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An A2 Bailey tree and A(1)
2 Rogers–Ramanujan-type

identities

Abstract. The A2 Bailey chain of Andrews, Schilling and the author is extended to a four-parameter
A2 Bailey tree. As main application of this tree, we prove the Kanade–Russell conjecture for a three-
parameter family of Rogers–Ramanujan-type identities related to the principal characters of the affine
Lie algebra A(1)

2 . Combined with known 𝑞-series results, this further implies an A(1)
2 -analogue of the

celebrated Andrews–Gordon 𝑞-series identities. We also use the A2 Bailey tree to prove a Rogers–
Selberg-type identity for the characters of the principal subspaces of A(1)

2 indexed by arbitrary level-𝑘
dominant integral weights λ. This generalises a result of Feigin, Feigin, Jimbo, Miwa and Mukhin
for λ = 𝑘Λ0.

Keywords: A(1)
2 and W3 character formulas, Bailey’s lemma, Kanade–Russell conjecture,

principal subspaces of A(1)
2 , Rogers–Ramanujan-type identities.

1. Introduction

Let (𝑎; 𝑞)∞ := (1 − 𝑎) (1 − 𝑎𝑞) · · · and (𝑎; 𝑞)𝑛 := (𝑎; 𝑞)∞/(𝑎𝑞𝑛; 𝑞)∞ for 𝑛 an integer. In
particular, (𝑎;𝑞)0 = 1, (𝑎;𝑞)𝑛 = (1− 𝑎) (1− 𝑎𝑞) · · · (1− 𝑎𝑞𝑛−1) for 𝑛 > 0 and 1/(𝑞;𝑞)𝑛 = 0
for 𝑛 < 0. Further let 𝑎, 𝑘, 𝜏 be integers such that 𝑘 ⩾ 1, 0 ⩽ 𝑎 ⩽ 𝑘 , 𝜏 ∈ {0, 1}, and fix
𝐾 := 2𝑘 + 𝜏 + 2. Then the modulus-𝐾 Andrews–Gordon–Bressoud 𝑞-series identities are
given by ∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0

𝑞𝜆
2
1+···+𝜆

2
𝑘
+𝜆𝑎+1+···+𝜆𝑘

(𝑞; 𝑞)𝜆1−𝜆2 · · · (𝑞; 𝑞)𝜆𝑘−1−𝜆𝑘 (𝑞2−𝜏 ; 𝑞2−𝜏)𝜆𝑘
(1.1)

=
(𝑞𝑎+1; 𝑞𝐾 )∞ (𝑞𝐾−𝑎−1; 𝑞𝐾 )∞ (𝑞𝐾 ; 𝑞𝐾 )∞

(𝑞; 𝑞)∞
,

where 𝜏 = 1 corresponds to the Andrews–Gordon or odd modulus case [3] and 𝜏 = 0 to the
Bressoud or even modulus case [19]. The Andrews–Gordon identities for 𝑘 = 1 simplify
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to the famous Rogers–Ramanujan identities [72–74]
∞∑︁
𝑛=0

𝑞𝑛
2

(1 − 𝑞) (1 − 𝑞2) · · · (1 − 𝑞𝑛)
=

∞∏
𝑛=0

1
(1 − 𝑞5𝑛+1) (1 − 𝑞5𝑛+4)

, (1.2a)

and
∞∑︁
𝑛=0

𝑞𝑛
2+𝑛

(1 − 𝑞) (1 − 𝑞2) · · · (1 − 𝑞𝑛)
=

∞∏
𝑛=0

1
(1 − 𝑞5𝑛+2) (1 − 𝑞5𝑛+3)

. (1.2b)

These identities and their generalisations due to Andrews, Gordon and Bressoud have a
rich history. They are the analytic counterpart of well-known theorems for integer partitions
[18,19,43,64,76], have numerous important interpretations in terms of the representation
theory of affine Lie algebras and vertex operator algebras [23, 24, 29, 33, 45, 54, 57–61,
65, 66, 81], and have arisen in a variety of other contexts such as in algebraic geometry
[21, 69], combinatorics [26, 36], commutative algebra [1, 11, 68], group theory [25], knot
theory [10, 46], number theory [20, 67], statistical mechanics [14, 15, 86], the theory of
orthogonal polynomials [39, 49], and symmetric function theory [13, 48, 71, 80]. For a
comprehensive introduction to the Rogers–Ramanujan identities and their generalisations
we refer the reader to An invitation to the Rogers–Ramanujan identities, by Sills [78].

The representation-theoretic interpretations of the Andrews–Gordon–Bressoud iden-
tities based on the affine Lie algebra A(1)

1 make it a natural problem to try to extend (1.1)
to A(1)

𝑟−1. Despite the long history of the subject, this is very much an open problem. In
1999 Andrews, Schilling and the author succeeded in finding (some) analogues of (1.1)
for A(1)

2 for all moduli [8]. To succinctly describe these results, we require the modified
theta functions 𝜃 (𝑧; 𝑞) := (𝑧; 𝑞)∞ (𝑞/𝑧; 𝑞)∞ and 𝜃 (𝑧1, . . . , 𝑧𝑛; 𝑞) := 𝜃 (𝑧1; 𝑞) · · · 𝜃 (𝑧𝑛; 𝑞),
and the 𝑞-binomial coefficients[

𝑛

𝑚

]
=

[
𝑛

𝑚

]
𝑞

:=
(𝑞; 𝑞)𝑛

(𝑞; 𝑞)𝑚 (𝑞; 𝑞)𝑛−𝑚

for integers 𝑛,𝑚 such that 0⩽ 𝑚 ⩽ 𝑛 and zero otherwise. We also need the appropriate A(1)
2 -

analogue of 1/(𝑞2−𝜏 ; 𝑞2−𝜏)𝑛 (which occurs in (1.1) with 𝑛 = 𝜆𝑘), and for 𝑛,𝑚 nonnegative
integers and 𝜏 ∈ {−1, 0, 1}, we define

𝑔𝑛,𝑚;𝜏 (𝑞) :=
𝑞𝜏 (𝜏−1)𝑛𝑚

(𝑞; 𝑞)𝑛+𝑚 (𝑞2; 𝑞)𝑛+𝑚

[
𝑛 + 𝑚
𝑛

]
𝑝

, (1.3)

where 𝑝 = 𝑞 if 𝜏2 = 1 and 𝑝 = 𝑞3 if 𝜏 = 0. Thus, in the simplest and perhaps most important
case, 𝑔𝑛,𝑚;1 (𝑞) = 1/((𝑞; 𝑞)𝑛 (𝑞; 𝑞)𝑚 (𝑞2; 𝑞)𝑛+𝑚). Then, for 𝑎, 𝑘, 𝜏 integers such that 𝑘 ⩾ 1,
0 ⩽ 𝑎 ⩽ 𝑘 and 𝜏 ∈ {−1, 0, 1}, it was shown in [8] that∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘⩾0

1 − 𝑞𝜆𝑎+𝜇𝑎+1

1 − 𝑞
𝑞
∑𝑘

𝑖=1 (𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
)+∑𝑘

𝑖=𝑎+1 (𝜆𝑖+𝜇𝑖 )∏𝑘−1
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

𝑔𝜆𝑘 ,𝜇𝑘 ;𝜏 (𝑞) (1.4)

=
(𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)3

∞
𝜃
(
𝑞𝑎+1, 𝑞𝑎+1, 𝑞2𝑎+2; 𝑞𝐾

)
,
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where 𝐾 := 3𝑘 + 𝜏 + 3 and 𝑞𝜆0 = 𝑞𝜇0 := 0. From a 𝑞-series as well as combinatorial
point of view this is a perfectly good analogue of (1.1). For example, by the Borodin
product formula [17], the right-hand side corresponds to the generating function of cyl-
indric partitions [42] of three rows with ‘profile’ given by (𝐾 − 2𝑎 − 3, 𝑎, 𝑎). If, however,
one wishes to interpret (1.4) as an identity for the principal characters of A(1)

2 (characters
of the principally graded subspaces of basic A(1)

2 modules in the sense of [37, 60]) or, for
3 ∤ 𝐾 , as branching functions of A(1)

2 and characters of the W3 (3, 𝐾) vertex operator al-
gebra (see [90, Section 4]), then one should multiply both sides of (1.4) by (𝑞; 𝑞)∞.1 This
would obscure the positivity of the left-hand side, and for this reason we will not view
the above as the “proper” A(1)

2 -analogues of the Andrews–Gordon–Bressoud identities.
Instead we follow Kanade and Russell [51] and refer to (1.4) as the Andrews–Schilling–
Warnaar identities, or ASW identities for short. From both a representation theoretic and
cylindric partition point of view it is clear that the above set of ASW identities is not
complete, and there should be an appropriate multisum expression for each dominant in-
tegral weight (𝐾 − 𝑎 − 𝑏 − 3)Λ0 + 𝑎Λ1 + 𝑏Λ2 of A(1)

2 or each cylindric-partition profile
(𝐾 − 𝑎 − 𝑏 − 3, 𝑎, 𝑏), with corresponding product form as above but with theta function
given by 𝜃 (𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾 ). Recently Kanade and Russell [51, Conjecture 5.1]
(see also [52]) posed the following beautiful conjecture that covers all cases for which
0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 .

Conjecture 1.1 (Kanade–Russell). Let 𝑎, 𝑏, 𝑘 be integers such that 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , and let
𝐾 := 3𝑘 + 𝜏 + 3 for 𝜏 ∈ {−1, 0, 1}. Then∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘⩾0

1 − 𝑞𝜆𝑎+𝜇𝑏+1

1 − 𝑞
𝑞
∑𝑘

𝑖=1 (𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
)+∑𝑘

𝑖=𝑎+1 𝜆𝑖+
∑𝑘

𝑖=𝑏+1 𝜇𝑖∏𝑘−1
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

𝑔𝜆𝑘 ,𝜇𝑘 ;𝜏 (𝑞) (1.5)

=
(𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)3

∞
𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾

)
,

where 𝑞𝜆0 = 𝑞𝜇0 := 0.

For 𝑏 = 0 and 𝜏2 = 1 this was previously conjectured in [90, Conjecture 7.4]. By sym-
metry in 𝑎 and 𝑏, there are

(𝑘+2
2

)
distinct identities for fixed 𝑘 , where it is noted that the

right-hand sides for (𝑎, 𝑏) = (𝑘, 𝑘) and (𝑎, 𝑏) = (𝑘, 𝑘 − 1) are the same if 𝜏 = −1 due to the
simple relation 𝜃 (𝑧; 𝑞) = 𝜃 (𝑞/𝑧; 𝑞). In the following we may thus without loss of generality
assume that 𝑎 ⩾ 𝑏. For 𝜏 = −1 the sum over 𝜇𝑘 can be carried out by a limiting case of the

1The result (1.4) may be interpreted as an identity for the principally specialised characters of
𝔤𝔩(3) indexed by (𝐾 − 2𝑎 − 3)Λ0 + 𝑎(Λ1 +Λ2) for 0 ⩽ 𝑎 ⩽ 𝑘 , see e.g., [37,82]. This, however, does
not match the interpretation of the Andrews–Gordon–Bressoud identities as character identities for
the principal characters of 𝔰𝔩(2) = A(1)

1 .
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𝑞-Chu–Vandermonde summation (see e.g., (3.8) below), resulting in the slightly simpler∑︁
𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘−1⩾0

1 − 𝑞𝜆𝑎+𝜇𝑏+1

1 − 𝑞
𝑞
∑𝑘

𝑖=1 (𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
)+∑𝑘

𝑖=𝑎+1 𝜆𝑖+
∑𝑘−1

𝑖=𝑏+1 𝜇𝑖

(𝑞2; 𝑞)𝜆𝑘+𝜇𝑘−1

∏𝑘
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

∏𝑘−1
𝑖=1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
(𝑞2𝑘+2; 𝑞2𝑘+2)2

∞
(𝑞; 𝑞)3

∞
𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞3𝑘+2) ,

where 0 ⩽ 𝑏 ⩽ 𝑎 ⩽ 𝑘 (𝑏 ≠ 𝑘), 𝜆𝑘+1 = 𝜇𝑘 := 0, and, for 𝑘 = 1, 𝜇0 := ∞.
Besides (1.4), also the (𝑎, 𝑏) = (𝑘, 0) and (𝑘 − 1, 0) instances of (1.5) for 𝜏2 = 1 were

proved in [8]. For the moduli 5 and 7 this covers all identities in (1.5). The identity of smal-
lest modulus missing from [8] corresponds to (𝑎, 𝑏, 𝑘, 𝜏) = (1,0,1,0) which has modulus 6.
Kanade and Russell proved this by solving the Corteel–Welsh system of functional equa-
tions [28] for cylindric partitions of profile (𝑑 − 𝑎 − 𝑏, 𝑎, 𝑏) for 𝑑 = 3, see [51, Corollary
7.5]. For the moduli 8 and 10 they again solved the corresponding Corteel–Welsh systems
(in these cases 𝑑 = 5 and 𝑑 = 7 respectively) confirming the conjecture. Alternatively,
the modulus-8 case is implied by combining the recent results of Corteel–Dousse–Uncu
[27] and the author [90] on modulus-8 Rogers–Ramanujan-type identities for A(1)

2 . Finally,
Uncu [85, Theorems 4.4 & 5.4] settled the moduli 11 and 13 by algorithmically confirm-
ing and complementing a conjectured partial solution to the Corteel–Welsh system due to
Kanade and Russell.

The first main result of this paper is a case-free proof of the Kanade–Russell conjecture
for arbitrary modulus.

Theorem 1.2. The Kanade–Russell conjecture holds for all moduli.

The three cases of smallest modulus not previously proved in the literature are 𝑘 = 2,
𝜏 = 0 and (𝑎, 𝑏) ∈ {(1, 0), (2, 0), (2, 1)}. For example, for (𝑎, 𝑏) = (2, 0) the theorem
confirms the modulus-9 identity

∞∑︁
𝜆1 ,𝜆2 ,𝜇1 ,𝜇2=0

𝑞𝜆
2
1−𝜆1𝜇1+𝜇2

1+𝜆
2
2−𝜆2𝜇2+𝜇2

2+𝜇1+𝜇2 (𝑞3; 𝑞3)𝜆2+𝜇2

(𝑞; 𝑞)𝜆1−𝜆2 (𝑞; 𝑞)𝜇1−𝜇2 (𝑞3; 𝑞3)𝜆2 (𝑞3; 𝑞3)𝜇2 (𝑞; 𝑞)𝜆2+𝜇2 (𝑞; 𝑞)𝜆2+𝜇2+1

=

∞∏
𝑛=1

(1 − 𝑞9𝑛)
(1 − 𝑞𝑛)2 (1 − 𝑞9𝑛−7) (1 − 𝑞9𝑛−2)

,

where we recall that 1/(𝑞; 𝑞)𝑛 = 0 if 𝑛 is a negative integer, so that the summand vanishes
unless 𝜆1 ⩾ 𝜆2 and 𝜇1 ⩾ 𝜇2.

As mentioned above, from a representation theoretic point of view the ASW identit-
ies should be multiplied by a factor (𝑞; 𝑞)∞. For 𝜏2 = 1 this factor can be absorbed in
the multisum using a transformation formula from [90]. This gives what we view as the
Andrews–Gordon identities for A(1)

2 . In full generality this result is too involved to be stated
in the introduction and below we restrict ourselves to the special case 𝑏 = 0. For the full
result the reader is referred to Theorems 7.2 and 7.3.
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Theorem 1.3 (A(1)
2 Andrews–Gordon identities; 𝑏 = 0 case). Let 𝑎, 𝑘 be integers such that

0 ⩽ 𝑎 ⩽ 𝑘 . Then∑︁
𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘−1⩾0

𝑞𝜆
2
𝑘
+∑𝑘

𝑖=𝑎+1 𝜆𝑖

(𝑞; 𝑞)𝜆1

𝑘−1∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
+𝜇𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1

𝜇𝑖

]
(1.6a)

=
(𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)2

∞
𝜃
(
𝑞, 𝑞𝑎+1, 𝑞𝑎+2; 𝑞𝐾

)
,

where 𝜇𝑘 := 2𝜆𝑘 and 𝐾 := 3𝑘 + 2, and∑︁
𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘⩾0

𝑞
∑𝑘

𝑖=𝑎+1 𝜆𝑖

(𝑞; 𝑞)𝜆1

𝑘∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
+𝜇𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1

𝜇𝑖

]
(1.6b)

=
(𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)2

∞
𝜃
(
𝑞, 𝑞𝑎+1, 𝑞𝑎+2; 𝑞𝐾

)
,

where 𝜆𝑘+1 := 0, 𝜇𝑘+1 := 𝜆𝑘 and 𝐾 := 3𝑘 + 4.

These results were conditionally proved in [90] assuming the truth of (1.5) for 𝑏 = 0 and
𝜏2 = 1. The 𝑞-series in (1.6a) and (1.6b) correspond to the principal characters of the A(1)

2 -
highest weight module 𝐿 ((𝐾 − 𝑎)Λ0 + 𝑎Λ1) for 𝐾 = 3𝑘 + 2 and 𝐾 = 3𝑘 + 4, respectively.
Alternatively, they may be recognised as the normalised characters of the W3 (3, 𝐾) vertex
operator algebra of conformal weight 𝑎(𝑎 + 3)/𝐾 − 𝑎.

One of the most streamlined proofs of the Andrews–Gordon–Bressoud identities (1.1)
is based on what is known as the Bailey lattice [2], which is a generalisation of the well-
known Bailey chain [5]. Our proof of Theorem 1.2 presented in Section 5 is based on an
A2-analogue of a special case of the Bailey lattice which, due to its tree-like structure, we
refer to as the A2 Bailey tree. A single branch of the A2 Bailey tree corresponds to the A2
Bailey chain developed in [8] to prove the ASW identities (1.5). Andrews’ original proof
of the Andrews–Gordon identities [3] predates the discoveries of the Bailey chain and
Bailey lattice, and instead is based on recursion relations for the Rogers–Selberg function
𝑄𝑘,𝑖 (𝑧; 𝑞) defined by [74, 77]

𝑄𝑘,𝑖 (𝑧; 𝑞) :=
1

(𝑧𝑞; 𝑞)∞

∞∑︁
𝑛=0

(
1 − 𝑧𝑖𝑞 (2𝑛+1)𝑖 ) (−1)𝑛𝑧𝑘𝑛𝑞 (2𝑘+1) (𝑛+1

2 )−𝑖𝑛 (𝑧𝑞; 𝑞)𝑛
(𝑞; 𝑞)𝑛

, (1.7)

for integers 𝑖, 𝑘 such that 1 ⩽ 𝑖 ⩽ 𝑘 . These recursions were solved by Andrews to give the
multisum representation [3, Equation (2.5)]

𝑄𝑘,𝑖 (𝑧; 𝑞) =
∑︁

𝜆1⩾· · ·⩾𝜆𝑘−1⩾0

𝑧𝜆1+···+𝜆𝑘−1𝑞𝜆
2
1+···+𝜆𝑘−1+𝜆𝑖+···+𝜆𝑘−1

(𝑞; 𝑞)𝜆1−𝜆2 · · · (𝑞; 𝑞)𝜆𝑘−2−𝜆𝑘−1 (𝑞; 𝑞)𝜆𝑘−1

. (1.8)

Equating the two expressions for𝑄𝑘,𝑖 , specialising 𝑧 = 1 and using the Jacobi-triple product
identity yields (1.1) with (𝑎, 𝑘) ↦→ (𝑖 − 1, 𝑘 − 1) and 𝜏 = 1. The equality of (1.7) and (1.8)
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may also be proved by the Bailey lattice, and by lifting this proof to the A2-setting we
obtain the following identity for the character of the level-𝑘 principal subspace𝑊𝜆 of A(1)

2
indexed by 𝜆 = (𝑘 − 𝑎 − 𝑏)Λ0 + 𝑎Λ1 + 𝑏Λ2 (see Section 8 for details). Let 𝑄+ := {𝑦 =

(𝑦1, 𝑦2, 𝑦3) ∈ Z3 : 𝑦1 + 𝑦2 + 𝑦3 = 0, 𝑦1 ⩾ 0, 𝑦1 + 𝑦2 ⩾ 0}.

