ELLIPTIC A, SELBERG INTEGRALS

SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

ABSTRACT. We use the elliptic interpolation kernel due to the second author to prove an A,
extension of the elliptic Selberg integral. More generally, we obtain elliptic analogues of the
A, Kadell, Hua—Kadell and Alba—Fateev—Litvinov—Tarnopolsky (or AFLT) integrals.

1. INTRODUCTION

In his famous 1944 paper [68], Atle Selberg evaluated the following multivariate extension
of Euler’s beta integral that now bears his name. For k£ a positive integer,

k
(1.1) Sk(a, B57) = /Hx;?“l(l—xi)ﬁl H @i — 22 day - - day,

[0’1],c =1 1<i<j<k

B ﬁ D(a + (i — D) + (i — D)L (1 + i)
it Tla+B+(k+i-2)y)T(1+y)

where a, 3, € C such that Re(a) > 0, Re(8) > 0 and
Re(vy) > —min{1/k,Re(a)/(k — 1),Re(B)/(k — 1)}.

The Selberg integral has come to be regarded as one of the most fundamental hypergeo-
metric integrals, a reputation which is upheld by its appearance in numerous different ar-
eas of mathematics such as random matrix theory [0, 24, 25, [47], analytic number theory
[4, 22, 27, 39, 40], enumerative combinatorics [38, [41], 42} [78], and conformal field theory
[2, 201 2], 49, 52, 67, [79, B0, 81]. For a review of the history and mathematics surrounding
Selberg’s integral the reader is referred to [26].

There are many important generalisations of the Selberg integral. One of the goals of this
paper is to unify most of these by proving an elliptic analogue of the Selberg integral for the
Lie algebra A,,, as well as elliptic analogues of the more general Kadell, Hua—Kadell and AFLT
integrals for A,. Before we describe the first of these generalisations, we remind the reader
of the elliptic analogue of the ordinary (or A;) Selberg integral and of the (non-elliptic) A,
Selberg integral.

Fix p,q € C such that |p|, |¢| < 1, and let

o o

1— pz-i-lq]-i-l/z
Fp,l](z) = H 1 — pigiz
i2=0 P
be the elliptic Gamma function [65]. This function, which has zeros at poTigNo+l poles at
pNog=No and an essential singularity at the origin, is symmetric in p and ¢ and satisfies the
reflection formula
(1.2) Lpq(2)pq(pa/2) = 1.
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As is by now standard, in the following we adopt the multiplicative shorthand notation
Lpo(z1,..0,2n) =T q(21) - T'pq(2n) as well as the plus-minus notation

T,q(az®) =T, (az,az7h),
T,q(azFw®) =T (azw, a2z 'w, azw™ az ™).
Again assuming that |g| < 1, let (a;q)ec = [[;50(1 — aq') be the infinite g-shifted factorial.
Then the elliptic Selberg density is defined as [58| [70]

+ 4\ k
Lpq(tz; 25 ) H Lpq(t) Hf;ll“p,q(trzf)

(13) A(SV)(Zlv"'azk;tla"wtm;t;p’q) = g H + :|: 2 )
) Lpg(27)

Ty (223
1<i<j<k p7Q( j

i=1
where 21,..., 2k, t,t1,...,t;, € C* and
(1.4) _ k(s 0k
' 2R kl(271)F
The use of the superscript (v) is non-standard. Later we also need a companion density
Aée)(. ..5...;6Dp,q), and the superscripts (v) and (e) — v for vertex and e for edge of the A,
Dynkin diagram — have been added to avoid confusion. Assuming 0 < |¢|, |[t1],...,|ts| < 1 as

well as the balancing condition t?*=2¢; - - - tg = pq, the elliptic Selberg integral corresponds to

(1.5) /A”zl,.. 2kt te,tp,q)dz1 : dzk’ H(pqtz II oo 1tt)>
Tk

i=1 1<r<s<6

where T* denotes the complex k-torus. For k = 1 the above integral is Spiridonov’s elliptic
beta integral [69]. For general k the integral evaluation was conjectured by van Diejen
and Spiridonov [17, 18] and proved by the second author [59]. Alternative proofs have since
been given by Spiridonov [71] and by Ito and Noumi [34]. A rigorous proof that simplifies
to the Selberg integral upon taking appropriate limits was presented in [58].

Elliptic beta and Selberg integrals are not just of interest from a special functions point
of view, corresponding to the top-level results in the classical-basic—elliptic hierarchy of hy-
pergeometric integrals. In 2009 Dolan and Osborn [19] made the important discovery that
supersymmetric indices of supersymmetric 4-dimensional quantum field theories take the form
of elliptic hypergeometric integrals. As a consequence, many conjectural Seiberg dualities for
such quantum field theories imply transformation formulae for the corresponding indices, and
hence for elliptic hypergeometric integrals. Since this discovery, elliptic hypergeometric inte-
grals and their transformation properties play an important role in the study of dualities in
quantum field theory, see e.g., [28 29] 53], [62), [73], [74), [75] [76]. Another surprising application
of elliptic hypergeometric integrals — not unrelated to the supersymmetric dualities, see the
survey [30] — has been the construction of novel Yang—Baxter solvable models with continuous
spin parameters [7, 8, 9] [72], generalising many famous exactly solvable discrete spin models
such as the Ising and chiral Potts models. These connections between elliptic hypergeomet-
ric integrals and quantum field theory and integrable systems provide further motivation for
generalising the integral evaluation to A,
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To succinctly describe the non-elliptic A,, Selberg integral, we define

A(z) = H (i —xj) and A(z;y): HH

1<i<j<k i=1j=1
for x = (z1,...,2%) and y = (y1,...,y¢). Let 0 =: kg < k1 < --- < kj,, be nonnegative integers
and, for 1 < r < n, denote by (") = (:):Y), ey x,(c?) a k.-tuple of integration variables. Further
let aq,...,an, 3,7 € C satisfy
(1.6a) Re(3) > 0, kn|Re(v)] < 1, Re (B + (kn — 1)v) > 0,
(1.6b) Re(ar+--‘+as+(r—s+i—1) ) >0 forl<r<s<nandl1<i<k —k_1.

Then the A, Selberg integral refers to the integral evaluation

(1.7) / 1‘{( 27H (r) ar—l _mgr))ﬁr—l)

chetngo ) T
n—1
« H ‘A(lﬂ(r);I(Hl))‘_l dz@ ... dz™
n kr . .
“TI1I L@)L(Br + (i = kry1 — 1)7)
r=1i=1 F(’Y)
kp— l‘37 1 .
F(ar+--'+as+(r—s+z—1)v)
. H H I'(Bs +« At as+ (ks —ksp1+i+r—s5—2)7)’
l<r<s<n =1 s r s s s+1 Y
where 81 =+ = fBh_1 =1, B, := 8 and ky41 := 0.
The origin of the restrictions gy = -+ = f,-1 = 1 and k1 < ... < k, is representation

theoretic. Let g := sl,41, h the Cartan subalgebra of g and h* its dual. For I := {1,...,n},
let {a;}tier € b*, {witier € b* and {aiv}iej € b be the set of simple roots, fundamental weights
and simple coroots of g, so that <a ,wj) = 6; ;. Finally, let Py C b* be the set of dominant
integral weights, i.e., u € Py if (u, o)) € NO foralli € I. Now fix p = >, ;(pi —1)w; € Py and
v=>y . ;(—1)w; € Py such that v = =v,—1 = 1, and let V,, and V,, be two irreducible
g-modules of highest weight 4 and v respectively. Then the following multiplicity-free tensor-
product decomposition holds:

VeV, = @ V,u-l—V—Z?:l kio+

0<k1 <--<kn
ptv=> i kia,€Py
The ai,...,a, and 5, in (1.7 are essentially continuous analogues of ui,...,u, and vy,
respectively, and 51 = yz =1 for all 1 < i <n-— 1

chain. Its precise form is not needed in thrs paper and the 1nterested reader is referred
to [3, [79] [82], B3] for details. For n = 1 the integration chain is independent of v and simplifies
to the k-simplex

Cro, ] ={zeR :0<ay < - < <1}
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Up to a factor of k!, the n = 1 case of is thus the original Selberg integral . For
n = 2 the evaluation (|1.7)) was first given by Tarasov and Varchenko [79], and for general n it
is due to the third author [83]. There is also a finite field analogue of due to Riményi
and Varchenko [63] which is not covered in our elliptic generalisation below.

