev. A 75, 011602(R) (2007) (Rapid Communication)
doi:10.1103/PhysRevA.75.011602
cond-mat/0602346

2006

22. Atom counting in ultra-cold gases using photoionisation and ion detection
T. Campey, C. J. Vale, M. J. Davis,
N. R. Heckenberg, H. Rubinsztein-Dunlop, S. Kraft, C. Zimmermann and  J. Fortágh,
Phys. Rev. A 74, 043612 (2006).
cond-mat/0607170


21. Entanglement properties of degenerate four-wave mixing of matter-waves in a periodic potential
M. K. Olsen and M. J. Davis,
Phys. Rev. A 73, 063618 (2006).
cond-mat/0601628


20. Fringe spacing and phase of interfering matter waves
O. Vainio, C. J. Vale, M. J. Davis, N. R. Heckenberg, and H. Rubinsztein-Dunlop,
Phys. Rev. A 73, 063613 (2006).
cond-mat/0601690

19. Critical temperature of a trapped Bose gas: comparison of theory and experiment
M. J. Davis and P. B. Blakie,
Phys. Rev. Lett. 96,
060404 (2006).
cond-mat/0508667

Unpublished: Quantum effects in the dynamical localization of Bose-Einstein condensates in optical lattices
B. J. Dąbrowska-Wüster, S. Wüster, A. S. Bradley, M. J. Davis and E. A. Ostrovskaya,
cond-mat/0607332


2005

18. Calculation of the microcanonical temperature for the classical Bose field
M. J. Davis and P. B. Blakie,
J. Phys. A 38, 10259
(2005).  
cond-mat/0508674

17. Projected Gross-Pitaevskii Equation for harmonically confined Bose gases at finite temperature
P. B. Blakie and M. J. Davis,
Phys. Rev. A 72, 063608
(2005).
cond-mat/0410496

16. The time-reversal test for stochastic quantum dynamics
M. R. Dowling, P. D. Drummond,
M. J. Davis and P. Deuar
Phys. Rev. Lett. 94, 130401 (2005).
quant-ph/0411185  
Nature commentary

2004

15. Foil-based atom chip for Bose-Einstein condensates
C. J. Vale, B. Upcroft,
M. J. Davis, N. R. Heckenberg and H. Rubinsztein-Dunlop
J. Phys. B 37, 2959-2967 (2004).

cond-mat/0406015

2003

14. The stochastic Gross-Pitaevskii equation II
C. W. Gardiner and
M. J. Davis
J. Phys. B 36, 4731-4753 (2003).
 
cond-mat/0308044

13. Microcanonical temperature for a classical field: application to Bose-Einstein condensation
M. J. Davis a
nd S. A. Morgan
Phys. Rev. A 68, 053615 (2003).

cond-mat/0307155

2002

12. Simulations of thermal Bose fields in the classical limit
M. J. Davis, S. A. Morgan and K. Burnett
Phys. Rev. A 66, 053618 (2002).
cond-mat/0201571

11. Energy dependent scattering and the Gross-Pitaevskii equation in two dimensional Bose-Einstein condensates
M. D. Lee, S. A. Morgan, M. J. Davis, and K. Burnett
Phys. Rev. A 65, 043617 (2002).

cond-mat/0211432

10. Growth of Bose-Einstein condensates from thermal vapour
M. Köhl, M. J. Davis, C. W. Gardiner, T. W. Hänsch, and T. Esslinger
Phys. Rev. Lett. 88, 080402 (2002).
cond-mat/0106642

9. Growth of a Bose-Einstein condensate: A detailed comparison of theory and experiment
M. J. Davis and C. W. Gardiner
J. Phys. B 35, 733 (2002).
cond-mat/0111444

2001

8. Dynamics of thermal Bose fields in the classical limit
M. J. Davis, R. J. Ballagh and K. Burnett
J. Phys. B 34, 4487 (2001).
cond-mat/0107515

7. Simulations of Bose fields at finite temperature
M. J. Davis, S. A. Morgan and K. Burnett
Phys. Rev. Lett. 87, 160402 (2001).
cond-mat/0011431

6. Interactions and entanglements in BECs
K. Burnett, S. Choi, M. J. Davis, J. A. Dunningham, S. A. Morgan and M. Rusch,
C. R. Acad. Sci. Paris Sér. IV, 2, 399-406 (2001).

Before 2001

5. Quantum Kinetic Theory VII: The influence of vapor dynamics on condensate growth
M. J. Davis, C. W. Gardiner and R. J. Ballagh
Phys. Rev. A 62, 063608 (2000).
cond-mat/9912439

4. Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
M. J. Davis, D. A. W. Hutchinson and E. Zarem
ba
J. Phys. B 32, p.3993 (1999).
cond-mat/9906334

3. Quantum Kinetic Theory of Condensate Growth: Comparison of Experiment and Theory
C. W. Gardiner, M. D. Lee, R. J. Ballagh, M. J. Davis and P. Zoller
Phys. Rev. Lett 81, 5266 (1998).
cond-mat/S9806295


2. Kinetics of Bose-Einstein Condensation in a Trap
C. W. Gardiner, P. Zoller, R. J. Ballagh, and M. J. Davis
Phys. Rev. Lett. 79, 1793 (1997).

quant-ph/9707037


1. Temporal characteristics and dynamics of gain-switched Cr:YAG lasers 
I. T. McKinnie and M. J. Davis
Pure Appl. Opt. 6, 759 (1997).