
6.3 Other Methods for Comparing Proportions

6.3.1 Odds Ratios

An alternative way of analyzing two groups in terms of how likely some outcome
is to occur is through an odds ratio. We saw how to calculate the odds of an
outcome in Section 1.4.3. For example, the probability of a mangrove snail
found on the trunk being yellow was estimated to be 0.1259. The odds of the
snail being yellow are then

0.1259
1− 0.1259

= 0.144 to 1.

Similarly, the probability of a mangrove snail found on the foliage being yellow
was 0.3728. The odds of the snail on the foliage being yellow are

0.3728
1− 0.3728

= 0.594 to 1.

Thus the ratio of the odds of being yellow between the foliage and trunk is

0.594
0.144

= 4.13.

That is, the odds of a foliage snail being yellow are 4.13 times the odds of a
trunk snail being yellow. This suggests that snails are more likely to be yellow
on the foliage than on the trunk, the same relationship we saw when looking at
proportions.

Nicotine Inhalers

A common use for odds ratios is to assess the effect of the presence of some
condition on certain outcomes. As an example, Bolliger et al. [4] describe
a randomized double-blind experiment on the effectiveness of oral nicotine
inhalers in reducing smoking. This involved 400 volunteers who had smoked at
least 15 cigarettes for at least 3 years, and who had tried to reduce their smoking
but had failed to do so. The subjects were given an oral inhaler to use as needed,
for up to 18 months, and were encouraged to limit their smoking as much as
possible. Nicotine inhalers were randomly assigned to half of the subjects while
the other half received a placebo.
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After 4 months the researchers recorded which subjects had sustained a reduc-
tion of at least 50% in the number of cigarettes smoked each day. Table 6.3.1
gives a two-way table of these results, with 26% of the nicotine group achieving
a smoking reduction compared to only 9% for the placebo group. The odds for a
reduction in the nicotine group are 0.26/0.74 = 0.3514 to 1, while in the placebo
group the odds are 0.09/0.91 = 0.0989 to 1. This gives an odds ratio of

OR =
.3514
.0989

= 3.55.

That is, the odds of sustaining a reduction in smoking after 4 months are 3.55
times higher if someone is using a nicotine inhaler2.

Table 6.3.1: Sustained reductions after 4 months of inhaler use

Nicotine Placebo
Reduction 52 18
No Reduction 148 182
Total 200 200

6.3.2 Confidence Intervals

Finding an odds ratio of 3.55 seems to suggest that there is evidence that nicotine
inhalers are beneficial in assisting the sustained reduction of smoking. However,
it should be clear by now that we are not happy with an estimate by itself. We
need some measure of precision. Could it be that there is really no effect and
the ratio of 3.55 was just due to sampling variability?

We can determine a confidence interval for the true odds ratio in a similar
way to those we have already calculated for means and proportions. The main
difference arises from the fact that odds ratios can never be negative but they can
be arbitrarily large. It is no surprise then that the sampling distribution for odds
ratios is going to be skewed to the right, so our methods based on the Normal

2Notice that in this sentence an odds ratio has been used but only one treatment has been
mentioned. This is typically what you will find when reading research articles and you should
always ask yourself what is the underlying group for the odds ratio. Typically it will be a control
group of some form, such as with the placebo treatment used in this study.
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distribution are not going to be appropriate. However, it turns out that if you
take the logarithm3 of the odds ratio then you get a statistic where the sampling
distribution can be approximated by the Normal. Here we find

log(OR) = log(3.55) = 1.267.

All we need now is the standard error of this statistic. The formula for this is
given by

se(log(OR)) =
√

1
a

+
1
b

+
1
c

+
1
d
,

where the counts a, b, c, and d are the four entries in the two-way table. From
Table 6.3.1, we have a = 52, b = 18, c = 148, and d = 182, giving

se(log(OR)) =
√

1
52

+
1
18

+
1

148
+

1
182

= 0.2950.

Now a 95% confidence interval for log(OR) is

1.267 ± 1.96× 0.2950 = 1.267 ± 0.5782,

giving the range (0.6888, 1.845) for log(OR). This is not what we want though,
since we are interested in the odds ratio itself, rather than its logarithm. We
can obtain the confidence interval for the odds ratio by raising e to the power
of each endpoint. This gives

(e0.6888, e1.845) = (1.991, 6.328).

Thus we are 95% confident that the odds of a sustained reduction in smoking
is between 1.99 and 6.33 times higher when using a nicotine inhaler.