To state the elliptic A,, Selberg integral we introduce some further notation. For z =
(21,...,2k) € (C)*, w = (wy,...,wy) € (C*) and ¢ € C*, define

kL
(1.8) Aée)(z; w; e p,q) = H H | (cziiw]j-:).
i=1j=1
Whereas the elliptic Selberg density should be viewed as the elliptic analogue of the
integrand of the Selberg integral , the above function for ¢ = (pg/t)"/? plays the role of
|A(x;y)| ™7 in the elliptic analogue of . This same special case of previously appeared
in the study of elliptic integrable systems, see e.g., [5, 43| [66] and, as shown in [43] [60], satisfies
a remarkable duality with respect to the 8-parameter van Diejen difference operator [16].
We now combine the two elliptic Selberg densities to form the A, elliptic Selberg density

(1.9) As(zW, 2ty tansai it p, )
n—1
= H <A(SV) (275 "My 1, M 1T [tapan 1T [tari2i 6D, q)
r=1

x AL (20020 e, q) )

X Aév) (Z(n) s ton—1, tans tant1, tant2, tont, tanta; 6D, 4),

where z(") = (zgr), cen z,i:)) Suppressing the dependence on ¢, t,t1,...,tont4, P, q, the individ-

ual densities making up the A,, density should be thought of as corresponding to the vertices
and edges of the A,, Dynkin diagram as follows:

N ALY (2@) AD () A (zn-1)) AP ()
-~ o~ ~ .
! &/ 3 )
A(Se)(Z(l)’Z(Q)) A(Se)(Z(Q),Z(S)) A(S@(z("—l)’z(n))
i dz ._ d d
Finally, for z = (21,...,2), we let <% := Zill . Zikk

Theorem 1.1 (A, elliptic Selberg integral). Let n be a positive integer and ki, ..., ky integers
such that 0 =: kg < k1 < -+ < ky. For p,q,t € C* such that |p|, |q|, [t|, |pg/t| < 1, fiz a branch
of c:= (pq/t)l/Q, and let t1, ..., topyra € C* such that the balancing condition

(1.10) thr e thn =20 tortontitontotonsstonsa = pg

holds for all 1 < r < n. Then

dzM dz)
(111) AS(Z(I), cey Z(n); tla . ,t2n+4; C; t’p’ q) - ..

z(l) z(n)
n kr—kr—1 kn
=] I T t "' tarata) 11 T Toq " tets)
r=1 =1 2n+1<r<s<2n+4 i=1
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kr_krfl

X H H Ty (ttor—1/tos—1, t"tor [tas—1, t'tor—1/tos, tta, [tas)
I<r<ss<n =1

n 2n+4 krfkrfl

XH H H Ly g (8 Hop_1ts, t' Mats),

r=1s=2n4+1 =1
where 2(1) = (zy), . ,z,(g:)) forall1 <r < n.

The (k1 + - -+ + ky)-dimensional contour of integration of the A, Selberg integral has the
product structure

Ci X xCOyxCyx--xCOyxeeee-- X Cp X -+ X Chy,
—,_/
k1-times ko-times kn-times

where C, for each 1 < r < n is a positively oriented smooth Jordan curve around 0 such that
C, = C 1. Moreover, for 1 < r < n — 1, the elements of the sets

(1.12a) ¢ Morysop' ¢, 1" P0G (1< 5 <2), g 0C,, g™ Criy
all lie in the interior of C)., and the elements of
(1.12b) toron—2pq0 (1< 5<6), tphogoC,, cpogoC,

all lie in the interior of C,, where Cy := 0. These conditions on the C, in particular imply
that ¢2C, € int(C;) for 2 < r < n, explaining why |c?| = |pg/t| < 1. For n = 1 this restriction
can obviously be dropped. Furthermore, for n = 1 the balancing condition simplifies
to t2M17 21ty -ty = pq. Taking |t1],..., |t6| < 1 it then follows that (| is satisfied for
C =T, so that the integral reduces to . For n > 2 it is generally not poss1b1e to restrict
the parameters such that C,, = T for all 1 g r < n. For example, if C, =T for all r, it follows
from that ¢ "ty _1, " "oy, tc"_rtz_ril, tc”_rt2_1+2 all lie in the interior of T. By (1.10] -
and [t| < 1 this would impose the condition that ky41 — 2k, + k.1 > —1forall 1 <r <n—1.

All of the integral formulas listed thus far admit generalisations in which the integrand is
multiplied by an appropriate symmetric function or BC,,-symmetric function. In the case of
the most general such integral was discovered by Alba, Fateev, Litvinov and Tarnopolsky
(AFLT) [2] and contains a pair of Jack polynomials in the integrand. The AFLT integral
includes the well-known Kadell integral [37] (which contains one Jack polynomial) and the
Hua-Kadell integral [32, [36] (which contains two Jack polynomials but assumes § = 7) as
special cases. In our previous paper [3] the AFLT integral was extended to the elliptic case,
as well as to A,. In Section [ we unify both these results by proving an elliptic A,, AFLT
integral. In this integral the Jack polynomials in the integrand of the non-elliptic A,, AFLT
integral are replaced by a pair of elliptic interpolation functions [60]. Our approach to the
elliptic A,, Selberg and AFLT integrals is based on a recursion for a generalisation of the
elliptic interpolation functions, known as the elliptic interpolation kernel [61]. This differs
from the approaches taken in [3], where the non-elliptic A,, AFLT integral is proved using
Cauchy-type identities for Macdonald polynomials and the A; elliptic AFLT integral is proved
using known integral identities for elliptic interpolation functions.

The remainder of the paper is organised as follows. In the next section we review some
standard definitions and notation from the theory of elliptic beta integrals. Section [3]is devoted
to several classes of elliptic special functions, including the elliptic interpolation functions and
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the elliptic interpolation kernel. The latter forms the basis of our approach to Theorem In
Section [] we first discuss the original AFLT integral and its A,, analogue, and then state and
prove an elliptic A,, AFLT integral. As a special case this yields Theorem

2. ELLIPTIC PRELIMINARIES

Throughout this paper we assume that p, g € C* such that |p|,|q| < 1.

2.1. Partitions. A partition A = (A, \g,...) is a weakly decreasing sequence of nonnegative
integers A; such that only finitely many A; are nonzero. The nonzero A; are called the parts of
A, and the number of parts is the length of A\, denoted by [()\). Partitions are identified up to
the number of trailing zeroes, so that, for example, (3,1,1) = (3,1,1,0,...). We write & for
the set of all partitions and &2, for the set of all partitions of length at most n. In particular,
Py = {0}, with 0 the unique partition of 0. If the sum of the parts, denoted |\|, is equal to
some integer n, then A is said to be a partition of n, which is also written A - n. If A is a
partition, we write (i,j) € A to mean any pair of integers (4,7) such that 1 < ¢ < I[(\) and
1 < j < N\. If Xis a partition, its conjugate X is defined by X, := |{j € N : \; > i}|. For
example (7,4,2,1,1)' = (5,3,2,2,1,1,1). For a pair of partitions \, u we write p C X if p; < \;
for all 4. If A, p further satisfy Ay > 1 = Ao > po > --+ (Le., p C X and N, — u} € {0, 1} for all
i > 1), we write p < A. (In this case the skew shape A/ is known as a horizontal strip.)

We refer to elements of 9?2 as bipartitions, and to distinguish partitions from bipartitions
a bold font such as A is used for the latter. In particular, O denotes the bipartition (0,0). If
A=W XY and p = (u™, x?) are bipartitions then the notation g C A is shorthand for
the termwise inclusions x) € A and x C A®). The notation p < X is similarly defined.
For A € 222, the spectral vector (X),.t.p.q is given by

M AP no1 AP AP

<)\>n;t;p,q = (p/\l q , D72 g2 tn_Q’

(1) (2) (1) +(2)
oy pinmigtnig phe g )

so that
<(A(1)’ )\(2))>n;t;p,q - <(A(2)’ A(1))>n;t;q,p'

2.2. Elliptic preliminaries. A key ingredient in the theory of elliptic hypergeometric func-
tions is the modified theta function, defined as

0p(2) := (2;) o0 (p/ 2 P)oo>

for z € C*. This function is quasi periodic along annuli

(2.1) Op(pz) = _Zilep(z)v
satisfies the symmetry 6,(z) = —20,(1/2), and features in the functional equation
(2.2) Lpq(pz) = 04(2)Lpq(2)

for the elliptic gamma function.
For n an integer, the elliptic shifted factorial is defined as

Tpa(q"2)

(2.3) (2:¢,P)n = TG



ELLIPTIC SELBERG INTEGRALS 7

where it is noted that for n > 0,

n

(z:¢,0)n = [ [ Op(z4" ).

i=1

The elliptic shifted factorial has three important generalisations to partitions, given by

CV(z;q,t;p) : H (9 qu L= Z)

(4,3)EX

C (z:q,t:p) - H 0 2N )\’72')7
(4,5)€A

Cy (z:q,t:p) H 9 '_jt)‘;_i).
(i.3)€A

Note that C9(z;q,t;p) is sometimes denoted (2;g,t;p)x in the literature on elliptic hypergeo-
metric series.
For all of the functions defined above, condensed notation such as

CN (21, 2630, t5p) = CN (2154, ;D) -+ - O3 (205 ¢, ;D)

will be employed. As further shorthand notation we define the following well-poised ratio of
products of elliptic shifted factorials:

C(bi; q,t;p)
(pga/bi; q,t;p)’

0
A)\(a|bl"' n7q7t p ZE[lc

which satisfies the reflection equation

1

2.4 AR (alby, ..., bn; q, t;p) = '
(2.4) Alalby ) AY(alpga/by, . .., pga/bn; g, t; p)

To preserve p, g-symmetry in many of the elliptic functions and integrals considered in this
paper, we require an extension of the above definitions to bipartitions, and for any function

falar, .. an;q,tip) or fryu(ar, ... an;q,t;p) we define
(253') f)\(ah s 7an;t;p7 Q) = f)\(l)(ala v 7an;pat; q)f)\(Q) (ala <oy Qng qatap)a
(25b)  faulat,. . anitipg) = fro (@, - anp i a) fre e (ars - an g, 6 p).