Theorem 1.4. For 𝑎, 𝑏, 𝑘 integers such that 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , let 𝜈 be the strict partition
𝜈 := (𝑎 + 𝑏 + 2, 𝑏 + 1, 0). Then∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘⩾0

(
1 − 𝑥1

𝑥3
𝑞𝜆𝑎+𝜇𝑏−1

) 𝑘∏
𝑖=1

( 𝑥1
𝑥2

)𝜆𝑖 ( 𝑥2
𝑥3

)𝜇𝑖𝑞𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
∑︁
𝑦∈𝑄+

det1⩽𝑖, 𝑗⩽3
(
(𝑥𝑖𝑞𝑦𝑖 )𝜈𝑖−𝜈 𝑗

)∏
1⩽𝑖< 𝑗⩽3 (𝑥𝑖/𝑥 𝑗 ; 𝑞)∞

3∏
𝑖=1

𝑥
(𝑘+2)𝑦𝑖
𝑖

𝑞 (𝑘+2) (𝑦𝑖2 )−𝜈𝑖 𝑦𝑖 (𝑥𝑖/𝑥3; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥1; 𝑞)𝑦𝑖

,

where 𝑞𝜆0 = 𝑞𝜇0 = 𝜆𝑘+1 = 𝜇𝑘+1 := 0.

Setting (𝑥1, 𝑥2, 𝑥3) = (𝑧𝑤, 𝑤, 1) and letting 𝑤 tend to 0, the summand on the left van-
ishes unless 𝜇1 = · · · = 𝜇𝑘 = 0, resulting in𝑄𝑘+1,𝑎+1 (𝑧/𝑞; 𝑞) in its multisum representation
(1.8). In this same limit the summand on the right vanishes unless (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄+ is of
the form (𝑛,−𝑛, 0) for 𝑛 ∈ N0. After some simplifications this yields 𝑄𝑘+1,𝑎+1 (𝑧/𝑞; 𝑞) as
defined in (1.7). In contrast to the A(1)

1 case, (1.5) does not follow from Theorem 1.4 by
specialisation of the 𝑥𝑖 . For 𝑏 = 𝑎 the determinant on the right (which up to normalisation
is a Schur function [63]) factorises, resulting in the simpler∑︁
𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘⩾0

(
1 − 𝑥1

𝑥3
𝑞𝜆𝑎+𝜇𝑎−1

) 𝑘∏
𝑖=1

( 𝑥1
𝑥2

)𝜆𝑖 ( 𝑥2
𝑥3

)𝜇𝑖𝑞𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎) (𝜆𝑖+𝜇𝑖 )

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
∑︁
𝑦∈𝑄+

( ∏
1⩽𝑖< 𝑗⩽3

1 −
(
𝑞𝑦𝑖−𝑦 𝑗 𝑥𝑖/𝑥 𝑗

)𝑎+1

(𝑥𝑖/𝑥 𝑗 ; 𝑞)∞

3∏
𝑖=1

𝑥
(𝑘+2)𝑦𝑖
𝑖

𝑞 (𝑘+2) (𝑦𝑖2 )+(𝑎+1)𝑖𝑦𝑖 (𝑥𝑖/𝑥3; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥1; 𝑞)𝑦𝑖

)
.

For 𝑎 = 0 this is [31, Corollary 7.8] by Feigin et al. The large-𝑘 limit of Theorem 1.4 gives
our next result, where P denotes the set of integer partitions.

Corollary 1.5. For 𝑎, 𝑏 nonnegative integers and 𝜈 := (𝑎 + 𝑏 + 2, 𝑏 + 1, 0),∑︁
𝜆,𝜇∈P

(
1 − 𝑥1

𝑥3
𝑞𝜆𝑎+𝜇𝑏−1

) ∏
𝑖⩾1

( 𝑥1
𝑥2

)𝜆𝑖 ( 𝑥2
𝑥3

)𝜇𝑖𝑞𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
1∏

1⩽𝑖< 𝑗⩽3 (𝑥𝑖/𝑥 𝑗 ; 𝑞)∞
det

1⩽𝑖, 𝑗⩽3

(
𝑥
𝜈𝑖−𝜈 𝑗
𝑖

)
,

where 𝑞𝜆0 = 𝑞𝜇0 := 0.

For 𝑎 = 𝑏 the right-hand side simplifies to∏
1⩽𝑖< 𝑗⩽3

1 − (𝑥𝑖/𝑥 𝑗 )𝑎+1

1 − 𝑥𝑖/𝑥 𝑗
1

(𝑞𝑥𝑖/𝑥 𝑗 ; 𝑞)∞
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so that the 𝑎 = 𝑏 = 0 case of Corollary 1.5 gives the A2 instance of Hua’s combinatorial
identity for quivers of arbitrary finite type, see [47, Theorem 4.9] and the minor correc-
tion pointed out in [38]. The determinant in Theorem 1.4 also simplifies for (𝑥1, 𝑥2, 𝑥3) =
(𝑧2, 𝑧, 1), resulting in∑︁

𝜆,𝜇∈P

(
1 − 𝑧2 𝑞𝜆𝑎+𝜇𝑏−1) ∏

𝑖⩾1

𝑧𝜆𝑖+𝜇𝑖𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
1

(𝑧𝑞, 𝑧𝑞, 𝑧2𝑞; 𝑞)∞
(1 − 𝑧𝑎+1) (1 − 𝑧𝑏+1) (1 − 𝑧𝑎+𝑏+2)

(1 − 𝑧) (1 − 𝑧) (1 − 𝑧2)
,

where (𝑎1, . . . , 𝑎𝑘 ; 𝑞)∞ := (𝑎1; 𝑞)∞ · · · (𝑎𝑘 ; 𝑞)∞. For 𝑧 = 𝑞 this proves another conjecture
by Kanade and Russell, stated as Conjecture 3.1 in [51].

The rest of this paper is organised as follows. In Section 2 we recall some standard
material from the theory of 𝑞-series, root systems and symmetric functions that is used
throughout the paper. Then, in Section 3, we review the classical or A1 Bailey chain and
a special case of the Bailey lattice which in this paper will be referred to as the A1 Bailey
tree. Although all of the material in this section is essentially known, some results are
formulated in a form that is new. In particular, the Bailey tree will be recast as a one-
parameter deformation of the Bailey chain. In Section 4 the A2 Bailey chain of [8] is
generalised to an A2 Bailey tree. The simplest part of this tree consists of a two-parameter
deformation of the A2 Bailey chain, analogous to the one-parameter deformation described
in Section 3. As it turns out, this two-parameter Bailey tree can only prove the Kanade–
Russell conjecture for 𝑏 = 0, and to obtain the full set of identities we develop an additional
and more complicated four-parameter deformation of the A2 Bailey chain. In Section 5 we
apply the A2 Bailey tree to a suitable root identity to prove Theorem 1.2. As mentioned just
above Conjecture 1.1, there should be an ASW identity for each dominant integral weight
(𝐾 − 𝑎 − 𝑏 − 3)Λ0 + 𝑎Λ1 + 𝑏Λ2 of A(1)

2 , and in Theorem 6.1 of Section 6 the missing
cases for 𝜏 = 0 are obtained using a key observation due to Kanade and Russell. Then,
in Section 7, we prove the A(1)

2 -analogues of the Andrews–Gordon identities, stated in
Theorems 7.2 and 7.3. In Section 8 we give a short introduction to the principal subspaces
of A(1)

𝑟−1 in the sense of Feigin and Stoyanovsky, and then apply the A2 Bailey tree to prove
Theorem 1.4. Finally, in Section 9 we discuss the prospects of an A𝑟−1 Bailey tree and a
generalisation of (1.5) to arbitrary rank 𝑟 .

2. Preliminaries

A partition 𝜆 = (𝜆1, 𝜆2, . . . ) is a sequence of weakly decreasing integers such that |𝜆 | :=
𝜆1 + 𝜆2 + · · · is finite. We will follow the convention to omit the infinite string of zeros in
a partition, writing (4, 3, 2, 2, 1) instead of (4, 3, 2, 2, 1, 0, . . . ). If 𝜆 is a partition such that
|𝜆 | = 𝑛, we say that 𝜆 is a partition of 𝑛 and write 𝜆 ⊢ 𝑛. The set of all partitions, including
the unique partition of 0, is denoted by P . The length 𝑙 (𝜆) of a partition 𝜆 is defined as the
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number of positive 𝜆𝑖 . A rectangular partition is a partition 𝜆 such that 𝜆1 = · · · = 𝜆𝑟 = 𝑚
for some positive integer 𝑚 and 𝜆𝑟+1 = 0. We will typically denote such a 𝜆 by (𝑚𝑟 ). The
partition 𝜇 is said to be contained in the partition 𝜆, denoted 𝜇 ⊆ 𝜆 if 𝜇𝑖 ⩽ 𝜆𝑖 for all 𝑖 ⩾ 1.

Many of the identities in this paper involve a sum over the root lattice 𝑄 of A𝑟−1 or a
subset thereof, mostly for 𝑟 = 3. It will be convenient to employ the standard embedding
of this lattice in Z𝑟 , and we set

𝑄 := {(𝑦1, 𝑦2, . . . , 𝑦𝑟 ) ∈ Z𝑟 : 𝑦1 + 𝑦2 + · · · + 𝑦𝑟 = 0}, (2.1a)
𝑄+ := {(𝑦1, 𝑦2, . . . , 𝑦𝑟 ) ∈ 𝑄 : 𝑦1 + · · · + 𝑦𝑖 ⩾ 0 for all 1 ⩽ 𝑖 ⩽ 𝑟}, (2.1b)
𝑄++ := {(𝑦1, 𝑦2, . . . , 𝑦𝑟 ) ∈ 𝑄 : 𝑦1 ⩾ 𝑦2 ⩾ · · · ⩾ 𝑦𝑟 }. (2.1c)

For 𝑦 ∈ 𝑄 we also define 𝑦𝑖 𝑗 := 𝑦𝑖 − 𝑦 𝑗 for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑟 , where the reader is warned that
for the sake of brevity the two indices 𝑖 and 𝑗 will not be separated by a comma. Let 𝜀𝑖
denote the 𝑖th standard unit vector in R𝑟 and ⟨·, ·⟩ the standard scalar product on R𝑟 , so
that ⟨𝜀𝑖 , 𝜀 𝑗⟩ = 𝛿𝑖, 𝑗 , with 𝛿𝑖, 𝑗 the Kronecker delta. For 𝑖 ∈ 𝐼 := {1, . . . , 𝑟 − 1}, let

𝛼𝑖 = 𝜀𝑖 − 𝜀𝑖+1 and 𝜔𝑖 = 𝜀1 + · · · + 𝜀𝑖 −
𝑖

𝑟
(𝜀1 + · · · + 𝜀𝑟 )

be the 𝑖th simple root and 𝑖th fundamental weight of 𝔰𝔩𝑟 respectively, so that ⟨𝛼𝑖 ,𝜔 𝑗⟩ = 𝛿𝑖, 𝑗 .
Then 𝑄+ corresponds to

∑
𝑖∈𝐼 N0𝛼𝑖 and 𝑄++ = 𝑄 ∩ 𝑃+, where 𝑃+ :=

∑
𝑖∈𝐼 N0𝜔𝑖 is the set

of dominant (integral) weights of 𝔰𝔩𝑟 .
In this paper, 𝑞-series are typically viewed as elements of the formal power series ring

𝑅[[𝑞]] with 𝑅 an appropriate coefficient ring or field, such asZ,Q(𝑎) orQ(𝑧, 𝑤). A notable
exception will be the 𝑞-series featured in Gustafson’s 6𝜓6 summation (4.4) for the affine
root system A(1)

𝑟−1. This require complex 𝑞 such that |𝑞 | < 1. Many of our proofs rely on
identities for basic hypergeometric functions [40]. Using the condensed notation

(𝑎1, . . . , 𝑎𝑘 ; 𝑞)𝑛 =
𝑘∏
𝑖=1

(𝑎𝑖; 𝑞)𝑛,

for 𝑛 ∈ Z ∪ {∞}, the 𝑟𝜙𝑠 basic hypergeometric function is defined as

𝜙𝑟 𝑠

[
𝑎1, . . . , 𝑎𝑟
𝑏1, . . . , 𝑏𝑠

; 𝑞, 𝑧
]

:=
∞∑︁
𝑘=0

(𝑎1, . . . , 𝑎𝑟 ; 𝑞)𝑘
(𝑞, 𝑏1, . . . , 𝑏𝑠; 𝑞)𝑘

(
(−1)𝑘𝑞(

𝑘
2)

)𝑠−𝑟+1
𝑧𝑘 . (2.2)

This will only ever be used for terminating series, i.e., for series such that one of the numer-
ator variables 𝑎𝑖 is of the form 𝑞−𝑛 for 𝑛 a nonnegative integer. This ensures the summand
vanishes unless 𝑘 ∈ {0, 1, . . . , 𝑛}. We also adopt the standard one-line notation

𝑟𝜙𝑠 (𝑎1, . . . , 𝑎𝑟 ; 𝑏1, . . . , 𝑏𝑠; 𝑞, 𝑧)

for the series (2.2) and abbreviate the very-well-poised basic hypergeometric function

𝜙𝑟 𝑟−1

[
𝑎1, 𝑎

1/2
1 𝑞,−𝑎1/2

1 𝑞, 𝑎4, . . . , 𝑎𝑟

𝑎
1/2
1 ,−𝑎1/2

1 , 𝑎1𝑞/𝑎4, . . . , 𝑎1𝑞/𝑎𝑟
; 𝑞, 𝑧

]
as 𝑟𝑊𝑟−1 (𝑎1; 𝑎4, . . . , 𝑎𝑟 ; 𝑞, 𝑧).
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3. The A1 Bailey lemma

To motivate the A2 Bailey tree presented in the next section, we first review the classical
A1 case. Since the aim is to prove A(1)

2 generalisations of the Andrews–Gordon–Bressoud
identities (1.1), we will focus on that part of the Bailey machinery needed for proving (1.1).
This allows us to adopt simpler notation than is typically found in treatments of the Bailey
lemma such as in [5, 6, 88]. This notation is also more suited to generalisation to A2 and,
ultimately, A𝑟−1, since for higher rank the use of actual Bailey pairs often is notationally
very cumbersome. The reader familiar with the existing literature should have no difficulties
translating most of the results presented below in terms of Bailey pairs and transformations
of such pairs.

Recall that 1/(𝑞;𝑞)𝑛 = 0 for 𝑛 a negative integer. The main ingredients in our treatment
of the Bailey lemma are the following three rational functions:

Φ𝑛 (𝑧; 𝑞) :=
1

(𝑞, 𝑧𝑞; 𝑞)𝑛
, Φ𝑛 (𝑢; 𝑧; 𝑞) :=

1 − 𝑢𝑧 − (1 − 𝑢)𝑧𝑞𝑛
(𝑞; 𝑞)𝑛 (𝑧; 𝑞)𝑛+1

(3.1)

and

K𝑛;𝑟 (𝑧; 𝑞) :=
𝑧𝑟𝑞𝑟

2

(𝑞; 𝑞)𝑛−𝑟
,

where 𝑛, 𝑟 ∈ Z. The reason for separating 𝑢 and 𝑧 as well as 𝑛 and 𝑟 by semicolons is that
𝑛, 𝑟, 𝑢 and 𝑧 all become sequences in the higher-rank case. For later reference we note that

Φ𝑛 (𝑧−1; 𝑞−1) = (𝑧𝑞)𝑛𝑞𝑛2
Φ𝑛 (𝑧; 𝑞), (3.2a)

Φ𝑛 (1; 𝑧; 𝑞) = Φ𝑛 (𝑧; 𝑞), Φ𝑛 (𝑧−1; 𝑧; 𝑞) = 𝑞𝑛Φ𝑛 (𝑧; 𝑞) (3.2b)

and
Φ𝑛 (𝑢; 𝑧; 𝑞) = Φ𝑛 (𝑧/𝑞; 𝑞) − 𝑢𝑧

(𝑧; 𝑞)2
Φ𝑛−1 (𝑧𝑞; 𝑞). (3.3)

From [40, Equation (2.3.4)] it follows that
𝑛∑︁

𝑟=𝑁

𝑞𝑛−𝑟Φ𝑛−𝑟
(
𝑧𝑞2𝑟 ; 𝑞

)
Φ𝑟−𝑁

(
𝑧𝑞2𝑟 ; 𝑞−1) = 𝛿𝑛,𝑁 , (3.4)

which is Andrews’ A1 matrix inversion [4, Lemma 3] in disguise.
A key role in the Bailey lemma [12] is played by the above-mentioned Bailey pairs.

These are pairs of sequences (𝛼(𝑧; 𝑞), 𝛽(𝑧; 𝑞)) indexed by nonnegative integers and de-
pending on parameters 𝑧 and 𝑞 such that2

𝛽𝑛 (𝑧; 𝑞) =
𝑛∑︁
𝑟=0

𝛼𝑟 (𝑧; 𝑞)
(𝑞; 𝑞)𝑛−𝑟 (𝑧𝑞; 𝑞)𝑛+𝑟

, (3.5a)

2It the literature on the Bailey lemma it is customary to use 𝑎 instead of 𝑧, and to refer to a pair
satisfying (3.5a) as a Bailey pair relative to 𝑎.
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or, equivalently, [4, Lemma 3]

𝛼𝑛 (𝑧; 𝑞) =
𝑛∑︁
𝑟=0

1 − 𝑧𝑞2𝑛

1 − 𝑧 (−1)𝑛−𝑟𝑞(
𝑛−𝑟

2 ) (𝑧; 𝑞)𝑛+𝑟
(𝑞; 𝑞)𝑛−𝑟

𝛽𝑟 (𝑧; 𝑞). (3.5b)

In [5] Andrews discovered that, given a Bailey pair relative to 𝑧, there is a simple
transformation (already implicit in the work of Bailey) that turns this pair into a new Bailey
pair relative to 𝑧. This can be iterated to yield what Andrews termed the Bailey chain:(

𝛼(𝑧; 𝑞), 𝛽(𝑧; 𝑞)
)
↦→

(
𝛼′ (𝑧; 𝑞), 𝛽′ (𝑧; 𝑞)

)
↦→

(
𝛼′′ (𝑧; 𝑞), 𝛽′′ (𝑧; 𝑞)

)
↦→ · · · . (3.6)

The essence of (a special case of) this transformation is captured in the following lemma,
which by abuse of terminology we also refer to as the A1 Bailey chain. In particular it should
be clear that the result below lends itself to iteration thanks to its reproducing nature.

Lemma 3.1 (A1 Bailey chain). For 𝑛 a nonnegative integer,
𝑛∑︁
𝑟=0

K𝑛;𝑟 (𝑧; 𝑞)Φ𝑟 (𝑧; 𝑞) = Φ𝑛 (𝑧; 𝑞). (3.7)

Proof. In 𝑞-hypergeometric notation the identity (3.7) is

1𝜙1 (𝑞−𝑛; 𝑧𝑞; 𝑞; 𝑧𝑞𝑛+1) = 1
(𝑧𝑞; 𝑞)𝑛

, (3.8)

which is the terminating form of [40, Equation (II.5)].

Corollary 3.2. We have

Φ𝑛 (𝑧; 𝑞) =
∑︁
𝜆∈P

∏
𝑖⩾1

𝑧𝜆𝑖𝑞𝜆
2
𝑖

(𝑞; 𝑞)𝜆𝑖−1−𝜆𝑖
,

where 𝜆0 := 𝑛.