If we were testing a null hypothesis that the nicotine inhaler had no effect on
the reduction of smoking then we would expect an odds ratio of 1. This would
mean that the odds were the same for both groups. Since 1 is outside the con-
fidence interval we have found, we have evidence against this null hypothesis,
suggesting that nicotine inhalers are effective.

6.3.3 Logistic Regression

One reason that odds ratios are often used, instead of proportions, is because of
their link to logistic regression. In Section 2.4 we saw that it was not possible to

3Unless otherwise stated, all logarithms are natural logarithms. We write “log” for “loge”.
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model the relationship between a categorical response variable and a quantitative
predictor using standard linear regression. The alternative was to use logistic
regression instead, and this was achieved by fitting a straight line to the logarithm
of the odds.

The example we used in Section 2.4 looked at the relationship between height
and p, the probability that a person is male. Logistic regression gave the straight
line

log
(

p

1− p

)
= −30.513 + 0.176x,

where x was height in centimetres. The “logarithm of the odds” is affectionately
called the “log odds”. We rearranged this for p, giving the logistic curve shown
in Figure 2.4.1. However, we can also use it directly to calculate odds and odds
ratios.

As an example, suppose we want to estimate how much more likely it is for
a person to be male if they are 170 cm tall rather than 160 cm tall. We could
estimate the individual odds by substituting 170 and 160 into the straight line
equation and taking exponentials of each, and then finding the ratio. However,
it is slightly easier to remember that the log of a ratio is the difference of the
logs, and then use this to work out log(OR) directly. Here we have

log(OR) = (−30.513 + 0.176× 170)− (−30.513 + 0.176× 160)
= 0.176× 10 = 1.76.

Thus the odds ratio is e1.76 = 5.81, so the odds of a person who is 170 cm tall
being male are 5.81 times the odds of a person who is only 160 cm tall.

Note that the intercepts cancel out when doing this calculation so all that matters
is the slope. This value, 0.176, can thus be interpreted as the rate of increase
in the log odds for each unit increase in the explanatory variable. This is
analogous to the interpretation of slope for standard linear regression, to be
discussed further in the next chapter.

Assuming that log odds can be described by a straight line means that the rate
of increase is constant across all values of the explanatory variable. Thus the
odds ratio of being male between 180 cm and 170 cm will be the same as the
odds ratio between 170 cm and 160 cm, 5.81 from above. Of course, this may
not always be a realistic assumption in practice.
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6.3.4 Adjusted Odds Ratios

Logistic regression was used to estimate the log odds of being male for a par-
ticular height, x, using the straight line

log
(

p

1− p

)
= −30.513 + 0.176x.

However, regression can also be carried out when there is more than one ex-
planatory variable. It turns out that a better estimate of the log odds of being
male can be calculated by

log
(

p

1− p

)
= −93.5 + 0.232x1 + 1.883x2,

where x1 is height and x2 is shoe length, both in centimetres. For example, if
a person is 170 cm tall but has a shoe which is 29 cm long, then

log
(

p

1− p

)
= −93.5 + 0.232× 170 + 1.883× 29 = 0.547,

so the odds of being male are e0.547 = 1.73 to 1, suggesting they are more likely
to be male. Knowing only that they were 170 cm tall, the original relationship
gives a log odds of −0.593 and so the odds are 0.55 to 1. From these odds we
might have have thought that they were female.

We can do similar calculations with odds ratios. Previously we found that the
odds of being male were 5.81 times higher for someone 170 cm tall than for
someone 160 cm. Calculating the same odds ratio from the new model uses

log(OR) = (−93.5 + 0.232× 170 + 1.883x2)
−(−93.5 + 0.232× 160 + 1.883x2)

= 0.232× 10 = 2.32.

This gives an odds ratio of e2.32 = 10.2, much higher than the previous estimate
of 5.81. Note that it did not matter what the shoe length, x2, actually was, since
those terms cancelled out. Why then do we get a different odds ratio?

The reason is that adding shoe length has helped explain more of the variability
in the sex observations than could be explained by height alone. This has
allowed us to be more precise about the effect of height on probable sex, in this
case resulting in a higher odds ratio. We call this an adjusted odds ratio.
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Fake Tans and Indicator Variables

Beckmann et al. [3] carried out a study which illustrates a common use of
adjusted odds ratios. A telephone survey, with 2005 participants, was carried
out to explore the use of fake tanning lotions and its relationship with other
factors and outcomes. One of the questions asked was “Over the last summer,
did you get sunburn which was sore and tender the next day?” Table 6.3.2 shows
a two-way table of responses split by whether they said “Yes” to this sunburn
question and whether they had used a fake tanning lotion.