Interchanging p and ¢ is thus the same as interchanging the two components of A and, in
the skew case, the two components of p. By (|1.2)) and (2.3]) followed by the use of the quasi
periodicity ([2.1), it may be shown that

n 1—i, A A@ i1 A A3 nADE®
(2.6) H Fp’q (at Zp t q v btz ' p o q ¢ ) — (@)ZZ Lo Z 0 (a/b|a. t.p q)
P I‘p’q(atl 1’ btz—l) ab )\ sy UMy 4 )y

for A € 222
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2.3. The Dixon and Selberg densities. In addition to the elliptic Selberg density (|1.3]), we
need the elliptic Dixon density

re Dpgltr2i®
AR

AD(Zlv""Zk‘;tl)'"7tm;p7q) = A H T (
1<i<j<k ~ P

with s given in ([1.4]). This is related to the Selberg density by
A(SV)(ZL ) Zk;th s 7tm;t;p7 Q)

=Ap(21,.. s 2k t1, -yt 60, ) Fl;’q(t) H I‘p’q(tzfz;[).
1<i<j<k

Apart from possible balancing conditions, or restrictions to certain subsets of the complex

plane, it will be assumed throughout this paper that parameters such as t1,...,t,,p,q,t are
in generic position.

We say that a function f : (C*)¥ — C is BCg-symmetric if f(z1,...,7;) is invariant
under the natural action of the hyperoctahedral group &}, x (Z/2Z)%. For f a BCj-symmetric
meromorphic function and t,ty,...,ts € C* such that |t| < 1, we define the Selberg average of
f as

1 dz
(2.7) (Fpottim AR /f (zit1, ot tip,a)

where Si(t1,...,ts;t;p, q) denotes the A elliptic Selberg integral (1.5)) and where it is assumed
that t?*=2¢; ...t = pg. The contour of the integral on the right has the form C*, where
C = C~!is a positively oriented smooth Jordan curve around 0 such that

teptogo (1< r <6), tphogoC,

as well as any sequence of poles of f tending to zero, excluding those cancelled by the univariate
part of the Dixon density, all lie in the interior of C. If f is analytic on (C*)* and |t1],..., |ts| <
1, we may take C = T.

3. ELLIPTIC INTERPOLATION FUNCTIONS AND THE INTERPOLATION KERNEL

The purpose of this section is to introduce the BC-symmetric elliptic interpolation functions
and the closely related interpolation kernel. The interpolation functions will play the role of
Jack polynomials in our elliptic analogues of the A,, AFLT, Kadell and Hua—Kadell integrals.
The interpolation kernel is a crucial ingredient in our proof of the various elliptic A,, Selberg
integrals, allowing us to establish a recursion in the rank n.

3.1. Elliptic interpolation functions. Below we give a brief review of the elliptic interpo-
lation functions. The reader may consult [I5] 57, 59, (60, [61), 64] for more complete accounts.
For p € 2% o = (z1,...,21) € (C*)* and a,b,t € C*, the BCg-symmetric elliptic interpo-
lation function is denoted by
R (z:a,b:t;p, q),
and consists of a g-elliptic factor and p-elliptic factor:

Ry (z;0,b:t:p,q) = R ) (x;0,b:p, 1 q) Ry ) (25 0, b5, 85 p).
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As usual in symmetric function theory, R§(x;a,b;q,t;p) = 1. We also adopt the convention
that R}, (z;a,b;t;p,q) = 0 if p is a bipartition such that p ¢ P2, ie., if the length of at least
one of M, 12 exceeds k.

The fundamental property of the elliptic interpolation functions is the vanishing

Ry (a{A) kstip,gs @, b 150, ¢) = 0

for all A € 927 such that p € A. The BCy-symmetric interpolation function R} (z;a,b;q,t;p)
generalises Okounkov’s BCg-symmetric interpolation Macdonald polynomial P (z;q,t,s), which
satisfies a similar vanishing property and contains the ordinary Macdonald polynomial P, (z; g, t)
as its top-homogeneous degree component; see [54, [56] for details. The interpolation functions
completely factorise under principal specialisation:

Ry (0(0) kstp gs 0, b 15 p, q) = ARt a/b|t*  av, a /v t; p, q).

If the parameters satisfy t*ab = pq then the interpolation functions are said to be of Cauchy
type and once again factorise:
(3.1) Ry (7;a,b;t;p,q) = Ag (tk_la/b|tk_1amf:, . ,tk_laxf;t;p, q).

The elliptic binomial coefficients

s = 00 )
B/ laplitipg pt) [a,b];p;t;q p? [a,b];q,t;p

are defined as normalised connection coefficients between the elliptic BCy, interpolation func-
tions:

(32)  Rx(;a,b;t;p,q)
Z<)\> AR (t*ta/b|t" " ad'st; p, ) R (2! bt pa)
= ria,0,0p,q).
N K [tk—La/b,a/a|;t;p,q A%(tk_la//b“k_laa/; t;p, Q) H

It may be shown that this definition is independent of the choice of £ and that <2>[ab

vanishes unless p C X. Moreover, for b = ¢t there is additional vanishing and

J;tip,q

A
(3.3) < > =0 unless p < A.
H7 a1)it:p,q
For notational purposes it is convenient to extending the definition of the elliptic binomials to
A Ag\(a|vlv"'7vk’;t;pa Q) A
(3.4) = X0(alb e :
F/ o] (vr,...v0) it u(a/ o1, - kit p,g) \p [a,b];t;p,q
By (2.4),
A AY it D, A
(3.5) < > - OA(“‘w P.q) < > :
K7 [a,b] (w1, o6, w,pqa/bw)itip,q Ax(albw;tip,q) \p [a@,b](v1,...;08)3tipyq

The reader is warned that the elliptic binomial coefficients for = 0 or & = X do not simplify
to 1:

C+ -
3.6 A — A(albit.p.q) and (2 _ Gilwtpag)
A +
0 [a,b];t;p,q A [a,b];t;p,q C)\ (a/b; t;p, Q)
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For b = 1 they trivialise to

A
(3.7) < > = O,
K/ fa) (o1, 0n)stipg

as follows immediately from the definition (3.2]). The elliptic binomial coefficients satisfy an
analogue of the elliptic Jackson sum as follows [57, Theorem 4.1] (see also [15, Equation (3.7)]):

A A
(3.8) Zﬁﬁ(a/bld,e;t;p,q)< > <“> =< > :
W F/ fablitspg \Y/ [a/b.e/b)itipa Y/ [a.c](bd,be)stip.g

where bede = apq.
Using (3.4)), the connection coefficient formula may be written more succinctly as

A

> Ry (z;d',b;t;p, q).
K/ [tk =1a/b,a/a')(tk~1aa )itip,q

(3.9) Ry(w;0,b;6p,q) = ) <
"

Choosing a’ = pq/t*b and using (3.1)) implies that
(3.10)  R)(w;a,b;t;p,q)

A
=> < > AY, (pq/th®|paas /th, . .., paxy; [thit; p,q).
. \H (=1 thab/pg](pga/th)itip.g

The elliptic binomial coefficients may be used to define suitable skew analogues of the inter-
polation functions, and for arbitrary \,v € 22 and k a nonnegative integer,

(3.11) R}, ([v1,. .., v2e); 0,045, q)
A
= A% (pq/b|pq/bvi, . .., pq/bvar; t; p, q) <u> g
I

[a/b,ab/pql;t;p,q < v > [pq/b2,pqV/abl;t;p,q

)

where a, b, t,v1,...,v9p € C*and V := vy - - - v9g. Obviously, we have vanishing unless v C A. It
follows from the definition that the skew interpolation functions are Gop-symmetric functions,
rather than BCy-symmetric. As explained in more detail in [3, [60], the use of the brackets
around the wvy,...,v9; is a reflection of the close connection with plethystic notation, see for

example, [3, Equation (6.7)]. Taking v = 0 in (3.11)) and using (3.6]) it follows that
R;/O([Ula ey UQk}; a, b7 tapa q)

is symmetric in vy, ..., v, a/V.
The definition of the skew interpolation functions combined with the elliptic Jackson sum-

mation (3.8) implies the branching rule
(312) R;/V(['Ul,...,U2k7w1,w2];a,b;t;p,q)

-3,

Taking wiwe = 1 and using (3.7)), this shows that

> Ry, ([v1, - vag]s a/wiws, bits p, q).
[a/bwiws](a/wi,a/wa2)itip.q

(3'13) R;/u([vlv cee 7v2k]; a, b; t; p, q)‘UQk—l'Ukal = R:/M([Ulv s 77}2]6*2]; a,b;t;p, Q)'



ELLIPTIC SELBERG INTEGRALS 11
By symmetry this extends to any pair of variables whose product is 1. Similarly, from (3.8))
with ¢ = 1 (so that A%(a/b|d, e;t,p,q) = 1) and (3.7)), it follows that
(314) R;/p,([];(%b; t;p, Q> = 5)\y.-
By (3.12)) with k£ = 0 this generalises to

* A
Ry (v, valia,bi 6 p, q) —< > .
[a/b, U1U2](a/’l}1,a/1)2); D,

Let vg;_q1v9; = ¢t for all 1 < i < k. Then, by (3.3] ., -, and induction on k, it
follows that Ri/u([vl, . v%] a, b t;p, q) vanishes unless there ex1st kW .. kW) € 22 such

that p < k) < ... < k) < X In particular, for g = 0 we have vanishing if X ¢ P2
A further consequence of (3.7)) is that for ab = pq

* A
Ry (o1, - vak]sa, b5 85 p, q) :Ag(a/bla/vl,---,a/v%;t;p,q)< > ;
[a/b,V]itip,q

so that in particular for ab = pq,
(3.15) Ry o([v1, - vak]sa, b5 85 p, q) = AS (a/bla/vy, ... a/vow, V;it;p,q).