Proof. By a 𝑘-fold application of (3.7),

Φ𝑛 (𝑧; 𝑞) =
∑︁
𝜆∈P
𝑙 (𝜆)⩽𝑘

Φ𝜆𝑘 (𝑧; 𝑞)
𝑘∏
𝑖=1

K𝜆𝑖−1;𝜆𝑖 (𝑧; 𝑞),

where 𝜆0 := 𝑛. Letting 𝑘 tend to infinite yields the claim.

The Bailey chains (3.6) or (3.7) alone are not enough to prove the full set of Andrews–
Gordon–Bressoud identities (1.1), and in [2] Agarwal, Andrews and Bressoud found a
further transformation for Bailey pairs, this time scaling the parameter 𝑧 by a factor 𝑞:(

𝛼(𝑧; 𝑞), 𝛽(𝑧; 𝑞)
)
↦→

(
𝛼′ (𝑧/𝑞; 𝑞), 𝛽′ (𝑧/𝑞; 𝑞)

)
.

Combining this with the original transformation allows for more complicated patterns of
iteration which are not linear in nature. This led Agarwal, Andrews and Bressoud to refer
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to their discovery as the Bailey lattice. Equipped with the Bailey lattice it is a simple
exercise to prove (1.1) in full. The part of the Bailey lattice needed for proving the Andrews–
Gordon–Bressoud identities has the structure of a simple binary tree, and is captured in
the following lemma.

Lemma 3.3 (A1 Bailey tree). For 𝑛 a nonnegative integer,
𝑛∑︁
𝑟=0

K𝑛;𝑟 (𝑧; 𝑞)Φ𝑟 (1; 𝑧; 𝑞) = Φ𝑛 (1; 𝑧; 𝑞), (3.9a)

and
𝑛∑︁
𝑟=0

K𝑛;𝑟 (𝑧/𝑞; 𝑞)Φ𝑟 (𝑢; 𝑧; 𝑞) = Φ𝑛 (𝑢𝑧; 𝑧; 𝑞). (3.9b)

By Φ𝑛 (1; 𝑧; 𝑞) = Φ𝑛 (𝑧; 𝑞), the first claim is merely a restatement of the Bailey chain.
The crucial part of Lemma 3.3 is that one can first repeatedly apply (3.9a) (or (3.7)) and
then change the nature of the iteration by continuing with (3.9b), initially with 𝑢 = 1, then
𝑢 = 𝑧, 𝑢 = 𝑧2 and so on, changing the linear nature of Lemma 3.1, instead generating the
binary tree

0
0

0
0

0
0

1
1

1
1

1

2
2

2
2

3
3

3
4

4 5

where the label 𝑖 ∈ N0 represents the rational function Φ𝑛 (𝑧𝑖; 𝑧; 𝑞). Of course, (3.9b) in
isolation allows for

Φ𝑛 (𝑢; 𝑧; 𝑞) ↦→ Φ𝑛 (𝑢𝑧; 𝑧; 𝑞) ↦→ Φ𝑛 (𝑢𝑧2; 𝑧; 𝑞) ↦→ Φ𝑛 (𝑢𝑧3; 𝑧; 𝑞) ↦→ · · · ,

but if one wishes to combine (3.9a) and (3.9b) then this fixes 𝑢 = 1.

Proof of Lemma 3.3. Since (3.9a) is a restatement of (3.7), only (3.9b) requires proof.
By (3.1) or (3.3) it is clear that both sides of (3.9b) are polynomials in 𝑢 of degree one.

Taking the constant term using (3.3) yields (3.7) with 𝑧 ↦→ 𝑧/𝑞. Similarly, extracting the
coefficient of 𝑢 in (3.9b) and dividing both sides by −𝑧/(𝑧; 𝑞)2, gives

𝑛∑︁
𝑟=1

K𝑛;𝑟 (𝑧/𝑞; 𝑞)Φ𝑟−1 (𝑧𝑞; 𝑞) = 𝑧Φ𝑛−1 (𝑧𝑞; 𝑞).

Here we have also used that Φ−1 = 0 to change the lower bound on the sum from 0 to 1.
Shifting 𝑟 ↦→ 𝑟 + 1 and noting that

K𝑛;𝑟+1 (𝑧/𝑞; 𝑞) = 𝑧K𝑛−1;𝑟 (𝑧𝑞; 𝑞),

results in (3.7) with (𝑧, 𝑛) ↦→ (𝑧𝑞, 𝑛 − 1).
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Before we are ready to demonstrate how the Andrews–Gordon–Bressoud identities
(1.1) arise from the above results, a slight reformulation of the previous two lemmas is
needed. For this purpose we define

Φ𝑛;𝑦 (𝑧; 𝑞) :=
Φ𝑛−𝑦 (𝑧𝑞2𝑦; 𝑞)

(𝑧𝑞; 𝑞)2𝑦
=

1
(𝑞; 𝑞)𝑛−𝑦 (𝑧𝑞; 𝑞)𝑛+𝑦

,

Φ𝑛;𝑦 (𝑢; 𝑧; 𝑞) :=
Φ𝑛−𝑦 (𝑢; 𝑧𝑞2𝑦; 𝑞)

(𝑧𝑞; 𝑞)2𝑦
=

1 − 𝑢𝑧𝑞2𝑦 − (1 − 𝑢)𝑧𝑞𝑛+𝑦
(𝑞; 𝑞)𝑛−𝑦 (𝑧𝑞; 𝑞)𝑛+𝑦 (1 − 𝑧𝑞2𝑦)

,

where 𝑛, 𝑦 ∈ Z. Note that once again Φ𝑛;𝑦 (1; 𝑧; 𝑞) = Φ𝑛;𝑦 (𝑧; 𝑞), and that Φ𝑛;𝑦 vanishes
unless 𝑛 ⩾ 𝑦. Further note that (3.5a) and (3.5b) can be recast in terms of Φ𝑛;𝑦 (𝑧; 𝑞) and
Φ𝑛 (𝑧; 𝑞) as

𝛽𝑛 (𝑧; 𝑞) =
𝑛∑︁
𝑟=0

Φ𝑛;𝑟 (𝑧; 𝑞)𝛼𝑟 (𝑧; 𝑞), (3.10a)

𝛼𝑛 (𝑧; 𝑞) = 𝑞−𝑛 (𝑧𝑞; 𝑞)2𝑛
𝑛∑︁
𝑟=0

𝑞𝑟Φ𝑛−𝑟
(
𝑧𝑞2𝑛; 𝑞−1)𝛽𝑟 (𝑧; 𝑞). (3.10b)

By replacing (𝑧, 𝑛) ↦→ (𝑧𝑞2𝑦 , 𝑛− 𝑦) in Lemmas 3.1 and 3.3 and then shifting the summation
index 𝑟 ↦→ 𝑟 − 𝑦, the following two corollaries arise.3

Corollary 3.4. For 𝑛, 𝑦 ∈ Z,
𝑛∑︁
𝑟=𝑦

K𝑛;𝑟 (𝑧; 𝑞)Φ𝑟 ;𝑦 (𝑧; 𝑞) = 𝑧𝑦𝑞𝑦
2
Φ𝑛;𝑦 (𝑧; 𝑞). (3.11)

Corollary 3.5. For 𝑛, 𝑦 ∈ Z,
𝑛∑︁
𝑟=𝑦

K𝑛;𝑟 (𝑧; 𝑞)Φ𝑟 ;𝑦 (1; 𝑧; 𝑞) = 𝑧𝑦𝑞𝑦2
Φ𝑛;𝑦 (1; 𝑧; 𝑞), (3.12a)

and
𝑛∑︁
𝑟=𝑦

K𝑛;𝑟 (𝑧/𝑞; 𝑞)Φ𝑟 ;𝑦 (𝑢; 𝑧; 𝑞) = 𝑧𝑦𝑞𝑦2−𝑦Φ𝑛;𝑦 (𝑢𝑧𝑞2𝑦; 𝑧; 𝑞). (3.12b)

We are now ready to give a short proof of (1.1).

3Corollary 3.4 for 𝑧 = 1 and 𝑧 = 𝑞 is equivalent to [70, (R1) & (R2)] in that (3.11) for these two
values of 𝑧 corresponds to the coefficient of 𝑎𝑛 and 𝑏𝑛 in equations (R1) and (R2) of [70].
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Proof. Slater’s Bailey pairs B(3) and E(3) [79] are equivalent to the following pair of
polynomial identities:4

𝑛∑︁
𝑦=−𝑛−1

(−1)𝑦𝑞3(𝑦2)+2𝑦
[
2𝑛 + 1
𝑛 − 𝑦

]
=

(𝑞; 𝑞)2𝑛+1
(𝑞; 𝑞)𝑛

(3.13)

and
𝑛∑︁

𝑦=−𝑛−1
(−1)𝑦𝑞2(𝑦2)+𝑦

[
2𝑛 + 1
𝑛 − 𝑦

]
=

(𝑞; 𝑞)2𝑛+1

(𝑞2; 𝑞2)𝑛
,

where 𝑛 is a nonnegative integer. In terms of the rational function Φ𝑛;𝑦 (𝑧; 𝑞), Slater’s
identities can be written as

𝑛∑︁
𝑦=−𝑛−1

(−1)𝑦𝑞 (2+𝜏 ) (
𝑦+1

2 )−𝑦Φ𝑛;𝑦 (𝑞; 𝑞) = 1 − 𝑞
(𝑞2−𝜏 ; 𝑞2−𝜏)𝑛

, (3.14a)

where 𝜏 ∈ {0, 1}. Although this form of the identity is perfectly suitable for the application
of the Bailey tree, we will rewrite it further to more closely mimic its A2-analogue, given
by (5.2) on page 25. To this end, let 𝑡𝑦 be the summand of (3.14a) and rewrite the sum as∑
𝑦 𝑡𝑦 =

∑
𝑦 𝑡2𝑦 +

∑
𝑦 𝑡−2𝑦−1. Using that Φ𝑛;−2𝑦−1 (𝑞; 𝑞) = Φ𝑛;2𝑦 (𝑞; 𝑞) and thus 𝑡−2𝑦−1 =

−𝑡2𝑦𝑞4𝑦+1, this yields∑︁
𝑦∈Z

𝑞 (2+𝜏 ) (
2𝑦+1

2 )−2𝑦 1 − 𝑞4𝑦+1

1 − 𝑞 Φ𝑛;2𝑦 (𝑞; 𝑞) = 1
(𝑞2−𝜏 ; 𝑞2−𝜏)𝑛

, (3.14b)

where it is noted that the summand vanishes unless −⌊(𝑛 + 1)/2⌋ ⩽ 𝑦 ⩽ ⌊𝑛/2⌋. (Since
both sides of (3.14a) and (3.14b) trivially vanish for negative values of 𝑛, both forms of
the identity are true for all 𝑛 ∈ Z).

In the following we identify the identity (3.14b) with the root of the binary tree shown
on page 11. By a (𝑘 − 𝑎)-fold application of Corollary 3.4 with 𝑧 = 𝑞, which corresponds
to taking 𝑘 − 𝑎 downward steps along the left-most branch of the tree,∑︁

𝑦∈Z
𝑞 (2𝑘−2𝑎+2+𝜏 ) (2𝑦+1

2 )−2𝑦 1 − 𝑞4𝑦+1

1 − 𝑞 Φ𝑛;2𝑦 (𝑞; 𝑞) (3.15)

=
∑︁

𝜆⊆(𝑛𝑘−𝑎 )

1
(𝑞2−𝜏 ; 𝑞2−𝜏)𝜆ℓ

𝑘−𝑎∏
𝑖=1

K𝜆𝑖−1;𝜆𝑖 (𝑞; 𝑞),

where𝜆0 := 𝑛 and 𝑘 − 𝑎 ∈N0. We now replaceΦ𝑛;2𝑦 (𝑞;𝑞) byΦ𝑛;2𝑦 (1;𝑞;𝑞) and then take 𝑎
steps along the tree in the south-east direction using (3.12b) with 𝑧 = 𝑞 and 𝑢 = 𝑞 (𝑖−1) (4𝑦+1)

in the 𝑖th step. Since
K𝑛;𝑟 (𝑧/𝑞; 𝑞) = 𝑞−𝑟K𝑛;𝑟 (𝑧; 𝑞),

4These two results can be traced back to Rogers’ work on the Rogers–Ramanujan identities. For
example, the left-hand side of (3.13) is what Rogers denotes by 𝑞−(𝑛+1)2

𝛽2𝑛+1 on page 316 of [73].
His equation (5) on the following page then states that 𝑞−𝑛−1𝛽2𝑛+1/(𝑞; 𝑞)2𝑛+1 = 𝑞𝑛(𝑛+1)/(𝑞; 𝑞)𝑛.



14 S. O. Warnaar

this yields∑︁
𝑦∈Z

𝑞𝐾 (
2𝑦+1

2 )−2(𝑎+1)𝑦 1 − 𝑞4𝑦+1

1 − 𝑞 Φ𝑛;2𝑦
(
𝑞𝑎 (4𝑦+1) ; 𝑞; 𝑞

)
(3.16)

=
∑︁

𝜆⊆(𝑛𝑘 )

1
(𝑞2−𝜏 ; 𝑞2−𝜏)𝜆𝑘

𝑘∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎)𝜆𝑖K𝜆𝑖−1;𝜆𝑖 (𝑞; 𝑞)

=
∑︁

𝜆⊆(𝑛𝑘 )

𝑞𝜆
2
1+···+𝜆

2
𝑘
+𝜆𝑎+1+···+𝜆𝑘

(𝑞; 𝑞)𝑛−𝜆1 (𝑞; 𝑞)𝜆1−𝜆2 · · · (𝑞; 𝑞)𝜆𝑘−1−𝜆𝑘 (𝑞2−𝜏 ; 𝑞2−𝜏)𝜆𝑘
,

where 𝑎, 𝑘 are integers such that 0 ⩽ 𝑎 ⩽ 𝑘 , and 𝐾 := 2𝑘 + 2 + 𝜏. We note that the path
along the tree we have taken is

0
1

2

𝑘−𝑎

𝑘−1
𝑘

where the labels denote the level (or distance to the root) of each vertex.
Although it is not an essential step in the proof and one can proceed by directly taking

the large-𝑛 limit in (3.16), we observe that the left-hand side allows for a simplification
which only requires the function Φ𝑛;𝑦 (𝑞; 𝑞). This simplification is achieved by noting that

𝑞𝐾 (
2𝑦+1

2 )−2(𝑎+1)𝑦 1 − 𝑞4𝑦+1

1 − 𝑞 Φ𝑛;2𝑦
(
𝑞𝑎 (4𝑦+1) ; 𝑞; 𝑞

)
=

∑︁
𝑦′∈{−2𝑦,2𝑦−1}

(−1)𝑦′𝑞𝐾 (
𝑦′+1

2 )−(𝑎+1)𝑦′ 1 − 𝑞𝑛+𝑦′+1

1 − 𝑞 Φ𝑛;𝑦′ (𝑞; 𝑞).

Hence the left-hand side of (3.16) may also be written as
𝑛∑︁

𝑦=−𝑛−1
(−1)𝑦𝑞𝐾 (

𝑦+1
2 )−(𝑎+1)𝑦 1 − 𝑞𝑛+𝑦+1

1 − 𝑞 Φ𝑛;𝑦 (𝑞; 𝑞).

Since
lim
𝑛→∞

Φ𝑛;𝑦 (𝑧; 𝑞) =
1

(𝑞, 𝑧𝑞; 𝑞)∞
,

this implies that in the large-𝑛 limit

1
(𝑞; 𝑞)∞

∑︁
𝑦∈Z

(−1)𝑦𝑞𝐾 (
𝑦+1

2 )−(𝑎+1)𝑦 =
∑︁
𝜆∈P
𝑙 (𝜆)⩽𝑘

𝑞𝜆
2
1+···+𝜆

2
𝑘
+𝜆𝑎+1+···+𝜆𝑘

(𝑞; 𝑞)𝜆1−𝜆2 · · · (𝑞; 𝑞)𝜆𝑘−1−𝜆𝑘 (𝑞2−𝜏 ; 𝑞2−𝜏)𝜆𝑘
.
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By the Jacobi triple product identity [40, (II.28)] the left-hand side admits the product form

(𝑞𝐾 ; 𝑞𝐾 )∞
(𝑞; 𝑞)∞

𝜃
(
𝑞𝑎+1; 𝑞𝐾

)
,

resulting in (1.1).

4. The A2 Bailey tree

In this section we present an A2-analogue of the A1 Bailey tree. This tree is three-dimensional,
or parametrisable by three nonnegative integer variables, with an added layer of complex-
ity in that the structure of the tree is not actually tree-like in the strict graph-theoretical
sense. In developing our Bailey tree we once again avoid the use of Bailey pairs, although
in the short Section 4.2 we briefly discuss A2 Bailey pairs and A2 Bailey pair inversion.

4.1. A Bailey tree for A2

The most important definition of this section is the A2-analogue of the rational function
Φ𝑛 (𝑧; 𝑞), and following [8, Definition 4.2] and [89, Equation (5.1)], we let

Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) :=
(𝑧𝑤𝑞; 𝑞)𝑛+𝑚

(𝑞, 𝑧𝑞, 𝑧𝑤𝑞; 𝑞)𝑛 (𝑞, 𝑤𝑞, 𝑧𝑤𝑞; 𝑞)𝑚
, (4.1)

where 𝑛, 𝑚, 𝑟, 𝑠 ∈ Z. This function was also considered in [31]. A first hint that (4.1) has
something to do with the A2 root system follows from the analogue of (3.2a):

Φ𝑛,𝑚
(
𝑧−1, 𝑤−1; 𝑞−1) = (𝑧𝑞)𝑛 (𝑤𝑞)𝑚𝑞𝑛2−𝑛𝑚+𝑚2

Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞). (4.2)

Here 𝑛2
1 − 𝑛1𝑛2 + 𝑛2

2 =
1
2
∑2
𝑖, 𝑗=1 𝑛𝑖𝐴𝑖 𝑗𝑛 𝑗 , where (𝐴𝑖 𝑗 ) = (⟨𝛼𝑖 , 𝛼 𝑗⟩) is the A2 Cartan matrix.

Before we show how the function Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) can be used to generalise all of the results
of the previous section, we state the A2-analogue of Andrews’ matrix inversion (3.4). To
the best of our knowledge this result is new.

Proposition 4.1. For 𝑛, 𝑚, 𝑁, 𝑀 integers such that 𝑛 ⩾ 𝑁 and 𝑚 ⩾ 𝑀 ,
𝑛∑︁

𝑟=𝑁

𝑚∑︁
𝑠=𝑀

𝑞𝑛+𝑚−𝑟−𝑠Φ𝑛−𝑟 ,𝑚−𝑠
(
𝑧𝑞2𝑟−𝑠 , 𝑤𝑞2𝑠−𝑟 ; 𝑞

)
Φ𝑟−𝑁,𝑠−𝑀

(
𝑧𝑞2𝑟−𝑠 , 𝑤𝑞2𝑠−𝑟 ; 𝑞−1) (4.3)

= 𝛿𝑛,𝑁 𝛿𝑚,𝑀 .

This inversion relation, which simplifies to (3.4) for𝑀 =𝑚 = 0 or 𝑤 = 0, will be applied
in Section 8 to prove Theorem 1.4.