Table 6.3.2: Sustained reductions after 4 months of inhaler use

Sunburn
Fake Tanning Yes No Total

Yes 46 129 175
No 302 1528 1830

Total 348 1657 2005

From this table, the odds of sunburn for people who used a fake tanning lotion
are

46/175
129/175

= 0.3566 to 1,

while for those who did not use a fake tanning lotion, the odds of sunburn are

302/1830
1528/1830

= 0.1976 to 1.

This gives an odds ratio of

OR =
0.3566
0.1976

= 1.80,

so the odds of being sunburnt are 1.80 times higher if a fake tanning lotion was
used.

The log odds ratio is log(OR) = 0.588 with standard error se(log(OR)) =
0.183, giving a 95% confidence interval for log(OR) of (0.229, 0.947). Taking
exponentials, a 95% confidence interval for the odds ratio is

(e0.229, e0.947) = (1.27, 2.58).
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Since 1 is not in this range, there appears to be evidence then that fake tanning
lotions are associated with higher rates of sunburn.

The calculation of the odds ratio and its confidence interval are straightforward,
but caution must be used in such survey settings. The researchers were careful
to also ask “How often do you wear SPF 15+ or higher sunscreen?” The results
from this question showed that those who used a fake tanning lotion were more
likely to regularly use sunscreen than those who did not. This means that the
odds ratio of 1.80 will not truly reflect the effect of fake tan use on the odds of
sunburn, since the use of sunscreen will tend to decrease these odds. We say
that sunscreen use confounds the effect of fake tanning lotion use on sunburn
rates.

Logistic regression provides a way of isolating the effect of the use of fake
tanning lotion on the odds of sunburn by modelling the relationship with a
number of factors simultaneously. The explanatory variables in this case are
categorical. These are handled in regression using indicator variables. We
might define a variable

x1 =

{
1, if fake tanning lotion was used
0, if fake tanning lotion was not used

We can then find a linear relationship of the form

log
(

p

1− p

)
= b0 + b1x1

using logistic regression. The log of the odds ratio between those who used
fake tanning lotions and those who didn’t is then

(b0 + b1 × 1)− (b0 + b1 × 0) = b1,

so the odds ratio is simply eb1 . Logistic regression for this single variable gives

log
(

p

1− p

)
= −1.621 + 0.590x1.

Thus the odds ratio is e0.590 = 1.80, the same as before. Logistic regression
can also be used to give confidence intervals for these estimates.

However, with logistic regression we can also add more indicator variables to
the model, including factors such as sex, skin type, sunscreen use, hat wearing,
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protective clothing, and other sun-protection practices. We can then use the
coefficient of the fake tanning lotion variable to estimate the odds ratio, but now
it will have been adjusted to take into account the relationships between sunburn
and the other possible factors. In this case the authors reported an adjusted
odds ratio of 2.07, higher than when sunscreen use was not separated. The 95%
confidence interval (1.17, 3.69), so we can conclude that, even after taking other
factors into account, there is evidence that the odds of being sunburnt are higher
for those who used fake tanning lotions than those who did not.

6.3.5 Relative Risk

A simpler comparison between proportions is given by relative risk. This is the
ratio of the two probabilities of a certain outcome between two groups, rather
than the ratio of the odds. For example, the proportion of people using a fake
tanning lotion who were sunburnt was 46/175 = 0.2629 while for those not using
a tanning lotion the proportion was 302/1830 = 0.1650. This gives a relative
risk of

RR =
0.2629
0.1650

= 1.59.

That is, people using a fake tanning lotion are 1.59 times more likely to be
sunburnt.

As the name suggests, relative risks are popular in studies of factors affecting
the risk of diseases and accidents. For example, Åkerstedt et al. [1] followed a
sample of 47 860 individuals in Sweden over a 20-year period. In that time, 166
suffered fatal accidents at work. Of the total individuals, 5659 were classified
as having difficulties in sleeping, and of these 5659, 32 had fatal accidents. The
remaining 134 fatal accidents involved the 42 201 people who were not exposed
to sleeping difficulties. The increase in the risk of having a fatal accident can
be measured by

RR =
32/5659

134/42201
= 1.78.

This relative risk suggests that people with sleeping difficulties are 1.78 times
more likely to suffer a fatal accident at work.

Relative risks are not as commonly used as odds ratios because they do not have
the same simple statistical theory or rich relationship with logistic regression.
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