Specialising (v, ..., vog; V) to (a:l,xl_l, e ,:I:k,:cgl;O) in (3.11)), using (3.6), and then com-
paring the resulting equation with (3.10) yields the nonvanishing case (i.e., A € 22) of
Rf\/o([tl/zml . ,tl/me]; th=172g 112 ¢, p, q)
= AR (" ta/olt; b p, ) R (21, - - wps a, b 8 p, ).
The above identity shows that, up to simple factor, the non-skew elliptic interpolation functions

are a special instances of the skew interpolation functions.
For our purposes it will be convenient to define the hybrid interpolation function

(3.16) R

(T1, T L, v, b5 5, q)

R /0([t1/2 E a2y, 2y tR 20, 8125 p, q)
A, (th=1a/b|th+ vy - - vyt p, )

for arbitrary pu € 22, so that

Ry (z1,...,o65—50,b54p,q) = Ry (21, .., 250,085 p, q).
By (8.13),
Ry (1, k5015502050505 65D, @) gy yvgp=17¢ = By (@1, -+ o, Th5 01, - -0 V2025 0, b8 p, @),

and, from the definition,

* . . . .
Ry (w1, w501, 0260550 D, )= (o)

= R (71, Tg1;01, - - -, V225 0/8, b5 5 p, q).
Also, from (3.15) it follows that for t*ab = pq the following generalisation of (3.1)) holds:
(3.17) Ry (1, .., 2501, ... 02050, 0585 p, q)

= Az(tk_la/b‘tk_laxf,...,tk 1amk,tk Yajvy, ..., t* Ta /v t, p, q).
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Finally, by (3.12)),
(3.18) Ry(x1,. ..,z 01, v2; at, by t5p, q)

Ry (1, .. zK50/v102, b3 p, q).

L <“> [tha/btviva](tFa/v t*a/ve,pqa/tbuiva);t;p,q

Recall our convention that parameters are assumed to be in generic position. Then both

R} (z1,...,7550,b5tp,q) and R, (21, ..., 2% v1,02; @, b;t;p, q) have sequences of poles in the
complex x;-plane converging to zero at
(319&) b_ltl_]qN0+1pZ, btj—quop—£7

for 1 < j <I(uM), 1<€§u§1),andat
(3.19D) b I pot gt pimTptog=t,

for 1 < j < l(,u(Q)), 1 <4< ,u(g). By symmetry, it has diverging sequences of poles in the

(]
complex x;-plane at the reciprocals of the above points.

3.2. The elliptic interpolation kernel. We now turn our attention to the elliptic interpo-
lation kernel, which was introduced by the second author in [61]. The interpolation kernel
generalises the elliptic interpolation functions and has many remarkable properties, making it
a powerful tool for proving results for elliptic hypergeometric functions. For more details the
interested reader should consult [45] [61], and for applications of the elliptic interpolation kernel
to elliptic hypergeometric integrals and dualities, see e.g., [10], 11, 14 33, 55, [61].

All the integrals described in this section are of the form [ f(z)<%, where z := (z1,..., 2x),
d; = dzz11 .- dz% and f(z) is BCg-symmetric. Moreover, the contour of integration is assumed
to always have the product structure C*¥ = C' x C x --- x C, where C' = C~! is a positively
oriented smooth Jordan curve around 0 such that a given set of points I lies in the interior
of C. For each of the integrals below we will explicitly describe this set.

For z,y € (C*)* and ¢,t € C*, the elliptic interpolation kernel K.(x;y;t; p, q) may be defined
recursively by fixing one of the initial conditions

+
['pq(cry yfc)

Re(==itipa) =1 or Kelospiitipa) = =5 "5
pP,a\™

and imposing the branching rule

k+1
[T Toaleaiyi)

Tyt ()T pq(c ) [lhicicichin Fp7q(t$iix;t)
dz

+ + +
x /’Cctm(Z; Y1y 60, ) Ap (222 P gy et p, q) —

(3.20) Ke(x1, . s Tha13Y1, - - Ykt 13 6D, q) =

where 2z := (21,...,2;) and I¢ is the union of the sets

t—le0+1 N0+1C’ tl/QxipNoqNo (1 < ’l k;"— 1)
ct™ 1/2 :tp No (1 < i < < k), c—lt—l/2y;|:+1pN0+qu0+1.
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The condition that ¢t~ 'pNot1gNo+1C lies in the interior of C' (which can be dropped if k& = 1)
requires that |pg/t| < 1. However, by the symmetry [58, Proposition 3.5]

Ke(z;y;pa/tip, @) = Tt (OK(zsystip, ) [[ Toaltafad tyfyy),
1<i<j<k

the interpolation kernel may be meromorphically extended to ¢t € C*. Additional symmetries
of the interpolation kernel, beyond the BCp-symmetry in both x and y, are

Ke(z;ystip,q) = Ke(y; 23, q) = Ke(sy5t5¢,0) = K—o(—259: 50, q).

Replacing (¢, x) — (—¢, —z) in and using K.(x;y;t;p,q) = K_o(—x;y; t;p, q), it follows
that the branching rule, and hence the interpolation kernel, is independent of the choice of
branch of ¢1/2. It should also be remarked that the symmetry in y is not at all evident from
the definition and is a consequence of the same symmetry for the formal interpolation kernel
of [61], Section 2].

By specialising one of 2,y t0 a(A).tp.q/c for X € P2 the interpolation kernel reduces to an
elliptic interpolation function:

k

(321)  Ke(®;a{Mrupa/citip,q) = Ra(wia,bip,9) [ |
=1

where b on the right is fixed by ¢? = tk_lab The kernel also factors if ¢ = (pg/t)'/? [61,
Proposition 2.10]:

(1) (2)
(pg/ab) 7T, 4 (axi, baf)
Lpq(t8, 1~ 1ab) ’

k
(3.22) Kpayorr2 (@ y3tip.q) = [] Toa((pa/0)2ayE) = AL (@1y; (pa/):0,q),
ig—=1

where we recall the definition of Aée) (as;y;c;p, q) given in (1.8) (which does not necessarily
assume that the alphabets x and y have the same cardinality).
The key property of the kernel from which our A,, integrals follow is [61, Theorem 2.16].

Theorem 3.1. Let k,¢ be nonnegative integers such that k < ¢, and b,c,d,t € C*, z :=
(21, 20) € (CHY, y = (y1,-- -, yk) € (C*)* such that |t|,|pq/t| < 1. Then
d
/ICC(:v;z,b, bt bt ) Kz ys b, ) A (25 87Fb, pa/bcd?; £ p, q) ZZ
= Kea(:y1, - - yp, bd, bdt, . .. bdt"* 7L t:p, q)

—k . ¢ + k I—k +
Fp,q(tl ZCQdQ) L'p q(bex;) ['pq (" bdy;")
<11 11 11

Iy q(t1—ic?) T4 (bed?a) paley T, (bc2dyF)

i=1
where z := (z1,...,2;) and Ic is the union of the sets

tpNoqNOC, t—leo-‘rl No-}—lc«’ te—kproqNo (bC2d2) le0+1qN0+1
ca g (1<i<0), dyp g™ (1<i<k).

Specialising ¢ = (pq/ t)l/ 2 we can use (3.22) and (I.2)) to obtain the following corollary.

INote that this expression is independent of the choice of branch for c.
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Corollary 3.2. Let k,£ be nonnegative integers such that k < £, and b,d,t € C*, z =
(z1,...,20) € (C), v := (y1,...,96) € (C)* such that |t|,|pg/t| < 1. Fiz c := (pq/t)"/>.
Then

dz

/ICd z; Y5t p, q )A( )( -t kp, t/bd?;t;p, q )A( )(z x;c;t; p,q)
:ch(x;yla"wyk‘abda bdt?"'abdtg_k_l;t;pa Q)

i k -
H Lpqe(t) [T Dot kbdyzivtyz /bd)
1 g tl/dQ [T, Tpq(bed?zE, cth=t+1zE /by

where z 1= (z1,...,2) and I is as in Theoremn 3. 1| with ¢ specialised accordingly.

If we further fix £ = k, specialise y = a(p)k:t,p,q/d and make the substitution
(a,b,d?) — (t1,ts, " tits),

we obtain the elliptic beta integral
dz
(3.23) /R zity,tastp, q )A( )(z tl,t27t37t4,cxit,.. cxk,t p,q) .

= R}, (w;cty, ctas t;p, q) A, (tk_ltl/t2|tk_1t1t3,tk_1t1t4)

H( I Tpat 't Hrpqctx )
1<r<s<4
where z := (21,...,2,), t,t1,ta,t3,t4, 1, .., € C* such that [t| < 1 and t* =2t totsty = 1.
As before, ¢ := (pgq/t)'/?, and I¢ is the union of the sets

t,p 0 (1< r<4), tp°g"°C,  cxrp™oq™ (1<r <k),

and the sets (3.194) and (3.19b) with b+ to. For g = 0 this is [12, Theorem 3.1, m = 0] due
to van der Bult, see also [60, [73].
A final result for the interpolation kernel that is needed is [61, Corollary 3.25].

Proposition 3.3. Let u € P2, v = (x1,...,11) € (C*)¥ and c, t,t1,to,t3,14,t5 € C* such that
2], lpg/t] <1 and
At Yotstats = pg.

Then
(v) dz
(3.24) Ke(x; 2t p, Q) Ry (231, tas 0, ) A8 (2582, 3, ta, t53 8, p, q) — ;
' 5
= H < I‘(tlfltrts) H F(Ctrl‘;t)>
i=1 “2<r<s<h r=2
m
XYy > R (wt1/c,ctait,p.q),
v \Vfth=1ty ft 2] (th=Ltats th =ty ta th—1tit5)itip.g

where z := (z1,...,2,) and Io is the union of

tpoghoc = 1pNotgNotlo g oo No (2 <r<bh), cau'ipNOqNO (1<i<k)

and the sets (3.19a)) and (3.19D) with b ts.
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We will use this to prove the following key result.