Proof of Proposition 4.1. Replacing

(𝑛, 𝑚, 𝑧, 𝑤) ↦→
(
𝑛 + 𝑁, 𝑚 + 𝑀, 𝑧𝑞𝑀−2𝑁 , 𝑤𝑞𝑁−2𝑀 )

,
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and then shifting the summation indices (𝑟, 𝑠) ↦→ (𝑟 + 𝑁, 𝑠 + 𝑀), it follows that (4.3) for
general 𝑁,𝑀 is equivalent to the 𝑁 =𝑀 = 0 case. The proof of (4.3) for 𝑁 =𝑀 = 0 requires
Gustafson’s multiple 6𝜓6 summation [44, Theorem 1.15] for the affine root system A(1)

𝑟−1:∑︁
𝑦∈𝑄

∏
1⩽𝑖< 𝑗⩽𝑟

𝑥𝑖𝑞
𝑦𝑖 − 𝑥 𝑗𝑞𝑦 𝑗
𝑥𝑖 − 𝑥 𝑗

𝑟∏
𝑖, 𝑗=1

(𝑎 𝑗𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖
(𝑏 𝑗𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖

(4.4)

=
(𝐵𝑞1−𝑟 , 𝑞/𝐴; 𝑞)∞
(𝑞, 𝐵𝑞1−𝑟/𝐴; 𝑞)∞

𝑟∏
𝑖, 𝑗=1

(𝑞𝑥𝑖/𝑥 𝑗 , 𝑥𝑖𝑏 𝑗/𝑎𝑖𝑥 𝑗 ; 𝑞)∞
(𝑥𝑖𝑏 𝑗/𝑥 𝑗 , 𝑥𝑖𝑞/𝑎𝑖𝑥 𝑗 ; 𝑞)∞

,

where 𝐴 := 𝑎1 · · · 𝑎𝑟 , 𝐵 := 𝑏1 · · · 𝑏𝑟 and max{|𝑞 |, |𝐵𝑞1−𝑟/𝐴|} < 1. Assuming 𝑟 ⩾ 3 and
specialising

(𝑎1, . . . , 𝑎𝑟 ) = (𝑞−𝑛, 𝑐2, . . . , 𝑐𝑟−1, 1), (𝑏1, . . . , 𝑏𝑟 ) = (𝑞, 𝑐2, . . . , 𝑐𝑟−1, 𝑞
𝑚+1),

(4.4) yields ∑︁
𝑦∈𝑄

∏
1⩽𝑖< 𝑗⩽𝑟

𝑥𝑖𝑞
𝑦𝑖 − 𝑥 𝑗𝑞𝑦 𝑗
𝑥𝑖 − 𝑥 𝑗

𝑟∏
𝑖=1

(𝑞−𝑛𝑥𝑖/𝑥1, 𝑥𝑖/𝑥𝑟 ; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥1, 𝑞𝑚+1𝑥𝑖/𝑥𝑟 ; 𝑞)𝑦𝑖

= 0

for |𝑞 | < 1 and 𝑛 + 𝑚 > 𝑟 − 3. The summand on the left vanishes unless 0 ⩽ 𝑦1 ⩽ 𝑛 and
0 ⩽ −𝑦𝑟 ⩽ 𝑚. Since 𝑦 ∈ 𝑄, this implies that for 𝑟 = 3 the summand has finite support,
making the condition |𝑞 | < 1 redundant. Then replacing (𝑦1, 𝑦2, 𝑦3) ↦→ (𝑟, 𝑠 − 𝑟,−𝑠) and
(𝑥1, 𝑥2, 𝑥3) ↦→ (𝑧𝑤, 𝑤, 1), the identity (4.3) for 𝑁 = 𝑀 = 0 and (𝑛, 𝑚) ≠ (0, 0) follows.
Since the (𝑛, 𝑚) = (0, 0) case trivially holds, we are done.

Apart from Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) we also need the function

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞) :=
𝑧𝑟𝑤𝑠𝑞𝑟

2−𝑟𝑠+𝑠2

(𝑞; 𝑞)𝑛−𝑟 (𝑞; 𝑞)𝑚−𝑠
.

Then the A2 Bailey lemma of [8, Theorem 4.3] is equivalent to the following reproducing
identity for Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞), see also [89, Theorem 5.1] or [31, Corollary 7.9].

Theorem 4.2 (A2 Bailey chain). For 𝑛, 𝑚 nonnegative integers,
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠 (𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞). (4.5)

Since

Φ𝑛,𝑚 (𝑧, 0; 𝑞) = Φ𝑛 (𝑧; 𝑞)
(𝑞; 𝑞)𝑚

and K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 0; 𝑞) = 𝛿𝑠,0
K𝑛;𝑟 (𝑧; 𝑞)
(𝑞; 𝑞)𝑚

, (4.6)

Theorem 4.2 for 𝑤 = 0 simplifies to Lemma 3.1. It also simplifies to this lemma for 𝑚 = 0.
We further remark that (4.5) holds for all integers 𝑛, 𝑚, with both sides vanishing trivially
unless 𝑛, 𝑚 ⩾ 0. The proof of (4.5) presented below replicates the second part of the proof
of [8, Theorem 4.3]. For an alternative approach using Hall–Littlewood polynomials the
reader is referred to [89].
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Proof. Denote the double sum on the left of (4.5) by 𝜙𝑛,𝑚 (𝑧, 𝑤; 𝑞). Then

𝜙𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 1
(𝑞; 𝑞)𝑚

𝑛∑︁
𝑟=0

𝑧𝑟𝑞𝑟
2

(𝑞; 𝑞)𝑛−𝑟 (𝑞, 𝑧𝑞; 𝑞)𝑟
𝜙2 2

[
𝑧𝑤𝑞𝑟+1, 𝑞−𝑚

𝑤𝑞, 𝑧𝑤𝑞
; 𝑞, 𝑤𝑞𝑚−𝑟+1

]
.

By a limiting case of [40, Equation (III.9)],

𝜙2 2

[
𝑎, 𝑞−𝑛

𝑏, 𝑐
; 𝑞,

𝑏𝑐𝑞𝑛

𝑎

]
=

1
(𝑐; 𝑞)𝑛

𝜙2 1

[
𝑏/𝑎, 𝑞−𝑛

𝑏
; 𝑞, 𝑐𝑞𝑛

]
.

Applying this with (𝑛, 𝑎, 𝑏, 𝑐) ↦→ (𝑚, 𝑧𝑤𝑞𝑟+1, 𝑧𝑤𝑞, 𝑤𝑞) yields

𝜙𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 1
(𝑞, 𝑤𝑞; 𝑞)𝑚

𝑛∑︁
𝑟=0

𝑧𝑟𝑞𝑟
2

(𝑞; 𝑞)𝑛−𝑟 (𝑞, 𝑧𝑞; 𝑞)𝑟
𝜙2 1

[
𝑞−𝑟 , 𝑞−𝑚

𝑧𝑤𝑞
; 𝑞, 𝑤𝑞𝑚+1

]
=

𝑛∑︁
𝑠=0

𝑛∑︁
𝑟=𝑠

𝑧𝑟𝑤𝑠𝑞(𝑟−𝑠2 )+𝑟2

(𝑞; 𝑞)𝑛−𝑟 (𝑞; 𝑞)𝑚−𝑠 (𝑧𝑞; 𝑞)𝑟 (𝑞; 𝑞)𝑟−𝑠 (𝑞, 𝑧𝑤𝑞; 𝑞)𝑠
.

After shifting 𝑟 ↦→ 𝑟 + 𝑠 this gives

𝜙𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 1
(𝑤𝑞; 𝑞)𝑚

𝑛∑︁
𝑠=0

(𝑤𝑧)𝑠𝑞𝑠2

(𝑞; 𝑞)𝑛−𝑠 (𝑞; 𝑞)𝑚−𝑠 (𝑞, 𝑧𝑞, 𝑧𝑤𝑞; 𝑞)𝑠
𝜙1 1

[
𝑞−(𝑛−𝑠)

𝑧𝑞𝑠+1 ; 𝑞, 𝑧𝑞𝑛+1
]
.

Finally, by (3.8) with (𝑧, 𝑛) ↦→ (𝑧𝑞𝑠 , 𝑛 − 𝑠),

𝜙𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 1
(𝑞, 𝑧𝑞; 𝑞)𝑛 (𝑞, 𝑤𝑞; 𝑞)𝑚

𝜙2 1

[
𝑞−𝑛, 𝑞−𝑚

𝑧𝑤𝑞
; 𝑞, 𝑤𝑧𝑞𝑛+𝑚+1

]
= Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞),

where the final equality follows from the 𝑞-Chu–Vandermonde summation [40, Equation
(II.7)].

Generalising the proof of Corollary 3.2 to the rank-two setting in the obvious manner
gives the following multisum representation forΦ𝑛,𝑚 (𝑧, 𝑤;𝑞), see also [89, Corollary 3.4].

Corollary 4.3. We have

Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) =
∑︁

𝜆,𝜇∈P

∏
𝑖⩾1

𝑧𝜆𝑖𝑤𝜇𝑖𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

(𝑞; 𝑞)𝜆𝑖−1−𝜆𝑖 (𝑞; 𝑞)𝜇𝑖−1−𝜇𝑖
,

where 𝜆0 := 𝑛 and 𝜇0 := 𝑚.

Next we will generalise the A1 Bailey tree of Lemma 3.3. This requires a suitable
𝑢, 𝑣-generalisation Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) of Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) such that

Φ𝑛,𝑚 (1, 1; 𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞), (4.7a)

Φ𝑛,𝑚 (𝑧−1, 𝑤−1; 𝑧, 𝑤; 𝑞) = 𝑞𝑛Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) (4.7b)

and
Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 0; 𝑞) = Φ𝑛 (𝑢; 𝑧; 𝑞)

(𝑞; 𝑞)𝑚
. (4.8)
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We begin by noting that the decomposition (3.3) for 𝑢 = 1 follows from the relation 1 − 𝑧 =
(1 − 𝑐𝑧) − 𝑧(1 − 𝑐) for 𝑐 = 𝑞𝑛. This readily generalises to the 4-term relation

(1 − 𝑧) (1 − 𝑤) (1 − 𝑧𝑤) (1 − 𝑐𝑑𝑧𝑤)
= (1 − 𝑐𝑧) (1 − 𝑤) (1 − 𝑐𝑧𝑤) (1 − 𝑑𝑧𝑤) − 𝑧(1 − 𝑐) (1 − 𝑑𝑤) (1 − 𝑧𝑤) (1 − 𝑐𝑧𝑤)
+ 𝑧𝑤2 (1 − 𝑐) (1 − 𝑑) (1 − 𝑧) (1 − 𝑐𝑧),

which for (𝑐, 𝑑) ↦→ (𝑞𝑛, 𝑞𝑚) implies

Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (𝑧/𝑞, 𝑤; 𝑞) − 𝑧

(𝑧; 𝑞)2
Φ𝑛−1,𝑚 (𝑧𝑞, 𝑤/𝑞; 𝑞) (4.9)

+ 𝑧𝑤2

(𝑤, 𝑧𝑤; 𝑞)2
Φ𝑛−1,𝑚−1 (𝑧, 𝑤𝑞; 𝑞).

Generalising this to include parameters 𝑢 and 𝑣, we define

Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) := Φ𝑛,𝑚 (𝑧/𝑞, 𝑤; 𝑞) − 𝑢𝑧

(𝑧; 𝑞)2
Φ𝑛−1,𝑚 (𝑧𝑞, 𝑤/𝑞; 𝑞) (4.10)

+ 𝑢𝑣𝑧𝑤2

(𝑤, 𝑧𝑤; 𝑞)2
Φ𝑛−1,𝑚−1 (𝑧, 𝑤𝑞; 𝑞),

which obviously satisfies (4.7a). After clearing denominators, the relation (4.7b) is a con-
sequence of the 4-term relation

𝑐(1 − 𝑧) (1 − 𝑤) (1 − 𝑧𝑤) (1 − 𝑐𝑑𝑧𝑤)
= (1 − 𝑐𝑧) (1 − 𝑤) (1 − 𝑐𝑧𝑤) (1 − 𝑑𝑧𝑤) − (1 − 𝑐) (1 − 𝑑𝑤) (1 − 𝑧𝑤) (1 − 𝑐𝑧𝑤)
+ 𝑤(1 − 𝑐) (1 − 𝑑) (1 − 𝑧) (1 − 𝑐𝑧)

for (𝑐, 𝑑) ↦→ (𝑞𝑛, 𝑞𝑚). Finally, the relation (4.8) follows from (3.3) and (4.6). Most im-
portantly, Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) satisfies the following generalisation of Lemma 3.3.

Theorem 4.4 (A2 Bailey tree, part I). For 𝑛, 𝑚 nonnegative integers,
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠 (1, 1; 𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (1, 1; 𝑧, 𝑤; 𝑞) (4.11a)

and
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤; 𝑞)Φ𝑟 ,𝑠 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (𝑢𝑧, 𝑣𝑤; 𝑧, 𝑤; 𝑞). (4.11b)

By (4.7a) the first claim is of course a restatement of the A2 Bailey chain. We also
remark that for 𝑚 = 0 or for 𝑤 = 0 the theorem simplifies to Lemma 3.3.

The A2 Bailey tree as stated can only prove Theorems 1.2 and 1.4 for 𝑏 = 0 (or, by
symmetry, 𝑎 = 0) and we also need a Bailey-type transformation for a four-parameter gen-
eralisation ofΦ𝑛,𝑚 (𝑧, 𝑤;𝑞) involving the functionK𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞,𝑤/𝑞;𝑞). This missing part
of the A2 Bailey tree will be discussed later.
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Proof of Theorem 4.4. Each side of (4.11b) is a polynomial in 𝑢 and 𝑣 of the form 𝐴 +
𝐵𝑢 + 𝐶𝑢𝑣. As in the A1 case, the constant term of the identity corresponds to (4.5) with 𝑧
replaced by 𝑧/𝑞. Next, up to an overall factor of −𝑧/(𝑧; 𝑞)2, the coefficient of 𝑢 in (4.11b)
is

𝑛∑︁
𝑟=1

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤; 𝑞)Φ𝑟−1,𝑠 (𝑧𝑞, 𝑤/𝑞; 𝑞) = 𝑧Φ𝑛−1,𝑚 (𝑧𝑞, 𝑤/𝑞; 𝑞),

where we have used thatΦ𝑟−1,𝑠 vanishes for 𝑟 = 0. Shifting the summation index 𝑟 ↦→ 𝑟 + 1
and using that

K𝑛,𝑚;𝑟+1,𝑠 (𝑧/𝑞, 𝑤; 𝑞) = 𝑧K𝑛−1,𝑚;𝑟 ,𝑠 (𝑧𝑞, 𝑤/𝑞; 𝑞),
yields (4.5) with (𝑛, 𝑧, 𝑤) replaced by (𝑛 − 1, 𝑧𝑞, 𝑤/𝑞). Finally, up to an overall factor of
𝑧𝑤2/(𝑧, 𝑧𝑤; 𝑞)2, the coefficient of 𝑢𝑣 in (4.11b) is given by

𝑛∑︁
𝑟=1

𝑚∑︁
𝑠=1

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤; 𝑞)Φ𝑟−1,𝑠−1 (𝑧, 𝑤𝑞; 𝑞) = 𝑧𝑤Φ𝑛−1,𝑚−1 (𝑧, 𝑤𝑞; 𝑞).

After shifting (𝑟, 𝑠) ↦→ (𝑟 + 1, 𝑠 + 1) and using that

K𝑛,𝑚;𝑟+1,𝑠+1 (𝑧/𝑞, 𝑤; 𝑞) = 𝑧𝑤K𝑛−1,𝑚−1;𝑟 ,𝑠 (𝑧, 𝑤𝑞; 𝑞),

this yields (4.5) with (𝑛, 𝑚, 𝑤) ↦→ (𝑛 − 1, 𝑚 − 1, 𝑤𝑞).

To prove Conjecture 1.1 we need the A2-analogues of Corollaries 3.4 and 3.5. Unlike
the A1 case, where we used a single integer parameter 𝑦 to parametrise the A1 root lattice,
for A2 we adopt the notation (2.1a) for 𝑟 = 3. That is, for 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄 and 𝑦𝑖 𝑗 :=
𝑦𝑖 − 𝑦 𝑗 , we define

Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞) :=
Φ𝑛−𝑦1 ,𝑚−𝑦1−𝑦2 (𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞)
(𝑧𝑞; 𝑞)𝑦12 (𝑤𝑞; 𝑞)𝑦23 (𝑧𝑤𝑞; 𝑞)𝑦13

(4.12)

=
(𝑧𝑤𝑞; 𝑞)𝑛+𝑚

(𝑞; 𝑞)𝑛−𝑦1 (𝑧𝑞; 𝑞)𝑛−𝑦2 (𝑧𝑤𝑞; 𝑞)𝑛−𝑦3 (𝑞; 𝑞)𝑚+𝑦3 (𝑤𝑞; 𝑞)𝑚+𝑦2 (𝑧𝑤𝑞; 𝑞)𝑚+𝑦1

.

Clearly,Φ𝑛,𝑚;(0,0,0) (𝑧,𝑤;𝑞) =Φ𝑛,𝑚 (𝑧,𝑤;𝑞) andΦ𝑛,𝑚;𝑦 (𝑧,𝑤;𝑞) vanishes unless 𝑛− 𝑦1 ⩾ 0
and 𝑚 + 𝑦3 = 𝑚 − 𝑦1 − 𝑦2 ⩾ 0. Moreover, Φ𝑛,𝑚;(𝑦1 ,−𝑦1 ,0) (𝑧, 0; 𝑞) = Φ𝑛;𝑦1 (𝑧; 𝑞)/(𝑞; 𝑞)𝑚.

Corollary 4.5. For 𝑛, 𝑚 ∈ Z and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄,
𝑛∑︁

𝑟=𝑦1

𝑚∑︁
𝑠=𝑦1+𝑦2

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠;𝑦 (𝑧, 𝑤; 𝑞) = 𝑧𝑦1𝑤𝑦1+𝑦2𝑞
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞).

(4.13)

Proof. Replacing

(𝑛, 𝑚, 𝑧, 𝑤) ↦→ (𝑛 − 𝑦1, 𝑚 − 𝑦1 − 𝑦2, 𝑧𝑞
𝑦12 , 𝑤𝑞𝑦23 ) (4.14)

in (4.5), shifting the summation indices (𝑟, 𝑠) ↦→ (𝑟 − 𝑦1, 𝑚 − 𝑦1 − 𝑦2) and using

K𝑛−𝑦1 ,𝑚−𝑦1−𝑦2;𝑟−𝑦1 ,𝑠−𝑦1−𝑦2 (𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞) = 𝑧−𝑦1𝑤−𝑦1−𝑦2𝑞−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)

(4.15)
as well as definition (4.12), the claim follows.
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In much the same way we define

Φ𝑛,𝑚;𝑦 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) :=
Φ𝑛−𝑦1 ,𝑚−𝑦1−𝑦2 (𝑢, 𝑣; 𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞)
(𝑧𝑞; 𝑞)𝑦12 (𝑤𝑞; 𝑞)𝑦23 (𝑧𝑤𝑞; 𝑞)𝑦13

, (4.16)

so that Φ𝑛,𝑚;(𝑦1 ,−𝑦1 ,0) (𝑢, 𝑣; 𝑧, 0; 𝑞) = Φ𝑛;𝑦1 (𝑢; 𝑧; 𝑞)/(𝑞; 𝑞)𝑚. Equation (4.7a) implies the
simplification

Φ𝑛,𝑚;𝑦 (1, 1; 𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞), (4.17)

which yields the first of the identities in the next lemma. The second result follows in an
analogous manner as Corollary 4.5, and we omit the proof.

Corollary 4.6. For 𝑛, 𝑚 ∈ Z and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄,
𝑛∑︁

𝑟=𝑦1

𝑚∑︁
𝑠=𝑦1+𝑦2

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠;𝑦 (1, 1; 𝑧, 𝑤; 𝑞) (4.18a)

= 𝑧𝑦1𝑤𝑦1+𝑦2𝑞
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )Φ𝑛,𝑚;𝑦 (1, 1; 𝑧, 𝑤; 𝑞)

and
𝑛∑︁

𝑟=𝑦1

𝑚∑︁
𝑠=𝑦1+𝑦2

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤; 𝑞)Φ𝑟 ,𝑠;𝑦 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) (4.18b)

= 𝑧𝑦1𝑤𝑦1+𝑦2𝑞
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )−𝑦1Φ𝑛,𝑚;𝑦 (𝑢𝑧𝑞𝑦12 , 𝑣𝑤𝑞𝑦23 ; 𝑧, 𝑤; 𝑞).

As mentioned previously, our A2 Bailey tree is not yet complete. Conjecture 1.1 and
Theorem 1.4 contain three integer parameters 𝑎, 𝑏 and 𝑘 . Theorem 4.4, however, is re-
stricted to paths along the Bailey tree of the form shown on page 14. Since such paths
can be described by two parameters, something is still missing. The reason for deferring
the treatment of the missing part of the A2 Bailey tree till now is that it uses most of the
previously-defined functions and is less intuitive than what has been discussed so far.

For 𝑛, 𝑚 ∈ Z and 𝜌 := (1, 2, 3), define

Φ𝑛,𝑚 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) (4.19)

:=
∑︁
𝜎∈𝑆3

sgn(𝜎) (𝑢𝑧)𝜎1−1
( 𝑣
𝑑

)𝜒 (𝜎3=1) ( 𝑐
𝑢

)𝜒 (𝜎1=3)
(𝑑𝑤)3−𝜎3Φ𝑛,𝑚;𝜎−𝜌 (𝑧/𝑞, 𝑤/𝑞; 𝑞).

Since the summand contains the factors (𝑞; 𝑞)𝑛−𝜎1+1 and (𝑞; 𝑞)𝑚+𝜎3−3 in the denomin-
ator, the function Φ𝑛,𝑚 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) vanishes unless 𝑛, 𝑚 ⩾ 0. If 𝑛 = 𝑚 = 0 then
only the term 𝜎 = 𝜌 contributes to the sum so that Φ0,0 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) = 1. By repla-
cing 𝜎 = (𝜎1, 𝜎2, 𝜎3) ↦→ (4 − 𝜎3, 4 − 𝜎2, 4 − 𝜎1), and using that Φ𝑛,𝑚;(𝑦1 ,𝑦2 ,𝑦3 ) (𝑧, 𝑤; 𝑞) =
Φ𝑚,𝑛;−(𝑦3 ,𝑦2 ,𝑦1 ) (𝑤, 𝑧; 𝑞) and 𝜎1 + 𝜎2 + 𝜎3 = 6, it may also be seen that

Φ𝑛,𝑚 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) = Φ𝑚,𝑛 (𝑑, 𝑐; 𝑣, 𝑢;𝑤, 𝑧; 𝑞). (4.20)

Before proving a number of important properties of Φ𝑛,𝑚 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞), including
a Bailey-type transformation, we remark that in the 𝑛, 𝑚 → ∞ limit an important special
case of this function is essentially a Schur function [63].



An A2 Bailey tree 21

Lemma 4.7. Let 𝑧 := 𝑥1/𝑥2, 𝑤 := 𝑥2/𝑥3 and for 𝑎, 𝑏 nonnegative integers, let 𝜈 := (𝑎 + 𝑏 +
2, 𝑏 + 1, 0). Then

lim
𝑛,𝑚→∞

Φ𝑛,𝑚 (𝑧𝑎, 𝑤𝑎; 𝑧𝑏, 𝑤𝑏; 𝑧, 𝑤; 𝑞) = 1
(𝑞, 𝑞, 𝑧, 𝑤, 𝑧𝑤/𝑞; 𝑞)∞

det
1⩽𝑖, 𝑗⩽3

(
𝑥
𝜈𝑖−𝜈 𝑗
𝑖

)
(4.21)

Proof. The large-𝑛,𝑚 limit ofΦ𝑛,𝑚;𝜎−𝜌 (𝑧/𝑞,𝑤/𝑞;𝑞) gives the infinite product on the right
of (4.21). Moreover, for (𝑢, 𝑣, 𝑐, 𝑑) = (𝑧𝑎, 𝑤𝑎; 𝑧𝑏, 𝑤𝑏) the sum over 𝑆3 in the definition of
(4.19) becomes∑︁
𝜎∈𝑆3

sgn(𝜎) 𝑧 (𝑎+1) (𝜎1−1)−(𝑎−𝑏)𝜒 (𝜎1=3)𝑤 (𝑎−𝑏)𝜒 (𝜎3=1)−(𝑏+1) (𝜎3−3) =
∑︁
𝜎∈𝑆3

sgn(𝜎)
3∏
𝑖=1
𝑥
𝜈𝑖−𝜈𝜎𝑖

𝑖
,

which is the determinant in the numerator.

Unlike Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞), which simplifies to Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) for 𝑢 = 𝑣 = 1, the function
Φ𝑛,𝑚 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) for 𝑐 = 𝑑 = 1 does not simplify to Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞). Instead a
simple linear combination of Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) and Φ𝑛,𝑚 (𝑢/𝑧, 𝑣/𝑤; 𝑧, 𝑤; 𝑞) arises.

Lemma 4.8. For 𝑛, 𝑚 ∈ Z,

Φ𝑛,𝑚 (𝑢, 𝑣; 1, 1; 𝑧, 𝑤; 𝑞) =
Φ𝑛,𝑚 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) − 𝑧𝑤𝑞𝑚−1Φ𝑛,𝑚 (𝑢/𝑧, 𝑣/𝑤; 𝑧, 𝑤; 𝑞)

1 − 𝑧𝑤𝑞−1 . (4.22)

By (4.7), the 𝑢 = 𝑣 = 1 case of the lemma simplifies to

Φ𝑛,𝑚 (1, 1; 1, 1; 𝑧, 𝑤; 𝑞) = 1 − 𝑧𝑤𝑞𝑛+𝑚−1

1 − 𝑧𝑤𝑞−1 Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞). (4.23)

Proof. Both sides of (4.22) are polynomials in 𝑢 and 𝑣. Equating like coefficients using
(4.10), the claim splits into three separate equations. After normalisation these are

1 − 𝑧𝑤𝑞𝑚−1

1 − 𝑧𝑤𝑞−1 Φ𝑛,𝑚 (𝑧/𝑞, 𝑤; 𝑞) = Φ𝑛,𝑚;(0,0,0) (𝑧/𝑞, 𝑤/𝑞; 𝑞) − 𝑤Φ𝑛,𝑚;(0,1,−1) (𝑧/𝑞, 𝑤/𝑞; 𝑞),

1 − 𝑤𝑞𝑚−1

1 − 𝑧𝑤𝑞−1 Φ𝑛−1,𝑚 (𝑧𝑞, 𝑤/𝑞; 𝑞)

= (𝑧; 𝑞)2
(
Φ𝑛,𝑚;(1,−1,0) (𝑧/𝑞, 𝑤/𝑞; 𝑞) − 𝑧𝑤Φ𝑛,𝑚;(2,−1,−1) (𝑧/𝑞, 𝑤/𝑞; 𝑞)

)
,

and

1 − 𝑞𝑚−1

1 − 𝑧𝑤𝑞−1 Φ𝑛−1,𝑚−1 (𝑧, 𝑤𝑞; 𝑞)

= (𝑤, 𝑧𝑤; 𝑞)2
(
Φ𝑛,𝑚;(1,1,−2) (𝑧/𝑞, 𝑤/𝑞; 𝑞) − 𝑧Φ𝑛,𝑚;(2,0,−2) (𝑧/𝑞, 𝑤/𝑞; 𝑞)

)
,

corresponding to the coefficients of 𝑢0𝑣0, 𝑢1𝑣0 and 𝑢1𝑣1 respectively. By the definitions of
Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) and Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞) given in (4.1) and (4.12), all three equations are readily
verified.
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The missing part of the A2 Bailey tree can now be stated as follows.

Theorem 4.9 (A2 Bailey tree, part II). For 𝑛, 𝑚 nonnegative integers,
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤/𝑞; 𝑞)Φ𝑟 ,𝑠 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) = Φ𝑛,𝑚 (𝑢𝑧, 𝑣𝑤; 𝑐𝑧, 𝑑𝑤; 𝑧, 𝑤; 𝑞).

(4.24)

Once again consider the tree on page 11. In view of Lemma 4.8, we can first apply the
Bailey tree of Theorem 4.4, starting at the root and taking 𝑘 − 𝑎 south-west steps followed
by 𝑎 − 𝑏 south-east steps. This gives the same path along the tree as shown on page 14 but
with (𝑘, 𝑎) ↦→ (𝑘 − 𝑏, 𝑎 − 𝑏), so that the final vertex is labelled 𝑘 − 𝑏. Next we can repeat
the above but with 𝑎 replaced by 𝑎 − 1, resulting in the path along the tree shown on page 14
with (𝑘, 𝑎) ↦→ (𝑘 − 𝑏, 𝑎 − 𝑏 − 1), so that the final vertex is once again labelled 𝑘 − 𝑏. As a
third and final step we can then take a linear combination of the pair of identities represented
by the two vertices labelled 𝑘 − 𝑏 and take a further 𝑏 steps using part II of the Bailey tree. If
we think of south-east steps as unit steps in R3 in the positive 𝑥-direction, south-west steps
as steps in the positive 𝑦-direction and the final 𝑏 steps as steps in the positive 𝑧-direction,
the above procedure can be represented by the three-dimensional diagram

0
1

2

𝑘−𝑎
𝑘−𝑎+1

𝑘−𝑏

𝑘

𝑘−1

𝑧

𝑥 𝑦

where the central black vertex in the encircled region represents the appropriate linear
combination of the violet and blue vertices labelled 𝑘 − 𝑏.

Proof of Theorem 4.9. Denote the left-hand side of (4.24) by 𝜙𝑛,𝑚. By (4.19) and an in-
terchange in the order of the sums over 𝑟, 𝑠 and over 𝜎,

𝜙𝑛,𝑚 =
∑︁
𝜎∈𝑆3

(
sgn(𝜎) (𝑢𝑧)𝜎1−1 (𝑣/𝑑)𝜒 (𝜎3=1) (𝑐/𝑢)𝜒 (𝜎1=3) (𝑑𝑤)3−𝜎3

×
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤/𝑞; 𝑞)Φ𝑟 ,𝑠;𝜎−𝜌 (𝑧/𝑞, 𝑤/𝑞; 𝑞)
)
.

We now use that Φ𝑟 ,𝑠;𝜎−𝜌 (𝑧/𝑞, 𝑤/𝑞; 𝑞) = 0 unless 𝑟 − 𝜎1 + 1 ⩾ 0 and 𝑠 + 𝜎3 − 3 ⩾ 0 to
change the lower bounds on the sums over 𝑟 and 𝑠 to 𝜎1 − 1 and 3 − 𝜎3 respectively. Since
Corollary 4.5 for 𝑦 = 𝜎 − 𝜌 simplifies to

𝑛∑︁
𝑟=𝜎1−1

𝑚∑︁
𝑠=3−𝜎3

K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠;𝜎−𝜌 (𝑧, 𝑤; 𝑞) = (𝑧𝑞)𝜎1−1 (𝑤𝑞)3−𝜎3Φ𝑛,𝑚;𝜎−𝜌 (𝑧, 𝑤; 𝑞),
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it follows that

𝜙𝑛,𝑚 =
∑︁
𝜎∈𝑆3

sgn(𝜎) (𝑢𝑧2)𝜎1−1
( 𝑣
𝑑

)𝜒 (𝜎3=1) ( 𝑐
𝑢

)𝜒 (𝜎1=3)
(𝑑𝑤2)3−𝜎3Φ𝑛,𝑚;𝜎−𝜌 (𝑧/𝑞, 𝑤/𝑞; 𝑞)

= Φ𝑛,𝑚 (𝑢𝑧, 𝑣𝑤; 𝑐𝑧, 𝑑𝑤; 𝑧, 𝑤; 𝑞).

To conclude the section we define 𝑦-analogue of (4.19):

Φ𝑛,𝑚;𝑦 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞) :=
Φ𝑛−𝑦1 ,𝑚−𝑦1−𝑦2 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞)

(𝑧; 𝑞)𝑦12 (𝑤; 𝑞)𝑦23 (𝑧𝑤/𝑞; 𝑞)𝑦13

, (4.25)

where 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄. It follows from Lemma 4.7 that for 𝑧 := 𝑥1/𝑥2 and 𝑤 := 𝑥2/𝑥3,

lim
𝑛,𝑚→∞

Φ𝑛,𝑚;𝑦
(
(𝑧𝑞𝑦12 )𝑎, (𝑤𝑞𝑦23 )𝑎; (𝑧𝑞𝑦12 )𝑏, (𝑤𝑞𝑦23 )𝑏; 𝑧, 𝑤; 𝑞

)
(4.26)

=
1

(𝑞, 𝑞, 𝑧, 𝑤, 𝑧𝑤/𝑞; 𝑞)∞
det

1⩽𝑖, 𝑗⩽3

(
(𝑥𝑖𝑞𝑦𝑖 )𝜈𝑖−𝜈 𝑗

)
,

where 𝜈 = (𝑎 + 𝑏 + 2, 𝑏 + 1, 0). Furthermore, noting the minor difference in denominators
on the right of (4.16) and (4.25), it follows that the special case of Lemma 4.8 given in
(4.23) admits the 𝑦-generalisation

Φ𝑛,𝑚;𝑦 (1, 1; 1, 1; 𝑧, 𝑤; 𝑞) = 1 − 𝑧𝑤𝑞𝑛+𝑚−1

1 − 𝑧𝑤𝑞−1 Δ𝑦 (𝑧, 𝑤; 𝑞)Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞), (4.27)

where
Δ𝑦 (𝑧, 𝑤; 𝑞) :=

(1 − 𝑧𝑞𝑦12 ) (1 − 𝑤𝑞𝑦23 ) (1 − 𝑧𝑤𝑞𝑦13 )
(1 − 𝑧) (1 − 𝑤) (1 − 𝑧𝑤) . (4.28)

Finally, the 𝑦-analogues of Lemma 4.8 and Theorem 4.9 follow from (4.16) and (4.15)
respectively,

Corollary 4.10. For 𝑛, 𝑚 ∈ Z and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄,

Φ𝑛,𝑚;𝑦 (𝑢, 𝑣; 1, 1; 𝑧, 𝑤; 𝑞) = Δ𝑦 (𝑧, 𝑤; 𝑞) (4.29)

×
Φ𝑛,𝑚;𝑦 (𝑢, 𝑣; 𝑧, 𝑤; 𝑞) − 𝑧𝑤𝑞𝑚+𝑦1−1Φ𝑛,𝑚;𝑦 (𝑢𝑞−𝑦12/𝑧, 𝑣𝑞−𝑦23/𝑤; 𝑧, 𝑤; 𝑞)

1 − 𝑧𝑤𝑞−1 .

Corollary 4.11. For 𝑛, 𝑚 ∈ Z and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄,
𝑛∑︁

𝑟=𝑦1

𝑚∑︁
𝑠=𝑦1+𝑦2

K𝑛,𝑚;𝑟 ,𝑠 (𝑧/𝑞, 𝑤/𝑞; 𝑞)Φ𝑟 ,𝑠;𝑦 (𝑢, 𝑣; 𝑐, 𝑑; 𝑧, 𝑤; 𝑞)

= 𝑧𝑦1𝑤𝑦1+𝑦2𝑞
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )−2𝑦1−𝑦2Φ𝑛,𝑚;𝑦 (𝑢𝑧𝑞𝑦12 , 𝑣𝑤𝑞𝑦23 ; 𝑐𝑧𝑞𝑦12 , 𝑑𝑤𝑞𝑦23 ; 𝑧, 𝑤; 𝑞).
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4.2. A2 Bailey pairs

In this section we briefly discuss the notion of A2 Bailey pairs. We will not, however,
translate all of the various A2 Bailey transformations of Section 4.1 in terms of such pairs.
Throughout, (2.1a) is used for 𝑟 = 3.

Let

𝛼(𝑧, 𝑤; 𝑞) =
(
𝛼𝑦 (𝑧, 𝑤; 𝑞)

)
𝑦∈𝑄+

,

𝛽(𝑧, 𝑤; 𝑞) =
(
𝛽𝑛,𝑚 (𝑧, 𝑤; 𝑞)

)
𝑛,𝑚∈N0

be a pair of sequences such that

𝛽𝑛,𝑚 (𝑧, 𝑤; 𝑞) =
∑︁
𝑦∈𝑄+

Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)𝛼𝑦 (𝑧, 𝑤; 𝑞). (4.30)

Then we say that (𝛼(𝑧, 𝑤; 𝑞), 𝛽(𝑧, 𝑤; 𝑞)) is an A2 Bailey pair relative to 𝑧, 𝑤. Note that in
the above definition only those 𝑦 ∈ 𝑄+ contribute to the sum on the right for which 𝑦1 ⩽ 𝑛
and 𝑦1 + 𝑦2 ⩽ 𝑚. Definition (4.30) is not the same as the one adopted in [8], where 𝑄++
was used instead of 𝑄+. Further define

Ψ𝑦;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞) := 𝑞𝑟+𝑠−𝑦13 (𝑧𝑞; 𝑞)𝑦12 (𝑤𝑞; 𝑞)𝑦23 (𝑧𝑤𝑞; 𝑞)𝑦13

×Φ𝑦1−𝑟 ,𝑦1+𝑦2−𝑠
(
𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞−1) ,

for 𝑟, 𝑠 ∈ N0 and 𝑦 ∈ 𝑄+. Recalling (4.12), the A2 inversion relation (4.3) may then be
written as ∑︁

𝑦∈𝑄+

Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)Ψ𝑦;𝑁,𝑀 (𝑧, 𝑤; 𝑞) = 𝛿𝑛,𝑁 𝛿𝑚,𝑀 ,

for 𝑛, 𝑚, 𝑁, 𝑀 ∈ N0. Since Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞) vanishes unless 𝑛 ⩾ 𝑦1 and 𝑚 ⩾ 𝑦1 + 𝑦2 and
Ψ𝑦;𝑁,𝑀 (𝑧, 𝑤; 𝑞) vanishes unless 𝑦1 ⩾ 𝑁 and 𝑦1 + 𝑦2 ⩾ 𝑀 , the summand on the left is only
supported on 𝑦 ∈ 𝑄+ such that 𝑁 ⩽ 𝑦1 ⩽ 𝑛 and 𝑀 ⩽ 𝑦1 + 𝑦2 ⩽ 𝑚. Similarly, it follows that
for 𝑦,𝑌 ∈ 𝑄+, ∑︁

𝑟 ,𝑠∈N0

Ψ𝑦;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)Φ𝑟 ,𝑠;𝑌 (𝑧, 𝑤; 𝑞) = 𝛿𝑦,𝑌 ,

with summand supported on 𝑌1 ⩽ 𝑟 ⩽ 𝑦1 and 𝑌1 +𝑌2 ⩽ 𝑠 ⩽ 𝑦1 + 𝑦2. The relation (4.30) is
thus invertible, so that

𝛼𝑦 (𝑧, 𝑤; 𝑞) =
∑︁
𝑟 ,𝑠∈N0

Ψ𝑦;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞)𝛽𝑟 ,𝑠 (𝑧, 𝑤; 𝑞). (4.31)

This in turn gives rise to what may be called the A2 unit Bailey pair:

𝛼𝑦 (𝑧, 𝑤; 𝑞) = Ψ𝑦;0,0 (𝑧, 𝑤; 𝑞) and 𝛽𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 𝛿𝑛,0𝛿𝑚,0. (4.32)

If 𝛼𝑛 (𝑧; 𝑞) := 𝛼(𝑛,−𝑛,0) (𝑧, 0; 𝑞) and 𝛽𝑛 (𝑧; 𝑞) := 𝛽𝑛,0 (𝑧, 0; 𝑞), then (4.30) for𝑚 = 𝑤 = 0 and
(4.32) for 𝑦 = (𝑛,−𝑛, 0) and 𝑤 = 0 correspond to (3.5a) and (3.5b) respectively.



An A2 Bailey tree 25

For a number of A2 Bailey pairs, such as the unit Bailey pair (4.33) or pairs that follow
from the unit Bailey pair by application of (4.13), the definition (4.30) is perfectly useable.
However, the explicit form of many A2 Bailey pairs is rather unwieldy, making the defin-
ition not particularly practical. A good example is the Bailey pair implied by the identity
(5.2) of the next section. This identity corresponds to the root of the tree of identities on
which our proof of the Kanade–Russell conjecture is based. It is quite artificial, and not at
all enlightening, to write the left-hand side of (5.2) as a sum over𝑄+ — which is necessary
in order to read off 𝛼𝑦 — instead of 𝑄.