Theorem 3.4. Let p € P2, x = (x1,...,2;) € (C)* and c,t,ty,ts,t3,ts,v1,v2 € C* such
that

ty =tvy  and A Ntatsts = pg.
Then

dz
//Cc(ﬂf;Z;t;p, q)R% (201, v; thiviva, b3 69, ) AS? (23 11, b, B3, a3 1 p, q) —

ﬁ( I T et E[F(ctrxf)>

i=1 1<r<s<4

A?L(tktlvlvz/tz t"t1v15 85 p, q)
A9 (thtyvyvp /ta| Rt v1; 5 p, q)

Ry, (z; cvr, va/c; cttyvivg, ctas t; p, q),

where z := (z1,...,2) and I is as in Pmposz'tz'on with ts — tq.

Proof of Theorem[3.4 In the following we write I'(z) instead of ' 4(x), Kc(x;2) instead of
Ke(z; 25t p, q), and so on.
Setting t5 = ¢; in (3.24)), which implies the balancing condition c?tF~1t1tatsts = pq, gives

/IC 2 2) RY (211, 1) AL (2t o, B, ta) — dz
z

:f[< [ r@ 't Hr(ctm)>

1<r<s<4

X A (N ftolthyts, M ty) Y <“> RE (2511 /¢, cty)
v [th=1t1 [t ,c2](thk—1t2)

f[( I e ‘et HP(ct,xf))

= 1<r<s<4

x AD (M fto M M tg, VT ) R (w5 et et),
where the second equality follows from the connection coefficient formula (3.9). Multiplying
both sides by

)

<>\>
H [tk'tlvl’uz/tg,tvl’vg](tktl’ul,tktl’vg,pqtl/ttg)
where A € 2, and then summing over p, yields

d
//C x; 2) R\ (%; vl,vg,ttlvlvg,tg)A( )(z ti,to,t3,ty) — :
z
k 4
H( H tz lt t HF(Ctﬁﬂf))AO)\(tktl’Ulvg/tQ|tkt1t3’011)2,tkt1t41}12}2)
= r<s r=1

*
X g < > R, (w;cty, cta).
[tFt1vive /ta,tvrva](FFE1v1,tRE1v2,pgty [tha,pq/tat3,pq/tata)



16 SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

Here the sum over p on the left has been carried out by (3.18)) with (a,b) — (tjv1v2,t2). We
now also assume that ¢4 = tv;. Then the sum on the right may be simplified by (3.5) with
w — tktlvl to

Ag(tktlvlvg/tgltktlvl) Z A
AO}\ (tktlvlvg/tg |tk+1tlv%’02)

* .
> R}, (z; ct1, cta)
BT [#4tyv10g /o torvg) (2t 01,8581 v2,pgty [tt2)

AOA (tktlvva/t2|tkt1v1) %
— Ag\(tk’tlmvg/tg\tk“tw%vz) R (x; tevy, va/c; cttyvrvg, cta),

where the second equality follows from another application of (3.18)), now with

(a,b,v1,v2) — (ctyviv, cta, cv1,v2/c).

As a result,

dz
/Kc(l‘;z)Ri(z; Ul,v2;tt1v1vz,t2)ﬁg)(2; t1,t2,13,t4) -

k 3
=11 (F(ctmf) It ety [T (0, ctmf))
i=1

1<r<s<3 r=1
X AOA (tktlvlvg/tg\tktlvl, tktltgvlvg)R; (JZ; cvy, UQ/C; cttlvlvg, Ctg).

Replacing A by p and applying the reflection equation (2.4]) completes the proof. O

4. PROOF AND GENERALISATIONS OF THEOREM [L.1]

The goal of this section is to prove the A, elliptic Selberg integral of Theorem As
mentioned in the introduction, we will in fact prove an AFLT-type generalisation of the theorem
in which the integrand is multiplied by an appropriate product of BC,-symmetric functions.

Throughout this section we suppress dependence on p, ¢, t.

4.1. An A, elliptic AFLT integral. Before stating our main theorem we discuss the original
AFLT integral of Alba, Fateev, Litvinov and Tarnopolsky [2] and some of its special cases due
to Kadell [37] and Hua and Kadell [32], 36]. For convenience these results will be expressed in

terms of Selberg-type averages, and for f € Clxy,...,z;]% =: Ay, we define
k
k 1 _ _
<f>047/3;v = Si(ex, B;7) / @, m) sza (1= H i — " day - dag,
R\ 25 01" i=1 1<i<j<k

where Sk(«, 5;7) is the Selberg integral ([1.1)).

For v € C*, let P;\l/v) (x1,...,zk) be the Jack polynomial indexed by the partition A, see [40,
77]. Also define the normalised Jack polynomial

P)(\l/v)(xl, cey TE)
P, 1)

]5)(\1/7)@1, R RES

Then Kadell’s generalised Selberg integral is [37]

SNk (a+ (k—=i)y)\,
(41) <P)\ v >a,ﬁ;7_H (a+ﬁ+(2k_i—1)’y)>\i7

i1
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where (a), :=a(a+1)---(a+n—1) is the ordinary shifted factorial. In the case 5 = v, Kadell
further generalised this to a product of two Jack polynomials as [36]

= (1 (a+ (2k =i — )V)nituy
(4.2) (BB = H — o
Y (a4 (2k —i—j+ 1)) r+p

Since in the Schur case, v = 1, this integral was previously discovered by Hua [32], this last
result is commonly referred to as the Hua—Kadell integral.

To describe the AFLT integral, which unifies and , we need some basic plethystic
notation, see e.g., [3, BI, 44]. Let A be the ring of symmetric functions in infinitely (but
countably) many variables over C. Then the power sum symmetric functions are defined as
po := 1 and

pr=af bt
for r > 1. Since A = C[pl p2,...], any f € A admits an expansion of the form f =", capy,

where py = p, Py, - - - - Then for any £ € C and any alphabet z (infinite or finite), the expression
flx + €] is defined as

l()\)
(4.3) fle+¢: E:A

z:l

Clearly, if x = (z1,...,x) then flz+£&] € Ax. Moreover, f[z] = f(z) and (4.3) unambiguously
defines

flkl = f(1,...,1).
——
k times
Indeed, setting x = — (the empty alphabet) and £ = k for k € Ny gives the same result as

setting « = (1,...,1) (k ones) and § = 0.
For x = (z1,...,2%), let P\[z + & = Pylx + &]/Pylk + £]. Then the AFLT integral [2|
Appendix A] may be stated as

(44)  (P{")P “*”u-kﬁ/y—lwagw

ﬁ (k= )7, ﬁﬁ (@+ B+ 2k —i—j— )ain,

palet a—i—ﬁ—i— 2k m—1i—1)7)x, ke e (a4 B+ 2k —i = )V ritn

)

where A € P, p € & and m is any integer such that m > I(u). The Kadell and Hua—
Kadell integrals correspond to p = 0 and 8 = 7 respectively. As shown by Alba et al. [2],
the AFLT integral is important in conformal field theory, particularly in the verification of the
AGT conjecture for SU(2), see [1]. For further work on Selberg-type integrals and the AGT
conjecture the reader is referred to [13], 23] 35, [48], 49] 50, H11, [85] 86].

In our previous paper [3] we gave generalisations of the AFLT integral to the elliptic level
and to (non-elliptic) A,. Our next theorem unifies these results by providing an elliptic A,
AFLT integral. In the following we assume all the conditions of Theorem to hold, including
the fixing of a branch of (pq/t)!/2. For brevity we also suppress the dependence on p,q and t
in most of our functions, such as Ag(...;t;p,q), Ry(...;t;p,q) and T'p 4(2).
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For f : (C*)* x ... x (C*)*» — C a function which is BC}, -symmetric in the rth set of
variables, we define the elliptic A,, Selberg average as

1
<f>t1, ,t2n+4 ' Slf‘l" (tl, ..

<y t2n+4)

dz(M dz(m
/f )AS( (1),...,Z(n);tl,...7t2n+4;(pq/t)l/z)W...i

where S,?l" K (t1,...,tan+4) denotes the elliptic A,, Selberg integral (1.11]). In addition to the

conditions ([1.12a]) and (1.12b)), the contour C' = Cfl X --- x CFn (where as before C, is a
positively oriented smooth Jordan curve around 0 such that C, = C; ') should be such that
(r)

any sequence of poles of f in z;
which are cancelled by the univariate part of Ag (z(r); Ly tonta).

tending to zero lies in the interior of C)., excluding those

Theorem 4.1 (Elliptic A,, AFLT integral). Assume the conditions of Theorem and let
Tn — t2n+1t2n+2t2n+3/t2. Then
k17-~~7kn

(4.5) <R§\ (z; 7y, M) R, (2™); tonta/t, tanss /t; tTn, t2n+4)>

1yeestoan44
2n+4

2n
=[] A% fta|thra sty T A e fta|t5 at,)
r=3 r=2n+1

2n+3 n A (¢ ( "Tn/t2n+4|tk"t2r717—n)

X A, (77 1 [tonalttn Hop i1t
T 12_nI+2 n/fon S 7H2A2 nTn/t2n+4‘tkn"rk‘r—k’r—thT_lTn)

A% (7 o a7 8170 (N by st:p.q)
A% (tFn T [tonal P P11 T (N kystipg) |

where X € ‘@131 and p € P2

For n = 1 the theorem reduces to the A elliptic AFLT integral [3, Theorem 1.4]. In that
paper we applied the symmetry-breaking trick introduced in [58] to obtain the following AFLT
integral for Macdonald polynomials [3, Corollary 1.5]:

T /P”q’ ([ /c_t]’q’t)

Xﬁ(a/zi,q2¢/a;q)oo 11 ((zi/z]-,zj'/zz-;q)oo dz

(b/zi,czi3 ) t2i/ 25,2/ %5 Q)00 2

i=1

1—th 1 — betk—t
= b|>\|(t/c)#P)\<[ T } ;q,t)PM<[1_t];q, t)
acth—i— j+1q/\1+,u] q)

Xﬁ tactk Wm=ighi at!=? /b, qt'~ 1b/aqooHH
q, t, bet'=1, at!=ighi [b; q) oo Pt (acth—i=igitri: q)

1<i<j<k

[ee]
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Here A € Py, p € & and a,b,c € C* such that |b],|c| < 1E| Thus far, we have not been
able to replicate this procedure for the full A, elliptic AFLT integral, nor for the A, elliptic
Selberg integral of Theorem [1.1] However, one can show that under the natural generalisation
of the limiting procedure of our previous paper the evaluation of either the elliptic A,, Selberg
integral or elliptic AFLT integral reduce to g-analogues of their ordinary counterparts. To be
more specific, assume that 0 < p,q < 1 and scale the parameters t1,...,ton14 by

(tar_1,tor) — (tor_1, p" %ta,),
for 1 <r <nand

(tont1, tant2, tont3, tonta) = (t2n+17p71/4t2n+27 P o 43, p1/2t2n+4).

Then the p — 0 limit of the right-hand side of exists and may be expressed as a product
of g-shifted factorials. Now let aq,...,ap, 03,7 be as in the A, Selberg integral .

setting ¢ = ¢7, toniotonts = ¢° and to,_1tanq1 = ¢TI for 1 < r < n, so that by
the balancing conditions we have to,tontqa = qlfﬁ*a““'*a"*(kT*kr—ﬁk"*’”*”*Q)'Y, one
obtains a g-analogue of the A, Selberg integral evaluation, up to factor induced by the g¢-
reflection formula for the g-gamma function. Taking the ¢ — 1 limit of this expression then
produces the A,, Selberg integral evaluation up to a scalar. The same procedure works for ,
but one additionally needs the limit of the elliptic interpolation functions [3, Equations (6.7)].

Setting g = 0 in Theorem leads to the following generalisation of the Kadell integral.

Corollary 4.2 (Elliptic A,, Kadell integral). With the same conditions as Theorem and
for A € ﬁzkl,

<R§\(z(1);01_”t1,cl_”t2)> '
t1,.-tan+4
2n 2n+4
:HAg(tkl_ltl/t2|tk1t1/tr) H A (tF Ly Jto|th g t,).
r=3 r=2n+1

Similarly, imposing the constraint to,12to,+3 = t and using (3.13)) results in a generalisation
of the Hua—Kadell integral.

Corollary 4.3 (Elliptic A,, Hua—Kadell integral). Assume the same conditions as in Theo-
rem |1.1| with the additional constraint taptoton+s =t Then, for A, pu € QZkl,

k1,....kn
<R>‘( (1), L=y, (1= ”tz)R*( (n );t2n+1,t2n+4)>
t17~--at2n+4
2n 2n+4
= H AO}\(tkl_ltl/tﬂtkltl/tr) H Ag(tkl_ltl/tQ‘tkl_ltltT)
r=3 r=2n+1
2n+3
X H A?l,(tkniltn+1/t2n+4|tkn71t2n+1tr)
r=2n+2

y H AO (thn=Yton 1 [tonsa|tfn ~Lta,_1toni1)
A, tk" Yont1 [tonya|thnThr=kr—1=1¢5 _1ton11)

2In [3l Corollary 1.5] this was inadvertently stated with ¢ = 1, which would require a small indentation of
the contour T at 1.
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A?L (t* tona1 /tonsal P T iton 1 (N kystpg)
A (trn oy 1 /tonta |t titon 11 (N krstpg)

4.2. Proof of Theorems and Let 0 < ky <k < -+ < Ky, ¢ := (pg/t)"/? (with a
branch of ¢ fixed) and let t1,. .., to,+4 satisfy the balancing conditions (1.10)), i.e.,

tkl +k5n

_2t1t2t2n+1t2n+2t2n+3t2n+4 =pq
and
tkr_kT_l+kn_2t2r—1t2rt2n+1t2n+2t2n+3t2n+4 =pq

for 2 < r < n. The reason for restating these conditions as per the above, separating out the
r = 1 case, is that in what follows we will introduce an integer kg which, unlike in Theorem
will not be 0.

The task is to evaluate the integral

(4.6) SKL M by, tanga)

= / (Ri (Z(l); M, M) R, (Z(n); tont2/t, tonts/t; tTn, tanta)

dz(M dz(™
L) T L)

where 7, := tont1tontatonts/ t2. To this end we consider the more general problem of evaluating

X As(z(l), . ,z(");t17---,t2n+4§c)>

ko,k1,-.skn ( 1.
S}LD ! (xv t17 ce 7t2’n+4>

=/ (Kd(z(l);x)RZ(Z(");t2n+2/t,t2n+3/t; tTn, tonta)

y AS( O O t2n+4; c)\ dz(M .”dz(")
(Cl nt ) z(l) z(n) )

Here ko, k1,...,k, are integers such that 0 < ky < -+ < ky, x:= (21,...,Tky),
(4.7) d? = ARy ¢
and the ¢, ..., topt4 satisfy the modified balancing conditions
(4.8) thr—hrothn =2, tortonsitansatontstonta = pq
for all 1 <7 < n. By (3.21)) and (1.2),

k1

ki,.okn _ EPINCO INC P

(4.9) Sxp (s tonga) = H(Cm 2pq/tity) N ATT(H, AT M t)

i=1

X SRtk (T (A, [dst, - tonga)
where d on the right is given by with kg = 0.
Proposition 4.4. With the parameters satisfying the conditions and ,
(4.10) Sﬁo’kl""’k" (x3t1, ... toanta)
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k1
_ H (Ag (t*n 7 ftonga |t L dr,aE)
=1
2n 2n-+4
X HF(C”_Idtxii/tr) H F(cn_ldtrxli)>
r=3 r=2n+1
n ke— kn
X H H F (7 1ty,) H HF(ti_ltrts)
r=2 =1 2n+1<r<s<2n+4 =1
kr—kr—1

x H H T(t'tor—1/tas—1, t'tor [tas—1, t'tar_1 /tos, t'tay [tas)
2<r<s<n =1
n  2n+4 kr—kr—1
<IT II  TII TE “teats,t' oty
r=2s=2n+1 i=1
2n+3
x I A% 7/ tonalt™ Mo saty)
r=2n+2
% H Al (t* 7 [tontath tor—170)
AL tk"Tn/t2n+4|tk“+kT Fr—ity, _17n)

It is readily checked using (4.9) that by this implies Theorems and In particular,
from ([4.7) and the r = 1 case of ({A.8), pq = tF* "1 2d%1,to,, 4. Combined with (2.4)) this
yields

1
| S G A L o | IR

_ A%(tk”Tn/tgn_M ’tk”tlTn (A)kl )
A?L (tknTn/t2n+4|tk"+1t17'n<)‘>k1) '

Furthermore, by the same specialisation of the x;, (4.7]), (4.8) and (2.6 with
n— ki, a e R Jt, b A2 g, = Ry /e,

and
n ki, a— Nt b EV2dR TR, ) = Rty
respectively, we get

k1 2n
k (1)4(2)
H H F(cnfldtxz;t/tr) N (CanZtklfkn)Q Zlil AN
i=1r=3
2n
x [Tt/ te, 7 R0t /) AR (R0 1ty 1|08 /1)
r=3
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and
k1 2n+4 ko—k1+k k1 4 (1)4(2)
tRo—R1tRn N 235500, AN,
[T IT vty » (% —) ™
i=1 r=2n+1 1%2
2n—+4
X H T (6 gty 7R ot ) A (R0 1 Jto R 0 t,).
r=2n+1

Combining these three results, setting kg = 0 and using (4.9 implies Theorems and

Proof of Proposition[].4 Recalling the definition of the A,, Selberg density (1.9), and assuming
that n > 2, we have

Stk (@t taga)
= / (Kd (Z(l); x) R:L (Z(n) 5 t2n+2/t, t2n+3/t; tTn, t2n+4)

y AéV) (2(1); 1t Cn—lt/t4)Aée) (Z(l); 2. c)

X As(z(2), 2™ty -,t2n+4;6))

By Corollary with d as given in (4.7) and
(ka Ev b: Ty, ’Z) = (klv k27 cn_ltkl_k2+1/t3a 2(2),.1‘, z(l))v
we can carry out the integration over z(!). In particular we note that the above substitutions
imply that
t/bd? s Lotk Ly s by — Ly,

where the last equality follows from by taking the ratio of the balancing conditions (4.8)) for
r =1 and r = 2. From these same balancing conditions it also follows that

(cd)? = 2k ki—lea,

As a result,
Sﬁg,kl,...,k‘n (x’ tl) e ,t2n+4)
ka—k1 !
_ H F(t’,t’_lc4_2"t3t4) HF(Cn—ldtggii/tg, Cn—ldtﬂfzi/tz;)
palet i=1

% Sf;l‘th,...,k?n (;L,/’ t3, . ’t2n+4)7

where
.T/ = (:U17 ceey xklacn_ldtkl—k2+1/t37 Cn_ldtkl_k2+2/t37 o Cn_ld/t3)‘

A straightforward but somewhat tedious calculations shows that the right-hand side of (4.10))
satisfies the same recursion. The proof is thus reduced to checking validity of the claim for
n = 1. This is

v d
SFOF (it .. tg) = /ICd(Z;$)RZ(Z§t4/tat5/t3t7_17t6)Aé (23 t3,ta, 5, t6) 57
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where z = (21,..., 2k, ), d? := thi—ko—1¢ ¢y and ¢2k1—ko—2¢ g = pq. But this is nothing but
Theorem [3.4] with
(TL, C, tl) t27 t3a U1, UQ) — (kla d7 t37 t67 t57 t4/t7 t5/t)
Hence
SkoR (zty, ..t H < [T T et H (dtrx;t)>
=1 3<r<s<6 r=3
AD (tF1 =23t 415 [te|th ~tsty)
123 *
R* (w3 dta/t, ts/td; dtstats /¢, dtg).