5. Proof of the Kanade–Russell conjecture

Before we can apply the A2 Bailey tree to prove Conjecture 1.1 we need a suitable identity
playing the role of root in the Bailey tree. This root identity is given by the A2-analogue
of (3.14b). Before stating the actual result, we note that for 𝑛,𝑚 ∈ Z and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈𝑄,

Φ𝑛,𝑚;𝑦 (𝑞, 𝑞; 𝑞) := lim
𝑧,𝑤→1

Φ𝑛,𝑚;𝑦 (𝑧𝑞, 𝑤𝑞; 𝑞) =
(𝑞; 𝑞)2

1 (𝑞; 𝑞)2
(𝑞; 𝑞)2

𝑛+𝑚+2

3∏
𝑖=1

[
𝑛 + 𝑚 + 2

𝑛 − 𝑦𝑖 + 𝑖 − 1

]
, (5.1)

which vanishes unless 𝑖 −𝑚 − 3⩽ 𝑦𝑖 ⩽ 𝑛 + 𝑖 − 1 for all 1⩽ 𝑖 ⩽ 3. The reasonΦ𝑛,𝑚;𝑦 (𝑞, 𝑞;𝑞)
is defined as a limit is that the term (𝑧𝑤𝑞3; 𝑞)𝑛+𝑚 in the numerator of Φ𝑛,𝑚;𝑦 (𝑧𝑞, 𝑤𝑞; 𝑞)
has a simple pole at 𝑧𝑤 = 1 if 𝑛 +𝑚 + 2 < 0 (for 𝑛 +𝑚 + 2 ⩾ 0 the function Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)
is regular at 𝑧 = 𝑤 = 1). This pole has zero residue and the above expression on the right
arises. Moreover, it follows from the above inequalities for the 𝑦𝑖 that the only instances
where Φ𝑛,𝑚;𝑦 (𝑞, 𝑞; 𝑞) is nonvanishing for min{𝑛, 𝑚} < 0 correspond to 𝑦 = (−1, 0, 1)
and min{𝑛, 𝑚} = −1. This in particular implies that if 𝑡 is an integer greater than 1, then
Φ𝑛,𝑚;𝑡 𝑦 (𝑞, 𝑞; 𝑞) vanishes if (𝑛, 𝑚) ∉ N2

0.
Recall definition (4.28) of Δ𝑦 .

Proposition 5.1. Let 𝑛, 𝑚 ∈ N0, 𝜏 ∈ {−1, 0, 1} and

𝑔𝑛,𝑚;𝜏 (𝑞) :=
𝑞𝜏 (𝜏−1)𝑛𝑚

(𝑞, 𝑞2; 𝑞)𝑛+𝑚

[
𝑛 + 𝑚
𝑛

]
𝑝

,

where 𝑝 = 𝑞 if 𝜏2 = 1 and 𝑝 = 𝑞3 if 𝜏 = 0. Then∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦 (𝑞, 𝑞; 𝑞)Δ3𝑦 (𝑞, 𝑞; 𝑞)
3∏
𝑖=1

𝑞3(3+𝜏 ) (𝑦𝑖2 )−𝜏𝑖𝑦𝑖 = 𝑔𝑛,𝑚;𝜏 (𝑞). (5.2)

The above definition of 𝑔𝑛,𝑚;𝜏 (𝑞) is the same as (1.3) of the introduction.
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Proof. Recall that 𝑦𝑖 𝑗 := 𝑦𝑖 − 𝑦 𝑗 . The identity (5.2) for 𝜏 = 1 is a bounded form of the
A2-analogue of Euler’s pentagonal number theorem, stated in [8, page 692] in the form∑︁

𝑦∈𝑄

∏
1⩽𝑖< 𝑗⩽3

(1 − 𝑞3𝑦𝑖 𝑗+ 𝑗−𝑖)
3∏
𝑖=1

𝑞12(𝑦𝑖2 )−𝑖𝑦𝑖
[

𝑛 + 𝑚 + 2
𝑛 − 3𝑦𝑖 + 𝑖 − 1

]
(5.3)

= (1 − 𝑞𝑛+𝑚+1) (1 − 𝑞𝑛+𝑚+2)2
[
𝑛 + 𝑚
𝑛

]
,

for 𝑛,𝑚 ∈ N0. The proof of (5.3) given in [8] is very involved. First an identity for what are
known as supernomial coefficients is established (the ℓ = 0 case of [8, Equation (5.3)]). This
is then transformed using an A2 Bailey lemma for supernomial coefficients, resulting in
[8, Equation (5.15)]. Using the determinant evaluation (5.5) below, this finally yields (5.3).
In the appendix we present a much simpler proof which implies that (5.3) arises by taking
the constant term with respect to 𝑧 in the 𝑟 = 3 instance of the identity∑︁

𝑦1 ,...,𝑦𝑟 ∈Z

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

(−1)𝑟 𝑦𝑖 𝑧𝑦𝑖𝑞(
𝑟+1

2 )𝑦2
𝑖
−𝑖𝑦𝑖

[
𝑛 + 𝑚 + 𝑟 − 1
𝑛 − 𝑟𝑦𝑖 + 𝑖 − 1

]
(5.4)

=

( 𝑟−1∏
𝑖=1

(1 − 𝑞𝑛+𝑚+𝑖)𝑖
) 𝑛∑︁
𝑘=−𝑚

(−1)𝑘𝑧𝑘𝑞 (𝑟+1) (𝑘2)
[
𝑛 + 𝑚
𝑛 − 𝑘

]
.

This last result is a polynomial analogue of the classical theta function identity

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑞𝑖 (𝑖− 𝑗 )𝜃

(
𝑧
(
−𝑞−𝑖

)𝑟+1
𝑞𝑟 𝑗+(

𝑟+1
2 ) ; 𝑞𝑟 (𝑟+1)

))
=

(𝑞𝑟+1; 𝑞𝑟+1)∞ (𝑞; 𝑞)𝑟−1
∞

(𝑞𝑟 (𝑟+1) ; 𝑞𝑟 (𝑟+1) )𝑟∞
𝜃
(
𝑧; 𝑞𝑟+1) .

Replacing 𝑞 ↦→ 1/𝑞 in (5.2) for 𝜏 = −1, and then using
[
𝑛+𝑚
𝑛

]
1/𝑞 = 𝑞

−𝑛𝑚 [
𝑛+𝑚
𝑛

]
as well

as

Φ𝑛,𝑚;𝑦
(
𝑧−1, 𝑤−1; 𝑞−1) = 𝑧𝑛+2𝑦1𝑤𝑚−2𝑦3𝑞𝑛

2−𝑛𝑚+𝑚2+𝑛+𝑚+∑3
𝑖=1 𝑦

2
𝑖 Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)

where 𝑦 ∈ 𝑄, gives (5.2) for 𝜏 = −1.
Finally, according to [42, Equation (6.18)],∑︁

𝑦∈𝑟𝑄
det

1⩽𝑖, 𝑗⩽𝑟

(
𝑞(

𝑦𝑖
2 )+( 𝑗−𝑖) ( 𝑗+𝑦𝑖 )

[
𝑛 + 𝑚

𝑛 − 𝑦𝑖 + 𝑖 − 𝑗

] )
=

[
𝑛 + 𝑚
𝑛

]
𝑞𝑟
.

By [55, page 189]

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑞 ( 𝑗−𝑖) ( 𝑗+𝑖+𝑏𝑖 )

[
𝑛 + 𝑚

𝑛 − 𝑏𝑖 − 𝑗

] )
(5.5)

=
∏

1⩽𝑖< 𝑗⩽𝑟
(1 − 𝑞𝑏𝑖−𝑏 𝑗 )

𝑟∏
𝑖=1

1
(𝑞𝑛+𝑚+𝑖; 𝑞)𝑟−𝑖

[
𝑛 + 𝑚 + 𝑟 − 1
𝑛 − 𝑏𝑖 − 1

]
for 𝑛, 𝑚, 𝑏1, . . . , 𝑏𝑟 ∈ Z, this can be recast as∑︁
𝑦∈𝑟𝑄

∏
1⩽𝑖< 𝑗⩽𝑟

(1− 𝑞𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

𝑞(
𝑦𝑖
2 )

[
𝑛 + 𝑚 + 𝑟 − 1
𝑛 − 𝑦𝑖 + 𝑖 − 1

]
=

[
𝑛 + 𝑚
𝑛

]
𝑞𝑟

𝑟−1∏
𝑖=1

(1− 𝑞𝑛+𝑚+𝑖)𝑖 . (5.6)
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For 𝑟 = 3 this is (5.2) with 𝜏 = 0.

Remark 5.2. Although (5.2) is the natural A2-analogue of (3.14b), there is a notable dif-
ference between the 𝜏 = 1 instances of these identities. From (3.5b) we may infer what is
known as the A1 unit Bailey pair:

𝛼𝑛 (𝑧; 𝑞) =
1 − 𝑧𝑞2𝑛

1 − 𝑧 (−1)𝑛𝑞(
𝑛
2) and 𝛽𝑛 (𝑧; 𝑞) = 𝛿𝑛,0.

By (3.10a) this yields5

𝑛∑︁
𝑟=0

1 − 𝑧𝑞2𝑟

1 − 𝑧 (−1)𝑟𝑞(
𝑟
2)Φ𝑛;𝑟 (𝑧; 𝑞) = 𝛿𝑛,0.

Applying Corollary (3.4) then gives
𝑛∑︁
𝑟=0

1 − 𝑧𝑞2𝑟

1 − 𝑧 (−1)𝑟 𝑧𝑟𝑞3(𝑟2)+𝑟Φ𝑛;𝑟 (𝑧; 𝑞) =
1

(𝑞; 𝑞)𝑛
,

which for 𝑧 = 𝑞 is the same as (3.14a) (and hence (3.14b)) for 𝜏 = 1. The 𝜏 = 1 case of
(5.2), however, does not follow from the A2 unit Bailey pair (4.33). Indeed, the once-
iterated A2 unit Bailey pair gives the 𝑘 = 𝑎 case of (8.6), which has 1/((𝑞; 𝑞)𝑛 (𝑞; 𝑞)𝑚) as
right-hand side, not 𝑔𝑛,𝑚;1 (𝑞). Instead, (5.2) for 𝜏 = 1 follows from the A2 unit Bailey pair
for supernomial coefficients, see [8, 87].

Equipped with the identity (5.2) we can prove Conjecture 1.1. The essence of the proof
is encoded in the diagram on page 22, where the root identity corresponds to the vertex
labelled 0 and the Kanade–Russell conjecture (1.5) corresponds to the vertex labelled 𝑘 .

Proof of Conjecture 1.1. In view of the discussion regarding Φ𝑛,𝑚 (𝑞, 𝑞; 𝑞) at the begin-
ning of this section, if in Corollary 4.5 we restrict 𝑛, 𝑚 to nonnegative integers and replace
𝑦 ↦→ 𝑡𝑦 for 𝑦 ∈ 𝑄 where 𝑡 is an integer greater than 1, then the resulting transformation can
be written as

𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

K𝑛,𝑚;𝑟 ,𝑠 (𝑞, 𝑞; 𝑞)Φ𝑟 ,𝑠;𝑡 𝑦 (𝑞, 𝑞; 𝑞) = Φ𝑛,𝑚;𝑡 𝑦 (𝑞, 𝑞; 𝑞)
3∏
𝑖=1

𝑞𝑡
2 (𝑦𝑖2 )−𝑡𝑖𝑦𝑖 . (5.7)

Indeed, the summand on the left vanishes unless 𝑟 ⩾ max{0, 𝑡𝑦1} and 𝑠 ⩾ max{0, 𝑡𝑦1 + 𝑡𝑦2}
so that (5.7) is consistent with (4.13). (The transformation (5.7) fails for 𝑛,𝑚 ∈ N0 and 𝑡 = 1
when 𝑦 = (−1, 0, 1), requiring a lower bound of −1 in the summations over 𝑟 and 𝑠 instead
of 0.)

Now let 𝑎, 𝑘 be integers such that 𝑎 ⩽ 𝑘 . (Initially only 𝑘 − 𝑎 is required to be a non-
negative integer, but there is no loss of generality in assuming integrality of 𝑎 and 𝑘 from

5Alternatively, this follows after specialising 𝑁 = 0 in (3.4).
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the outset.) Then, by a (𝑘 − 𝑎)-fold application of (5.7) with 𝑡 = 3, the root identity (5.2)
transforms into∑︁

𝜆⊆(𝑛𝑘−𝑎 )
𝜇⊆(𝑚𝑘−𝑎 )

𝑔𝜆𝑘−𝑎 ,𝜇𝑘−𝑎 ;𝜏 (𝑞)
𝑘−𝑎∏
𝑖=1

K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑞, 𝑞; 𝑞) (5.8)

=
∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦 (𝑞, 𝑞; 𝑞)Δ3𝑦 (𝑞, 𝑞; 𝑞)
3∏
𝑖=1

𝑞3(𝐾−3𝑎) (𝑦𝑖2 )−(𝐾−3𝑎−3)𝑖𝑦𝑖 ,

where 𝜆0 := 𝑛, 𝜇0 := 𝑚, 𝑛, 𝑚 ∈ N0 and 𝐾 := 3𝑘 + 3 + 𝜏. This is the identity represented
by the vertex labelled 𝑘 − 𝑎 in the diagram on page 22. For later reference we note that by
(4.27) the above may also be stated as

1 − 𝑞𝑛+𝑚+1

1 − 𝑞
∑︁

𝜆⊆(𝑛𝑘−𝑎 )
𝜇⊆(𝑚𝑘−𝑎 )

𝑔𝜆𝑘−𝑎 ,𝜇𝑘−𝑎 ;𝜏 (𝑞)
𝑘−𝑎∏
𝑖=1

K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑞, 𝑞; 𝑞) (5.9)

=
∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦 (1, 1; 1, 1; 𝑞, 𝑞; 𝑞)
3∏
𝑖=1

𝑞3(𝐾−3𝑎) (𝑦𝑖2 )−(𝐾−3𝑎−3)𝑖𝑦𝑖 .

In the remainder of the proof we will use the shorthand

𝑍𝑡 := 𝑞𝑡 𝑦12+1 and 𝑊𝑡 := 𝑞𝑡 𝑦23+1,

where 𝑡 is an integer greater than 1. We then make the simultaneous substitutions

(𝑢, 𝑣, 𝑧, 𝑤, 𝑦) ↦→
(
𝑍ℓ−1
𝑡 ,𝑊ℓ−1

𝑡 , 𝑞, 𝑞, 𝑡𝑦
)

in (4.18b) for 𝑛, 𝑚 ∈ N0. By

K𝑛,𝑚;𝑟 ,𝑠 (𝑎𝑧, 𝑏𝑤; 𝑞) = 𝑎𝑟𝑏𝑠K𝑛,𝑚;𝑟 ,𝑠 (𝑧, 𝑤; 𝑞), (5.10)

for 𝑧 = 𝑤 = 𝑞 and (𝑎, 𝑏) = (1/𝑞, 1), this yields
𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

𝑞−𝑟K𝑛,𝑚;𝑟 ,𝑠 (𝑞, 𝑞; 𝑞)Φ𝑟 ,𝑠;𝑡 𝑦
(
𝑍ℓ−1
𝑡 ,𝑊ℓ−1

𝑡 ; 𝑞, 𝑞; 𝑞
)

(5.11)

= 𝑞−𝑡 𝑦3+𝑡2
∑3

𝑖=1 (𝑦𝑖2 )Φ𝑛,𝑚;𝑡 𝑦
(
𝑍ℓ𝑡 ,𝑊

ℓ
𝑡 ; 𝑞, 𝑞; 𝑞

)
.

Here we have once again used that for 𝑡 ⩾ 2 the lower bounds on the sums over 𝑟 and 𝑠
may be simplified to 0. Using (4.17) to replace Φ𝑛,𝑚;3𝑦 (𝑞, 𝑞; 𝑞) by Φ𝑛,𝑚;3𝑦 (1, 1; 𝑞, 𝑞; 𝑞)
in the summand on the right of (5.8), and then applying (5.11) with 𝑡 = 3 a total of 𝑎 − 𝑏
times, first with ℓ = 1, then ℓ = 2 and so on, we obtain∑︁

𝜆⊆(𝑛𝑘−𝑏 )
𝜇⊆(𝑚𝑘−𝑏 )

𝑔𝜆𝑘−𝑏 ,𝜇𝑘−𝑏 ;𝜏 (𝑞)
𝑘−𝑏∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎−𝑏)𝜆𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑞, 𝑞; 𝑞) (5.12)

=
∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦
(
𝑍𝑎−𝑏3 ,𝑊𝑎−𝑏

3 ; 𝑞, 𝑞; 𝑞
)
Δ3𝑦 (𝑞, 𝑞; 𝑞)

3∏
𝑖=1

𝑞3(𝐾−3𝑏) (𝑦𝑖2 )−𝐾𝑖𝑦𝑖−3𝜈𝑖 𝑦𝑖 ,
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for integers 𝑏 ⩽ 𝑎 ⩽ 𝑘 and 𝑛, 𝑚 ∈ N0, where 𝜈 := (𝑎 + 𝑏 + 2, 𝑏 + 1, 0). To express the
summand on the right in terms of the partition 𝜈 we have used that (𝑎 − 𝑏)𝑦3 − 𝑎

∑3
𝑖=1 𝑖𝑦𝑖 =∑3

𝑖=1 (𝜈𝑖 + 𝑖)𝑦𝑖 for 𝑦 ∈𝑄. The identity (5.12) is represented by the right-most vertex labelled
𝑘 − 𝑏 in the diagram on page 22, and by abuse of notation will be denoted in the following
as 𝐼𝑎. Similarly, the identity corresponding to the left-most vertex labelled 𝑘 − 𝑏 in the
diagram on page 22 will be denoted by 𝐼𝑎−1, since is follows from 𝐼𝑎 by the substitution
𝑎 ↦→ 𝑎 − 1. It then follows from Corollary 4.10 with

(𝑢, 𝑣, 𝑧, 𝑤, 𝑦) ↦→
(
𝑍𝑎−𝑏3 ,𝑊𝑎−𝑏

3 , 𝑞, 𝑞, 3𝑦
)

that (𝐼𝑎 − 𝑞𝑚+1𝐼𝑎−1)/(1 − 𝑞) is given by∑︁
𝜆⊆(𝑛𝑘−𝑏 )
𝜇⊆(𝑚𝑘−𝑏 )

𝑔𝜆𝑘−𝑏 ,𝜇𝑘−𝑏 ;𝜏 (𝑞)
1 − 𝑞𝑚+𝜆𝑎−𝑏+1

1 − 𝑞

𝑘−𝑏∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎−𝑏)𝜆𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑞, 𝑞; 𝑞) (5.13)

=
∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦
(
𝑍𝑎−𝑏3 ,𝑊𝑎−𝑏

3 ; 1, 1; 𝑞, 𝑞; 𝑞
) 3∏
𝑖=1

𝑞3(𝐾−3𝑏) (𝑦𝑖2 )−𝐾𝑖𝑦𝑖−3𝜈𝑖 𝑦𝑖 .

Since this is a linear combination of 𝐼𝑎 and 𝐼𝑎−1, we should now restrict the parameters to
𝑏 < 𝑎 ⩽ 𝑘 . However, since 𝜆0 := 𝑛, the identity (5.13) for 𝑏 = 𝑎 simplifies to (5.9). Hence
(5.13), which corresponds to the central vertex in the encircled region of the diagram on
page 22, holds for all 𝑏 ⩽ 𝑎 ⩽ 𝑘 .