A?L(tk172t3t4t5/t6|d2tk171t3t4) u( 4/ 5/ 3l4 5/ 6)

Since

M (distats /t)(dte) = t*M 0 tytatstatsts = pq,
the interpolation function on the right is of Cauchy type and factors by (3.17)). Therefore,

SFoR (2t te) H( [T e tet H (dtra:fc)>

3<r<s<6
k1
X H A (et est,) [ [ AL (5171 /b |t draf).
r=4 i=1
This is exactly the right-hand side of (4.10]) for n = 1. O
To conclude this section we remark that for k; = ko = --- = k,, = k the evaluation of (4.6)

that does not require the heavy machinery of the elliptic interpolation kernel. As per the above
proof, for n > 2,

Sk17 77L(ZL/1,...,t2r,l_|_4)
/(RA( M el=nty el o) Ry, (2 (n);t2n+2/t7t2n+3/t;t7_nat2n+4)

X Aév) (2(1); ATy Ty, VT e s, c"_lt/t4)Aée) (2(1); 22, c)

dzM  dzm
X AS(Z(2), e ,Z(n); t3, e ,t2n+4; C)) W e W

If k; = ky = k then the integral over z(1) is exactly the elliptic beta integral (3.23) with

(t1,to, t3,ta) > (2, My, N/t T ty),

p— X and z; — 21(2) for 1 < i < k. In particular, by - tht ity Jtsty = 1, as required.
Therefore,
k
, L(t 12 tyty)
Ghokkskn g g = T(t,/ts)
A p (1 2n+4) 1]:[1 F(tz ToA— QntltZ Tl_[l}_I?’ /

x A (7 Jta|tFt /ts, tkt1/t4)5§’7’:‘3""’ "(t1stastss - tonta),
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where tsty = t*t1ts. For k = 1 and XA = 0 this is the elliptic analogue of the recursion at the
bottom of page 299 of [83]. Iterating the recursion yields

m times

k

" k D(t= 12720 ty) S
s Rm4-1,..0/n _ )
S (trr- s tonia) = [ ] (r =l IR tr/t5)>

i=1 r=1s=3

2m
X H AQ (572 fto| Rty /t,)
r=3

k7km 7---7kn
8 S)\’“ - (tl’ t2’ t2m+1’ s at2n+4; t,p, q)a
where 1 < m < n and toy,_1tom = - - - = t3ts = tFtite. In particular, for m = n,

. k D(ti=12 24 1,) 2 2n '
3oy J— 3
SAJ;, (tb' . '7t2n+4) - | | ( F(ti_ltltg) | | | | F(t t’r’/ts))

i=1 r=1s=3

2n
x [ A (1 /taltht /1,
r=3

X S§:\7“(t17t25 t2n+la L) 7t2n+4;t;p7 q)

This final integral is the elliptic AFLT integral of [3, Theorem 1.4], evaluated in [3] without
the use of the interpolation kernel. Hence

k 2 2n
SN E . tanga) = [ ] <F(t", 7120 [T T Tt /t)

i=1 r=1s=3
2 2n+4

X H H Dt ) H I‘(ti_ltrts))
r=1s=2n+1 2n+1<r<s<2n+4
2n 2n+4
< [T AN/ttt /) T ANttt tat)
r=3 r=2n-+1
2n+3

x H A?A(tknTn/t2n+4’tk71t2n+1tr)
r=2n-+2

A, (57, [ton gl th 17 (A)r)
A?;, (tk'rn/t2n+4‘tk+1t17—n<>\>k;t) ’

where

t2k72t1t2t2n+1t2n+2t2n+3t2n+4 = tk72t3t4t2n+1t2n+2t2n+3t2n+4
k-2
S —

ton—1tontontitonrotontstonta = Pg.

REFERENCES
[1] L. F. Adlay, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge
theories, Lett. Math. Phys. 91 (2010), 167-197.

[2] V. A. Alba, V. A. Fateev, A. V. Litvinov and G. M. Tarnopolskiy, On combinatorial expansion of the
conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011), 33-64.



3]

[4]
(5]

[16]
[17]

18]
[19]
[20]
21]
[22]
23]
[24]
[25)
126]

[27]
28]

[29]

[30]
31]

ELLIPTIC SELBERG INTEGRALS 25

S. P. Albion, E. M. Rains and S. O. Warnaar, AFLT-type Selberg integrals, Commun. Math. Phys. 388
(2021), 735-791.

G. W. Anderson, The evaluation of Selberg sums, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 469-472.
F. Atai and M. Noumi, FEigenfunctions of the van Diejen model generated by gauge and integral transfor-
mations, Adv. Math. 412 (2023), paper 108816, 60 pp.

J. Baik, G. Ben Arous, S. Péché, Phase transition of the largest eigenvalue for monnull complex sample
covariance matrices, Ann. Probab. 33 (2005), 1643-1697.

V. V. Bazhanov, A. Kels and S. M. Sergeev, Comment on star—star relations in statistical mechanics and
elliptic gamma function identities, J. Phys. A 46 (2013), 152001.

V. V. Bazhanov and S. M. Sergeev, A master solution of the quantum Yang-Baxter equation and classical
discrete integrable equations, Adv. Theor. Math. Phys. 16 (2012), 65-95.

V. V. Bazhanov and S. M. Sergeev, Elliptic gamma-function and multi-spin solutions of the Yang—Bazter
equation, Nucl. Phys. B 856 (2012), 475-496.

L. E. Bottini, C. Hwang, S. Pasquetti and M. Sacchi, 4d S-duality wall and SL(2,Z) relations, J. High
Energy Phys. (2022), paper 035, 55 pp.

L. E. Bottini, C. Hwang, S. Pasquetti and M. Sacchi, Dualities from dualities: the sequential deconfinement
technique, J. High Energy Phys. (2022), paper 69, 58 pp.

F. J. van de Bult, An elliptic hypergeometric beta integral transformation, arXiv:0912.3812.

I. Coman, E. Pomoni and J. Teschner, Trinion conformal blocks from topological strings, J. High Energy
Phys. (2020), paper 078, 57 pp.

R. Comi, C. Hwang, F. Marino, S. Pasquetti and M. Sacchi, The SL(2,Z) dualization algorithm at work,
arXiv:2212.10571k

H. Coskun and R. A. Gustafson, Well-poised Macdonald functions Wy and Jackson coefficients wx on BCy,
pp- 127-155 in Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc.,
Providence, RI, 2006.

J. F. van Diejen, Integrability of difference Calogero—Moser systems, J. Math. Phys. 35 (1994), 2983-3004.
J. F. van Diejen and V. P. Spiridonov, An elliptic Macdonald—Morris conjecture and multiple modular
hypergeometric sums, Math. Res. Lett. 7 (2000), 729-746.

J. F. van Diejen and V. P. Spiridonov, Elliptic Selberg integrals, Internat. Math. Res. Notices 20 (2001),
1083-1110.

F. A. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-
hypergeometric identities to N' =1 dual theories, Nucl. Phys. B 818 (2009), 137-178.

V. S. Dotsenko and V. A. Fateev, Four-point correlation functions and the operator algebra in 2D conformal
invariant theories with central charge C' < 1, Nucl. Phys. B 240 (3) (1984), 312-348.

P. I. Etingof, I. B. Frenkel and A. A. Kirillov Jr., Lectures on representation theory and Knizhnik—
Zamolodchikov equations, Math. Surveys and Monographs, vol. 58, American Mathematical Society, Prov-
idence, RI, 1998.

R. J. Evans, The evaluation of Selberg character sums, Enseign. Math. (2) 37 (1991), 235-248.

V. A. Fateev and A. V. Litvinov, Integrable structure, W-symmetry and AGT relation, J. High Energy
Phys. (2012), paper 051, 39 pp.

P. J. Forrester, Log-Gases and Random Matrices, London Math. Soc. Monographs Series, 34, Princeton
University Press, Princeton, NJ, 2010.

P. J. Forrester and E. M. Rains, Interpretations of some parameter dependent generalizations of classical
matriz ensembles, Probab. Theory Related Fields 131 (2005), 1-61.

P. J. Forrester and S. O. Warnaar, The importance of the Selberg integral, Bull. Amer. Math. Soc. 45 (2008),
489-534.

Z. Fu and Y. Zhu, Selberg integral over local fields, Forum Math. 31 (2019), 1085-1095.

A. Gadde, E. Pomoni, L. Rastelli and S. S. Razamat, S-duality and 2d topological QFT, J. High Energy
Phys. (2010), paper 032, 22 pp.

A. Gadde, L. Rastelli and S. S. Razamat and W. Yan, The superconformal index of the E¢ SCFT, J. High
Energy Phys. (2010), paper 107, 27 pp.