In our third and final application of the A2 Bailey tree, we carry out the substitutions

(𝑢, 𝑣, 𝑐, 𝑑, 𝑧, 𝑤, 𝑦) ↦→
(
𝑢𝑍ℓ−1

𝑡 , 𝑣𝑊ℓ−1
𝑡 , 𝑍ℓ−1

𝑡 ,𝑊ℓ−1
𝑡 , 𝑞, 𝑞, 𝑡𝑦

)
in Corollary 4.11. By (5.10) for 𝑧 = 𝑤 = 𝑞 and 𝑎 = 𝑏 = 1/𝑞, this gives

𝑛∑︁
𝑟=0

𝑚∑︁
𝑠=0

𝑞−𝑟−𝑠K𝑛,𝑚;𝑟 ,𝑠 (𝑞, 𝑞; 𝑞)Φ𝑟 ,𝑠;𝑡 𝑦
(
𝑢𝑍ℓ−1

𝑡 , 𝑣𝑊ℓ−1
𝑡 ; 𝑍ℓ−1

𝑡 ,𝑊ℓ−1
𝑡 ; 𝑞, 𝑞; 𝑞

)
= 𝑞𝑡

2 ∑3
𝑖=1 (𝑦𝑖2 )Φ𝑛,𝑚;𝑡 𝑦

(
𝑢𝑍ℓ𝑡 , 𝑣𝑊

ℓ
𝑡 ; 𝑍ℓ𝑡 ,𝑊ℓ

𝑡 ; 𝑞, 𝑞; 𝑞
)
,

for 𝑛, 𝑚 ∈ N0 and 𝑡 ⩾ 2. This transformation is applied to (5.13) a total of 𝑏 times, with
𝑡, 𝑢, 𝑣 fixed as

(𝑡, 𝑢, 𝑣) =
(
3, 𝑍𝑎−𝑏3 ,𝑊𝑎−𝑏

3
)
,

and ℓ = 1 in the first application, ℓ = 2 in the second application and so on. As a result,∑︁
𝜆⊆(𝑛𝑘 )
𝜇⊆(𝑚𝑘 )

𝑔𝜆𝑘 ,𝜇𝑘 ;𝜏 (𝑞)
1 − 𝑞𝜆𝑎+𝜇𝑏+1

1 − 𝑞

𝑘∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑞, 𝑞; 𝑞) (5.14)

=
∑︁
𝑦∈𝑄

Φ𝑛,𝑚;3𝑦
(
𝑍𝑎3 ,𝑊

𝑎
3 ; 𝑍𝑏3 ,𝑊

𝑏
3 ; 𝑞, 𝑞; 𝑞

) 3∏
𝑖=1

𝑞3𝐾 (𝑦𝑖2 )−𝐾𝑖𝑦𝑖−3𝜈𝑖 𝑦𝑖 ,
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which is a rational function analogue of (1.5), and corresponds to the vertex labelled 𝑘
in the diagram on page 22. Although it suffices to prove (1.5) for 0 ⩽ 𝑏 ⩽ 𝑎 ⩽ 𝑘 , we
note that the 𝑎, 𝑏-symmetry that is manifest in (1.5) is also satisfied by (5.14) thanks to
(4.20). Hence (5.14) holds for all 0 ⩽ 𝑎, 𝑏,⩽ 𝑘 . Specifically, from (4.20) the 𝑎, 𝑏-symmetry
follows by making the simultaneous substitutions (𝑎, 𝑏, 𝑛, 𝑚) ↦→ (𝑏, 𝑎, 𝑚, 𝑛) (so that 𝜈 =
(𝑎 + 𝑏 + 2, 𝑏 + 1, 0) ↦→ (𝑎 + 𝑏 + 2, 𝑎 + 1, 0)) and by then changing the summation indices
(𝜆, 𝜇) ↦→ (𝜇, 𝜆) on the left and (𝑦1, 𝑦2, 𝑦3) ↦→ (−𝑦3,−𝑦2,−𝑦1) on the right.

It remains to be shown that (1.5) simplifies to the Kanade–Russell conjecture in the
large-𝑛, 𝑚 limit. By (4.26) with (𝑦, 𝑥𝑖) ↦→ (𝑡𝑦, 𝑞−𝑖) (so that (𝑧, 𝑤) ↦→ (𝑞, 𝑞)),

lim
𝑛,𝑚→∞

Φ𝑛,𝑚;𝑡 𝑦
(
𝑍𝑎𝑡 ,𝑊

𝑎
𝑡 ; 𝑍𝑏𝑡 ,𝑊𝑏

𝑡 ; 𝑞, 𝑞; 𝑞
)
=

1
(𝑞; 𝑞)5

∞
det

1⩽𝑖, 𝑗⩽3

(
𝑞 (𝑡 𝑦𝑖−𝑖) (𝜈𝑖−𝜈 𝑗 )

)
.

The limit of (5.14) is thus given by∑︁
𝜆,𝜇∈P

𝑙 (𝜆) ,𝜆(𝜇)⩽𝑘

1 − 𝑞𝜆𝑎+𝜇𝑏+1

1 − 𝑞

∏𝑘
𝑖=1 𝑞

𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
+𝜒 (𝑖>𝑎)𝜆𝑖+𝜒 (𝑖>𝑏)𝜇𝑖∏𝑘−1

𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

𝑔𝜆𝑘 ,𝜇𝑘 ;𝜏 (𝑞) (5.15)

=
1

(𝑞; 𝑞)3
∞

∑︁
𝑦∈𝑄

det
1⩽𝑖, 𝑗⩽3

(
𝑞3𝐾 (𝑦𝑖2 )−𝐾𝑖𝑦𝑖−(3𝑦𝑖+ 𝑗−𝑖)𝜈 𝑗

)
,

where 𝜈 := (𝑎 + 𝑏 + 2, 𝑏 + 1, 0), as before. The remaining task of writing the right-hand
side in product-form can easily be carried out for arbitrary rank, and in the following we
consider

𝐴𝜈;𝑘 (𝑞) :=
∑︁
𝑦∈𝑄

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑞𝑟𝐾 (

𝑦𝑖
2 )−𝐾𝑖𝑦𝑖−(𝑟 𝑦𝑖+ 𝑗−𝑖)𝜈 𝑗

)
,

for 𝜈 = (𝜈1, . . . , 𝜈𝑟 ). First we write 𝐴𝜈;𝑘 (𝑞) as a constant term and then appeal to multi-
linearity. Thus

𝐴𝜈;𝑘 (𝑞) = [𝑧0]
∑︁
𝑦∈Z𝑟

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑧𝑦𝑖𝑞𝑟𝑘(

𝑦𝑖
2 )−𝑘𝑖𝑦𝑖+(𝑟 𝑦𝑖+ 𝑗−𝑖) ( 𝑗−𝜈 𝑗 )

)
= [𝑧0] det

1⩽𝑖, 𝑗⩽𝑟

( ∑︁
𝑦∈Z

𝑧𝑦𝑞𝑟𝑘(
𝑦

2)−𝑘𝑖𝑦−(𝑟 𝑦+ 𝑗−𝑖)𝜈 𝑗
)
.

Interchanging rows and columns (i.e., replacing (𝑖, 𝑗) ↦→ ( 𝑗 , 𝑖)), negating 𝑦 and using the
fact that we are taking the constant term with respect to 𝑧, this leads to

𝐴𝜈;𝑘 (𝑞) = [𝑧0] det
1⩽𝑖, 𝑗⩽𝑟

( ∑︁
𝑦∈Z

𝑧𝑦𝑞𝑟𝑘(
𝑦

2)+𝑘𝑖𝑦+𝑟 𝑦𝜈𝑖+( 𝑗−𝑖) (𝑘𝑦+𝜈𝑖 )
)

=
∑︁
𝑦∈𝑄

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑞 ( 𝑗−𝑖) (𝑘𝑦𝑖+𝜈𝑖 )

) 𝑟∏
𝑖=1

𝑞𝑟𝑘(
𝑦𝑖
2 )+𝑘𝑖𝑦𝑖+𝑟𝜈𝑖 𝑦𝑖 .

Applying the Vandermonde determinant

det
1⩽𝑖, 𝑗⩽𝑟

(
𝑥
𝑗−𝑖
𝑖

)
=

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑥𝑖/𝑥 𝑗 )



An A2 Bailey tree 31

this gives

𝐴𝜈;𝑘 (𝑞) =
∑︁
𝑦∈𝑄

𝑟∏
𝑖=1

𝑞𝑟𝑘(
𝑦𝑖
2 )+𝑘𝑖𝑦𝑖+𝑟𝜈𝑖 𝑦𝑖

∏
1⩽𝑖< 𝑗⩽𝑟

(
1 − 𝑞𝑘𝑦𝑖 𝑗+𝜈𝑖−𝜈 𝑗

)
.

By the A(1)
𝑟−1 Macdonald identity [62]∑︁

𝑦∈𝑄

𝑟∏
𝑖=1

𝑥
𝑟 𝑦𝑖
𝑖
𝑞𝑟 (

𝑦𝑖
2 )+𝑖𝑦𝑖

∏
1⩽𝑖< 𝑗⩽𝑟

(
1 − 𝑞𝑦𝑖 𝑗 𝑥𝑖/𝑥 𝑗

)
= (𝑞; 𝑞)𝑟−1

∞
∏

1⩽𝑖< 𝑗⩽𝑟
𝜃 (𝑥𝑖/𝑥 𝑗 ; 𝑞) (5.16)

with (𝑞, 𝑥𝑖) ↦→ (𝑞𝑘 , 𝑞𝜈𝑖 ), this results in the product form

𝐴𝜈;𝑘 (𝑞) = (𝑞𝑘 ; 𝑞𝑘)𝑟−1
∞

∏
1⩽𝑖< 𝑗⩽𝑟

𝜃
(
𝑞𝜈𝑖−𝜈 𝑗 ; 𝑞𝑘

)
.

Taking 𝑟 = 3, 𝜈 = (𝑎 + 𝑏 + 2, 𝑏 + 1, 0) and 𝑘 = 𝐾 , yields

(𝑞𝐾 ; 𝑞𝐾 )2
∞

(𝑞; 𝑞)3
∞

∏
1⩽𝑖< 𝑗⩽3

𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾

)
for the right-hand side of (5.15).

6. Below-the-line identities

As in Conjecture 1.1, fix the modulus 𝐾 as 𝐾 = 3𝑘 + 𝜏 + 3 for 𝑘 a nonnegative integer and
𝜏 ∈ {−1, 0, 1}. In the introduction immediately preceding the conjecture, we remarked that
there should be an ASW-type identity for all nonnegative integers 𝑎, 𝑏 such that 𝑎 + 𝑏 ⩽
𝐾 − 3, with product side given by6

(𝑞𝐾 ; 𝑞𝐾 )2
∞

(𝑞; 𝑞)3
∞

𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾

)
,

Without loss of generality assuming that

0 ⩽ 𝑏 ⩽ 𝑎 ⩽ 𝐾 − 𝑎 − 𝑏 − 3, (6.1)

this corresponds to (
𝑘 + 2

2

)
− 𝛿𝜏,−1 +

⌊ (𝑘 + 𝜏)2

4

⌋
distinct ASW-type identities. Hence in the Kanade–Russell conjecture roughly one third
of all cases is missing, counted by the above floor function. In their paper, Kanade and
Russell adopt a certain diagrammatic arrangement for the triples (𝐾 − 𝑎 − 𝑏 − 3, 𝑎, 𝑏)

6For 𝜏 = −1 this rules out (𝑎, 𝑏) = (𝑘, 𝑘), which as discussed in the introduction gives the same
product as (𝑎, 𝑏) = (𝑘, 𝑘 − 1) albeit a slightly different multisum according to (1.5).
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with fixed 𝐾 , leading them to refer to the missing identities as the ‘below-the-line’ cases.
Equivalently, this corresponds to (6.1) with 𝑎 > 𝑘 (and thus 𝑏 ⩽ 𝑘 + 𝜏 − 2). If 𝑘 = 1 this
forces 𝜏 = 1, in which case there is the single below-the-line solution: (𝑎, 𝑏) = (2, 0).
By solving the modulus-7 Corteel–Welsh equations [28], Kanade and Russell found the
missing multisum, resulting in

∞∑︁
𝜆1 ,𝜇1=0

1 − 𝑞2𝜆1−𝜇1

1 − 𝑞
𝑞𝜆

2
1−𝜆1𝜇1+𝜇2

1−𝜆1+𝜇1

(𝑞; 𝑞)𝜆1 (𝑞; 𝑞)𝜇1 (𝑞2; 𝑞)𝜆1+𝜇1

=
(𝑞7; 𝑞7)∞
(𝑞; 𝑞)3

∞
𝜃
(
𝑞, 𝑞3, 𝑞3; 𝑞7) .

In general, however, no explicit such multisum-forms for below-the-line values of 𝑎 and 𝑏
are known. The exception is 𝜏 = 0, in which case Kanade and Russell observed that if

Θ𝑎,𝑏;𝑘 (𝑞) := 𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞3𝑘+3) ,

then Weierstrass’ three-term relation [40, page 61] implies,

Θ𝑎,𝑏;𝑘 (𝑞) = Θ2𝑘−𝑎,𝑎+𝑏−𝑘;𝑘 − 𝑞𝑏+1Θ2𝑘−𝑎−𝑏−1,𝑎−𝑘−1;𝑘 (𝑞).

Importantly, for 𝜏 = 0 and fixed 𝑘 ⩾ 2, the below-the-line values of (𝑎, 𝑏) satisfy 𝑘 < 𝑎 ⩽
⌊3𝑘/2⌋ and 0⩽ 𝑏 ⩽ 3𝑘 − 2𝑎. Assuming such 𝑎, 𝑏 and defining (𝑎′, 𝑏′) := (2𝑘 − 𝑎, 𝑎 + 𝑏 − 𝑘)
and (𝑎′′, 𝑏′′) := (2𝑘 − 𝑎 − 𝑏 − 1, 𝑎 − 𝑘 − 1), it follows that 0 < 𝑏′ ⩽ 𝑎′ ⩽ ⌈𝑘/2⌉ and
0 ⩽ 𝑏′′ ⩽ 𝑎′ ⩽ 𝑘 − 2. This implies the following theorem covering all of the below-the-line
cases. For integers 𝑎, 𝑏, 𝑘 such that 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , let

F𝑎,𝑏;𝑘 (𝑞) :=
∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0
𝜇1⩾· · ·⩾𝜇𝑘⩾0

1 − 𝑞𝜆𝑎+𝜇𝑏+1

1 − 𝑞
𝑞
∑𝑘

𝑖=1 (𝜆2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
)+∑𝑘

𝑖=𝑎+1 𝜆𝑖+
∑𝑘

𝑖=𝑏+1 𝜇𝑖∏𝑘−1
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

𝑔𝜆𝑘 ,𝜇𝑘 ;0 (𝑞),

where 𝑞𝜆0 = 𝑞𝜇0 := 0.

Theorem 6.1. Let 𝑎, 𝑏, 𝑘 be integers such that 2 ⩽ 𝑘 < 𝑎 ⩽ ⌊3𝑘/2⌋ and 0 ⩽ 𝑏 ⩽ 3𝑘 − 2𝑎.
Then

F2𝑘−𝑎,𝑎+𝑏−𝑘;𝑘 (𝑞) − 𝑞𝑏+1F2𝑘−𝑎−𝑏−1,𝑎−𝑘−1;𝑘 (𝑞) =
(𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)3

∞
𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾

)
,

where 𝐾 := 3𝑘 + 3.

This was first stated in [51] as a conditional result, depending on the validity of Con-
jecture 1.1. By Theorem 1.2 the result is now unconditional. It remains an open problem
to express the left-hand side in manifestly positive form.

7. Character identities for the W3(3, 𝑲) vertex operator algebra

As explained in full detail in [90, Section 4], for 𝜏 ≠ 0 (so that 3 ∤ 𝐾) the 𝑞-series in
(1.5) multiplied by 𝑞ℎ−𝑐/24 (𝑞; 𝑞)∞ are characters 𝜒𝐾

𝑎,𝑏
(𝑞) of the W3 (3, 𝐾) vertex operator
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algebra [30, 91] of central charge

𝑐 = −2(𝐾 − 4) (4𝐾 − 9)
𝐾

(7.1)

and conformal weight

ℎ𝑎,𝑏 =
𝑎2 + 𝑎𝑏 + 𝑏2 − (𝐾 − 3) (𝑎 + 𝑏)

𝐾
.

That is,

𝜒𝐾𝑎,𝑏 (𝑞) = 𝑞
ℎ𝑎,𝑏−𝑐/24 (𝑞𝐾 ; 𝑞𝐾 )2

∞
(𝑞; 𝑞)2

∞
𝜃
(
𝑞𝑎+1, 𝑞𝑏+1, 𝑞𝑎+𝑏+2; 𝑞𝐾

)
,

where 𝑎, 𝑏, 𝐾 are nonnegative integers such that 𝐾 ⩾ 5, 3 ∤ 𝐾 and 𝑎 + 𝑏 ⩽ 𝐾 − 3. To obtain
a multisum expression for these characters without an overall factor (𝑞; 𝑞)∞, we need to
carry out a suitable rewriting of the multisum in (1.5). This is possible by means of the
next lemma, which is a limiting case of [90, Lemma 7.2].

Lemma 7.1. For 𝑘 a positive integer, 𝑚 a nonnegative integer and 𝑢 = (𝑢1, . . . , 𝑢𝑘+1) ∈
Z𝑘+1 define

F𝑢 (𝑞) :=
∑︁

𝜇1⩾· · ·⩾𝜇𝑘⩾0

𝑞
∑𝑘

𝑖=1 𝜇𝑖 (𝜇𝑖+𝑢𝑖 )

(𝑞)𝜇𝑘+𝑢𝑘+1

∏𝑘
𝑖=1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

,

where 𝜇𝑘+1 := 0. If
𝑢1 ⩽ 𝑢2 ⩽ · · · ⩽ 𝑢𝑘+1,

then

F𝑢 (𝑞) =
1

(𝑞; 𝑞)∞

∑︁
𝜇1 ,...,𝜇𝑘⩾0

𝑞
∑𝑘

𝑖=1 𝜇𝑖 (𝜇𝑖+𝑢𝑖 )
𝑘∏
𝑖=1

[
𝜇𝑖+1 + 𝑢𝑖+1 − 𝑢𝑖

𝜇𝑖

]
, (7.2)

where, again, 𝜇𝑘+1 := 0.

The left-hand side of (1.5) for 𝜏 ≠ 0 may be expressed in terms of F𝑢 as∑︁
𝜆1⩾· · ·⩾𝜆𝑘⩾0

𝑞
∑𝑘

𝑖=1 𝜆
2
𝑖
+∑𝑘

𝑖=𝑎+1 𝜆𝑖∏𝑘
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

F𝑢 (𝑞) − 𝜒(𝑎𝑏 > 0)
∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0

𝑞1+∑𝑘
𝑖=1 𝜆

2
𝑖
+∑𝑘

𝑖=𝑎 𝜆𝑖∏𝑘
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

F𝑣 (𝑞),

where 𝜆𝑘+1 := 0,

𝑢𝑖 =


𝜒(𝑖 > 𝑏) − 𝜆𝑖 for 1 ⩽ 𝑖 < 𝑘,

𝜒(𝑘 > 𝑏) − 𝜏𝜆𝑘 for 𝑖 = 𝑘,
1 + 𝜆𝑘 for 𝑖 = 𝑘 + 1,

and 𝑣𝑖 =


𝜒(𝑖 ⩾ 𝑏) − 𝜎𝑖𝜆𝑖 for 1 ⩽ 𝑖 < 𝑘,

1 − 𝜏𝜆𝑘 for 𝑖 = 𝑘,
1 + 𝜆𝑘 for 𝑖 = 𝑘 + 1.