I. Gahramanov, Integrability from supersymmetric duality: a short review, larXiv:2201.00351.

J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics, University Lecure Series,
Vol. 38, American Mathematical Society, Providence, RI, 2008.


https://arxiv.org/abs/0912.3812
https://arXiv.org/abs/2212.10571
https://arxiv.org/abs/2201.00351

26
32]
33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41)
[42]
[43)
j44]
[45)
j46]
[47)
48]
[49)
50]
51]
/52]
/53]
/54]

[55]

SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Trans.
Math. Monographs, Vol. 6, American Mathematical Society, Providence, RI, 1963.

C. Hwang, S. Pasquetti and M. Sacchi, 4d mirror-like dualities, J. High Energy Phys (2020), paper 047,
79 pp.

M. Tto and M. Noumi, Evaluation of the BC,, elliptic Selberg integral via the fundamental invariants, Proc.
Amer. Math. Soc. 145 (2017), 689-703.

H. Itoyama, T. Oota and R. Yoshioka, 2d — 4d connection between q-Virasoro/W block at root of unity limit
and instanton partition function on ALE space, Nuclear Phys. B 877 (2013), 506-537.

K. W. Kadell, An integral for the product of two Selberg—Jack symmetric functions, Composito Math. 87
(1993), 5-43.

K. W. Kadell, The Selberg—Jack symmetric functions, Adv. Math. 130 (1997), 33-102.

G. Kaérolyi, Z. L. Nagy, F. V. Petrov and V. Volkov, A new approach to constant term identities and
Selberg-type integrals, Adv. Math. 277 (2015), 252-282.

J. P. Keating and N. C. Snaith, Random matriz theory and ((1/2 + it), Comm. Math. Phys. 214 (2001),
57-89.

J. P. Keating and N. C. Snaith, Random matriz theory and L-functions at s = 1/2, Comm. Math. Phys.
214 (2000), 91-110.

J. S. Kim and S. Oh, The Selberg integral and Young books, J. Combin. Theory Ser. A 145 (2017), 1-24.
J. S. Kim and D. Stanton, On g-integrals over order polytopes, Adv. Math. 308 (2017), 1269-1317.

Y. Komori, M. Noumi and J. Shiraishi, Kernel functions for difference operators of Ruijsenaars type and
their applications, SIGMA 5 (2009), paper 054, 40 pp.

A. Lascoux, Symmetric Functions and Combinatorial Operators on Polynomials, CBMS Reg. Conf. Ser.
Math., vol. 99, American Mathematical Society, Providence, RI, 2003.

C.-h. Lee, E. M. Rains and S. O. Warnaar, An elliptic hypergeometric function approach to branching rules,
SIGMA 16 (2020), paper 142, 52 pp.

I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford Mathematical Mono-
graphs, The Clarendon Press, Oxford University Press, London, 1995.

M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, third edition, Academic Press,
New York, 2004.

A. Mironov, A. Morosov, Sh. Shakirov, A direct proof of AGT conjecture at 3 = 1, J. High Energy Phys.
(2011), paper 067, 41 pp.

A. Mironov, A. Morosov, Sh. Shakirov, Towards a proof of AGT conjecture by methods of matriz models,
Internat. J. Modern Phys. A 27 (2012), 1230001, 32 pp.

A. Mironov, A. Morozov, Sh. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension
to five dimensions, Nucl. Phys. B 855 (2012), 128-151.

A. Morozov and A. Smirnov, Towards the proof of AGT relations with the help of the generalized Jack
polynomials, Lett. Math. Phys. 104 (2014), 585-612.

E. Mukhin and A. Varchenko, Remarks on critical points of phase functions and norms of Bethe vectors,
Adv. Stud. Pure Math. 27 (2000), 239-246.

B. Nazzal, A. Nedelin, S. S. Razamat, Minimal (D, D) conformal matter and generalizations of the van
Diejen model, SciPost Phys. 12 (2022), paper 140, 78 pp.

A. Okounkov, BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder poly-
nomials, Transform. Groups 3 (1998), 181-207.

S. Pasquetti, S. S. Razamat, M. Sacchi and G. Zafrir, Rank QQ E-string on a torus with fluz, SciPost Phys.
8 (2020), paper 014, 49 pp.

M. Rains, BC,-symmetric polynomials, Transform. Groups 10 (2005), 63-132.

M. Rains, BC),-symmetric abelian functions, Duke Math. J. 135 (2006), 99-180.

M. Rains, Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (2009), 257-306.

M. Rains, Transformations of elliptic hypergeometric integrals, Ann. of Math. (2) 171 (2010), 168-243.
M. Rains, Elliptic Littlewood identities, J. Combin. Theory Ser. A 119 (2012), 1558-1609.

. M. Rains, Multivariate quadratic transformations and the interpolation kernel, SIGMA 14 (2018), paper
019, 69 pp.

L. Rastelli and S. S. Razamat, The supersymmetric index in four dimensions, Chapter 13 of Localization
techniques in quantum field theories, J. Phys. A, doi.org/10.1088/1751-8121/aa63cl.

SECHCECNCHS



ELLIPTIC SELBERG INTEGRALS 27

[63] R. Rimanyi and A. Varchenko, The Fy-Selberg integral of type An, Lett. Math. Phys. 111 (2021), paper 71,
24 pp.

[64] H. Rosengren and S. O. Warnaar, Elliptic hypergeometric functions associated with root systems, pp. 159-186
in Multivariable Special Functions, Cambridge University Press, Cambridge, 2020.

[65] S. N. M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math.
Phys. 38 (1997), 1069-1146.

[66] S. N. M. Ruijsenaars, Hilbert—Schmidt operators vs. integrable systems of elliptic Calogero—Moser type. I.
The eigenfunction identities, Comm. Math. Phys. 286 (2009), 629-657.

[67] V. V. Schechtman and A. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math.
106 (1991), 139-194.

| A. Selberg, Bemerkninger om et multipelt integral, Norsk. Mat. Tidsskr. 24 (1944), 71-78.

| V. P. Spiridonov, On the elliptic beta function, Uspekhi Mat. Nauk 56 (2001), 181-182.
[70] V. P. Spiridonov, Theta hypergeometric integrals, Algebra i Analiz 15 (2003), 161-215.

| V. P. Spiridonov, Short proofs of the elliptic beta integrals, Ramanujan J. 14 (2007), 1-3.

[72] V. P. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics, pp. 181-211 in Al-
gebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum
Mechanics, Contemp. Math. 563, American Mathematical Society, Providence, RI, 2010.

[73] V. P. Spiridonov and G. S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Comm. Math.
Phys. 304 (2011), 797-874.

[74] V. P. Spiridonov and G. S. Vartanov, Superconformal indices of N' = 4 SYM field theories, Lett. Math.
Phys. 100 (2012), 97-118.

[75] V. P. Spiridonov and G. S. Vartanov, FElliptic hypergeometry of supersymmetric dualities II. Orthogonal
groups, knots, and vortices, Comm. Math. Phys. 325 (2014), 421-486.

[76] V. P. Spiridonov and S. O. Warnaar, Inversions of integral operators and elliptic beta integrals on root
systems, Adv. Math. 207, (2006), 91-132.

[77] R. P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.

[78] R. P. Stanley, Enumerative Combinatorics, Vol. 1, second edition, Cambridge Studies in Advanced Mathe-
matics, Vol. 62, Cambridge University Press, Cambridge, 2011.

[79] V. Tarasov and A. Varchenko, Selberg-type integrals associated with sl3, Lett. Math. Phys. 65 (2003), 173—
185.

[80] V. Tarasov and A. Varchenko, Knizhnik—Zamolodchikov-type equations, Selberg integrals and related special
functions, pp. 368—401 in Multivariable Special Functions, Cambridge University Press, Cambridge, 2020.

[81] A. Varchenko, Special Functions, KZ Type Equations, and Representation Theory, CBMS Reg. Conf. Ser.
Math., vol. 98, American Mathematical Society, Providence, RI, 2003.

[82] S. O. Warnaar, Bisymmetric functions, Macdonald polynomials and sls basic hypergeometric series, Compos.
Math. 144 (2008), 271-303.

] S. O. Warnaar, A Selberg integral for the Lie algebra A,, Acta Math. 203 (2009), 269-304.

[84] S. O. Warnaar, The sl3 Selberg integral, Adv. Math. 224 (2010), 499-524.

] Q.-J. Yuan, S.-P. Hu, Z.-H. Huang and K. Zhang, A proof of A, AGT conjecture at 8 = 1, arXiv:2305.11839.
] H. Zhang and Y. Matsuo, Selberg integral and SU(N) AGT conjecture, J. High Energy Phys. 2011, 106,

38 pp.

FAKULTAT FUR MATHEMATIK, UNIVERSITAT WIEN, OSKAR-MORGENSTERN-PLATZ 1, A-1090 VIENNA, AUS-
TRIA
Email address: seamus.albion@univie.ac.at

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CA 91125, USA
Email address: rains@caltech.edu

SCHOOL OF MATHEMATICS AND PHYSICS, THE UNIVERSITY OF QUEENSLAND, BRISBANE, QLD 4072, Aus-
TRALIA
Email address: o.warnaar@maths.uq.edu.au


https://arxiv.org/abs/2305.11839

	1. Introduction
	2. Elliptic preliminaries
	2.1. Partitions
	2.2. Elliptic preliminaries
	2.3. The Dixon and Selberg densities

	3. Elliptic interpolation functions and the interpolation kernel
	3.1. Elliptic interpolation functions
	3.2. The elliptic interpolation kernel

	4. Proof and generalisations of Theorem 1.1
	4.1. An An elliptic AFLT integral
	4.2. Proof of Theorems 1.1 and 4.1

	References