Since for 𝜆1 ⩾ 𝜆2 ⩾ · · · ⩾ 𝜆𝑘 the inequalities 𝑢𝑖 ⩽ 𝑢𝑖+1 and 𝑣𝑖 ⩽ 𝑣𝑖+1 hold for all 1 ⩽ 𝑖 ⩽ 𝑘 ,
we may use the alternative expressions for F𝑢 (𝑞) and F𝑣 (𝑞) provided by (7.2). First, for
𝜏 = 1, this yields our next theorem, where 𝜒̃𝐾

𝑎,𝑏
(𝑞) := 𝑞𝑐/24−ℎ𝑎,𝑏 𝜒𝐾

𝑎,𝑏
(𝑞).
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Theorem 7.2 (A(1)
2 Andrews–Gordon identities, I). Let 𝐾 = 3𝑘 + 4 for 𝑘 ⩾ 1. Then

𝜒̃𝐾𝑎,𝑏 (𝑞)

=
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘⩾0

𝑞
∑𝑘

𝑖=𝑎+1 𝜆𝑖+
∑𝑘

𝑖=𝑏+1 𝜇𝑖

(𝑞; 𝑞)𝜆1

𝑘∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1 + 𝛿𝑏,𝑖

𝜇𝑖

]

−
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘⩾0

𝑞1+∑𝑘
𝑖=𝑎 𝜆𝑖+

∑𝑘
𝑖=𝑏 𝜇𝑖

(𝑞; 𝑞)𝜆1

𝑘∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1 + 𝛿𝑏−1,𝑖

𝜇𝑖

]
for all 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , and

𝜒̃𝐾𝑘,𝑘 (𝑞) =
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘⩾0

1
(𝑞; 𝑞)𝜆1

𝑘∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1

𝜇𝑖

]
,

where 𝑞𝜆0 = 𝑞𝜇0 = 𝜆𝑘+1 := 0 and 𝜇𝑘+1 := 𝜆𝑘 .

The second, simpler expression for 𝜒̃𝐾
𝑘,𝑘

(𝑞) follows by either noting that for 𝑎 = 𝑏 = 𝑘 ,
the left-hand side of (1.5) for 𝜏 ≠ 0 may alternatively be recognised as∑︁

𝜆1⩾· · ·⩾𝜆𝑘⩾0

F𝑤(𝑞)∏𝑘
𝑖=1 (𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

,

where 𝜆𝑘+1 := 0 and

𝑤𝑖 =


−𝜆𝑖 for 1 ⩽ 𝑖 < 𝑘,

−𝜏𝜆𝑘 for 𝑖 = 𝑘,
𝜆𝑘 for 𝑘 + 1,

or by substituting 𝑎 = 𝑏 = 𝑘 in the expression for 𝜒̃𝐾
𝑎,𝑏

(𝑞), replacing 𝜇𝑘 ↦→ 𝜇𝑘 − 1 in the
second multisum and then combining the two multisums using the standard recursion for
the 𝑞-binomial coefficient. The 𝑏 = 0 case of Theorem 7.2 proves [90, Conjecture 2.8] and
the 𝑎 = 0 case proves Equation (2.7) of that same paper. Since 𝜒̃𝐾

𝑎,𝑏
(𝑞) = 𝜒̃𝐾

𝑏,𝑎
(𝑞) while

the right-hand side of the first character formula does not have 𝑎, 𝑏-symmetry, there are
two distinct expressions for each W3 (3, 𝐾) character 𝜒𝐾

𝑎,𝑏
(𝑞) such that 𝑎 ≠ 𝑏. The reason

for viewing the above as analogues of the Andrews–Gordon identities (1.1) is that in much
the same way the latter are known to be identities for characters of the Virasoro algebra
Vir(2, 𝐾) = W2 (2, 𝐾).

For 𝜏 = −1 we obtain the following companion to the previous theorem.
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Theorem 7.3 (A(1)
2 Andrews–Gordon identities, II). Let 𝐾 = 3𝑘 + 2 for 𝑘 ⩾ 1 and 0 ⩽ 𝑎 ⩽

𝑘 , 0 ⩽ 𝑏 < 𝑘 . Then

𝜒̃𝐾𝑎,𝑏 (𝑞)

=
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘−1⩾0

𝑞𝜆
2
𝑘
+∑𝑘

𝑖=𝑎+1 𝜆𝑖+
∑𝑘−1

𝑖=𝑏+1 𝜇𝑖

(𝑞; 𝑞)𝜆1

𝑘−1∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1 + 𝛿𝑏,𝑖

𝜇𝑖

]

−
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘−1⩾0

𝑞1+𝜆2
𝑘
+∑𝑘

𝑖=𝑎 𝜆𝑖+
∑𝑘−1

𝑖=𝑏 𝜇𝑖

(𝑞; 𝑞)𝜆1

𝑘−1∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1 + 𝛿𝑏−1,𝑖

𝜇𝑖

]
for 0 ⩽ 𝑎 ⩽ 𝑘 , 0 ⩽ 𝑏 < 𝑘 , and

𝜒̃𝐾𝑘,𝑘 (𝑞) =
∑︁

𝜆1 ,...,𝜆𝑘⩾0
𝜇1 ,...,𝜇𝑘−1⩾0

𝑞𝜆
2
𝑘

(𝑞; 𝑞)𝜆1

𝑘−1∏
𝑖=1

𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖

[
𝜆𝑖

𝜆𝑖+1

] [
𝜆𝑖 − 𝜆𝑖+1 + 𝜇𝑖+1

𝜇𝑖

]
,

where 𝑞𝜆0 = 𝑞𝜇0 = 𝜆𝑘+1 := 0 and 𝜇𝑘 := 2𝜆𝑘 .

This time the 𝑏 = 0 case proves [90, Conjecture 2.1] and the 𝑎 = 0 case proves Equation
(2.2) of [90].

For a number of special values of 𝑘 , alternative multisum expressions to those of
Theorems 7.2 and 7.3 are known. In [27], Corteel, Dousse and Uncu solved the Corteel–
Welsh system of equations for the two-variable generating function of three-row cylindric
partitions with profile (5 − 𝑎 − 𝑏, 𝑎, 𝑏), resulting in quadruple-sum expressions for the
characters 𝜒̃8

𝑎,𝑏
(𝑞). For example (see [27, Theorem 1.6]),

𝜒̃8
2,1 (𝑞) =

∞∑︁
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4=0

𝑞𝑛
2
1+𝑛

2
2+𝑛

2
3+𝑛

2
4−𝑛1𝑛2+𝑛2𝑛4

(𝑞; 𝑞)𝑛1

[
𝑛1
𝑛2

] [
𝑛1
𝑛4

] [
𝑛2
𝑛3

]
.

In [32, Theorems 2.3 & 2.4], Feigin, Foda and Welsh obtained an Andrews–Gordon-type
theorem for a linear combination of characters of Vir(3, 3𝑘 + 2) of central charge 𝑐 =

−3𝑘 (6𝑘 − 5)/(3𝑘 + 2). For 𝑘 = 4 this yields 𝑐 = −114/7, which coincides with the central
charge of W3 (3, 7). In this case, four of the six linear combinations considered in [32]
correspond to actual W3 (3, 7) characters. Three are also covered in Theorem 7.2 while
the fourth is below-the-line in the sense of Kanade and Russell. For example, the character
expression for 𝜒̃7

1,1 (𝑞) arising from Vir(3, 14) is [32, Equation (20c)]

𝜒̃7
1,1 (𝑞) =

∞∑︁
𝑛1 ,𝑛2 ,𝑛3 ,𝑛3=0

𝑞𝑛
2
1+𝑛

2
2+𝑛

2
3+𝑛

2
4+(𝑛1+𝑛2+𝑛3 )𝑛4

(𝑞; 𝑞)𝑛1 (𝑞; 𝑞)𝑛4

[
𝑛1
𝑛2

] [
𝑛2
𝑛3

]
.

After the substitutions

(𝑛1, 𝑛2, 𝑛3, 𝑛4) ↦→ (𝑛1 + 𝑛3 + 𝑛4, 𝑛3 + 𝑛4, 𝑛4, 𝑛2)
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this takes the form

𝜒̃7
1,1 (𝑞) =

∞∑︁
𝑛1 ,𝑛2 ,𝑛3 ,𝑛3=0

𝑞
∑4

𝑖, 𝑗=1 𝑛𝑖𝐴𝑖 𝑗𝑛 𝑗

(𝑞; 𝑞)𝑛1 (𝑞; 𝑞)𝑛2 (𝑞; 𝑞)𝑛3 (𝑞; 𝑞)𝑛4

, (7.3)

where

(𝐴𝑖 𝑗 ) =
1
2

©­­­­«
2 1 2 2
1 2 2 3
2 2 4 4
2 3 4 6

ª®®®®¬
.

At a workshop on cylindric partitions held at RICAM in 2022, Shunsuke Tsuchioka
raised the question if all the A(1)

2 Andrews–Gordon identities admit alternative sum-sides of
the form (7.3). Such expressions would be closer to the A(1)

1 Andrews–Bressoud–Gordon
identities, where the variable change 𝑛𝑖 ↦→ 𝑛𝑖 + · · · + 𝑛𝑘 for all 1 ⩽ 𝑖 ⩽ 𝑘 leads to the
multisum ∑︁

𝑛1 ,...,𝑛𝑘⩾0

𝑞
∑𝑘

𝑖, 𝑗=1 𝑛𝑖𝐴𝑖 𝑗𝑛 𝑗+
∑𝑘

𝑖=1 (𝐴𝑘𝑖−𝐴𝑎𝑖 )𝑛𝑖

(𝑞; 𝑞)𝑛1 . . . (𝑞; 𝑞)𝑛𝑘−1 (𝑞2−𝜏 ; 𝑞2−𝜏)𝑛𝑘
,

where (𝐴𝑖 𝑗 )𝑘𝑖, 𝑗=1 = (min{𝑖, 𝑗})𝑘
𝑖, 𝑗=1 is the Cartan-type matrix of the tadpole graph on 𝑘

vertices. As further evidence that such a rewriting might exist for all moduli, he made a
conjecture for modulus 8, complementing his own proven modulus-6 identities [83], such
as

∞∑︁
𝑛
(1)
1 ,𝑛

(1)
2 ,𝑛

(2)
1 ,𝑛

(2)
2 =0

𝑞
∑2

𝑖, 𝑗,𝑎,𝑏=1 𝐴𝑖𝑎, 𝑗𝑏𝑛
(𝑎)
𝑖
𝑛
(𝑏)
𝑗∏2

𝑖,𝑎=1 (𝑞; 𝑞)
𝑛
(𝑎)
𝑖

=

∞∑︁
𝑛,𝑚,𝑘,𝑙=0

𝑞𝑛
2+3𝑘𝑛+3𝑘2

(𝑞; 𝑞)𝑛 (𝑞3; 𝑞3)𝑘

[
𝑛

𝑚

] [
𝑘

𝑙

]
𝑞3

= (−𝑞; 𝑞)2
∞ (𝑞2, 𝑞4; 𝑞6)∞,

where 𝐴 = 1
2𝐵 ⊗ 𝐶 (i.e., 𝐴𝑖𝑎, 𝑗𝑏 = 1

2𝐵𝑖 𝑗𝐶𝑎𝑏) with matrices 𝐵 and 𝐶 given by 𝐵 =
( 2 3

3 6
)

and 𝐶 =
( 1 1

1 1
)
. From the structure of the summands in Theorems 7.2 and 7.3 it follows

relatively straightforwardly that a rewriting of the form (7.3) can be carried out for the
moduli 7 and 8. For larger moduli, however, this simple method fails due to the form of
the summands. By iterating the Durfee rectangle identity [7, Equation (3.3.10)][

𝑛 + 𝑚
𝑛 + 𝑎

]
=

𝑛∑︁
𝑘=0

𝑞𝑘 (𝑘+𝑎)
[
𝑛

𝑘

] [
𝑚

𝑘 + 𝑎

]
(7.4)

for 𝑛, 𝑚 ∈ N0 and 𝑎 ∈ Z, it follows that the 𝑞-binomial coefficient admits the telescopic
expansion[

𝑘0 + 𝑚
𝑘0 + 𝑎

]
=

∑︁
𝑘0⩾𝑘1⩾𝑘2⩾· · ·⩾𝑘𝑟⩾0

[
𝑘0 + 𝑚 − ∑𝑟−1

𝑖=0 𝑘𝑖

𝑘𝑟 + 𝑎

] 𝑟∏
𝑖=1

𝑞𝑘𝑖 (𝑘𝑖+𝑎)
[
𝑘𝑖−1
𝑘𝑖

]
, (7.5)
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for arbitrary nonnegative integer 𝑟 and integers 𝑎, 𝑘0, 𝑚 such that 𝑘0, 𝑚 ⩾ 0 and, if 𝑎 = −𝑘0,
then 𝑚 ⩾ (𝑟 − 1)𝑘0. If we take 𝑟 = 2 and once more apply (7.4) with (𝑛, 𝑚, 𝑎) ↦→ (𝑘0 −
𝑘1, 𝑚 − 𝑘0, 𝑘1 + 𝑘2 + 𝑎 − 𝑘0), this implies

1
(𝑞; 𝑞)𝑚−𝑘0 (𝑞; 𝑞)𝑘0

[
𝑘0 + 𝑚
𝑘0 + 𝑎

]
:=∑︁

𝑘1 ,𝑘2 ,𝑘3

𝑞
∑3

𝑖=1 𝑘𝑖 (𝑘𝑖+𝑎)+(𝑘1+𝑘2−𝑘0 )𝑘3

(𝑞; 𝑞)𝑘1−𝑘2 (𝑞; 𝑞)𝑘2 (𝑞; 𝑞)𝑘3 (𝑞; 𝑞)𝑘0−𝑘1−𝑘3 (𝑞; 𝑞)𝑎+𝑘1+𝑘2+𝑘3−𝑘0 (𝑞; 𝑞)𝑚−𝑎−𝑘1−𝑘2−𝑘3

,

for all integers 𝑎, 𝑘0, 𝑚 such that 0 ⩽ 𝑘0 ⩽ 𝑚. Since

𝜒̃7
1,1 (𝑞) =

∑︁
𝜆1 ,𝜇1

𝑞𝜆
2
1−𝜆1𝜇1+𝜇2

1

(𝑞; 𝑞)𝜆1

[
2𝜆1
𝜇1

]
and

𝜒̃8
2,2 (𝑞) =

∑︁
𝜆1 ,𝜆2 ,𝜇1

𝑞𝜆
2
1−𝜆1𝜇1+𝜇2

1+𝜆
2
2

(𝑞; 𝑞)𝜆1−𝜆2 (𝑞; 𝑞)𝜆2

[
𝜆1 + 𝜆2
𝜇1

]
,

we can use the above expansion with (𝑚, 𝑘0, 𝑎) given by (𝜆1, 𝜆1, 𝜆1 − 𝜇1) and (𝜆1, 𝜆2, 𝜆1 −
𝜇1) respectively. In the first case this fixes 𝑘3 as 𝑘3 = 𝜇1 − 𝑘1 − 𝑘2. Finally, making the
substitutions

(𝜆1, 𝜇1, 𝑘1, 𝑘2) ↦→ (𝑛1 + 𝑛2 + 𝑛3 + 𝑛4, 𝑛2 + 𝑛3 + 2𝑛4, 𝑛3 + 𝑛4, 𝑛4)

and

(𝜆1, 𝜇1, 𝜆2, 𝑘1, 𝑘2, 𝑘3)
↦→ (𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 + 𝑛5 + 𝑛6, 𝑛2 + 𝑛4 + 𝑛5 + 2𝑛6, 𝑛3 + 𝑛4 + 𝑛5 + 𝑛6, 𝑛5 + 𝑛6, 𝑛6, 𝑛4)

yields, respectively, (7.3) and

𝜒̃8
2,2 (𝑞) =

∞∑︁
𝑛1 ,...,𝑛6=0

𝑞
∑6

𝑖, 𝑗=1 𝑛𝑖𝐴𝑖 𝑗𝑛𝑖

(𝑞; 𝑞)𝑛1 · · · (𝑞; 𝑞)𝑛6

, (7.6)

for

(𝐴𝑖 𝑗 ) =
1
2

©­­­­­­­­«

2 1 2 2 2 2
1 2 1 2 2 3
2 1 4 3 4 4
2 2 3 4 4 5
2 2 4 4 6 6
2 3 4 5 6 8

ª®®®®®®®®¬
.

This last result is exactly one of formulas for 𝜒̃8
𝑎,𝑏

conjectured by Tsuchioka [84].
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8. Character formulas for principal subspaces of A(1)
2

Let 𝔤 = 𝔰𝔩𝑟 = A𝑟−1 and 𝔤̂ = 𝔰𝔩𝑟 = A(1)
𝑟−1 its untwisted affinisation, i.e.,

𝔤̂ � 𝔤 ⊗ C[𝑡, 𝑡−1] ⊕ C𝑐 ⊕ C𝑑,

where 𝑐 is the canonical central element and 𝑑 a derivation, acting on the loop algebra
𝔤 ⊗ C[𝑡, 𝑡−1] as 𝑡 d

d𝑡 , see [50, Chapter 7] for details. Fix 𝐼 := {0, 1, . . . , 𝑟 − 1} and let 𝔥̂ be
the Cartan subalgebra of 𝔤̂ with basis {𝛼∨0 , . . . , 𝛼

∨
𝑟−1, 𝑑}, where the 𝛼∨

𝑖
(𝑖 ∈ 𝐼) are the simple

coroots (so that 𝑐 =
∑
𝑖∈𝐼 𝛼

∨
𝑖
). Let 𝐴 = (𝑎𝑖 𝑗 )𝑟−1

𝑖, 𝑗=0 be the (generalised) Cartan matrix of 𝔤̂,
and fix the non-degenerate symmetric bilinear form (·|·) on 𝔥̂ by setting (𝛼∨

𝑖
|𝛼∨
𝑗
) = 𝑎𝑖 𝑗 ,

(𝑑 |𝑑) = 0, (𝛼∨0 |𝑑) = 1 and (𝛼∨
𝑖
|𝑑) = 0 otherwise. Further let 𝔥̂∗ be the dual of the Cartan

subalgebra with basis {𝛼0, . . . , 𝛼𝑟−1,Λ0}, where the 𝛼𝑖 (𝑖 ∈ 𝐼) are the simple roots and Λ0
is the 0th fundamental weight. Denote the standard pairing between the Cartan subalgebra
and its dual by ⟨·, ·⟩, so that ⟨𝛼𝑖 , 𝛼∨𝑗 ⟩ = (𝛼∨

𝑖
|𝛼∨
𝑗
) = 𝑎𝑖 𝑗 and ⟨Λ0, 𝑎

∨
𝑖
⟩ = 0. The additional

fundamental weights Λ1, . . . , Λ𝑟−1 ∈ 𝔥̂∗ are fixed as ⟨Λ𝑖 , 𝛼∨𝑗 ⟩ = 𝛿𝑖 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 and
⟨Λ𝑖 , 𝑑⟩ = 0 for all 𝑖 ∈ 𝐼. The level of 𝜆 ∈ 𝔥̂∗ is defined by lev(𝜆) := ⟨𝜆, 𝑐⟩. Hence lev(Λ𝑖) = 1
for all 𝑖 ∈ 𝐼 and if 𝛿 :=

∑
𝑖∈𝐼 𝛼𝑖 is the null root, then lev(𝛿) = ∑

𝑖, 𝑗∈𝐼 𝑎𝑖 𝑗 = 0. Finally, let

𝑃 :=
{
𝜆 ∈ 𝔥∗ : ⟨𝜆, 𝛼∨𝑖 ⟩ ∈ Z for all 𝑖 ∈ 𝐼

}
be the weight lattice of 𝔤̂, and 𝑃+ ⊂ 𝑃 and 𝑃ℓ+ ⊂ 𝑃+ the set of dominant integral weights
and level-ℓ dominant integral weights respectively:

𝑃+ =
{
𝜆 ∈ 𝔥∗ : ⟨λ, 𝛼∨𝑖 ⟩ ∈ N0 for all 𝑖 ∈ 𝐼

}
= N0Λ0 + · · · + N0Λ𝑟−1 + C𝛿,

𝑃ℓ+ =
{
𝜆 ∈ 𝑃+ : lev(λ) = ℓ

}
.

A much studied class of representations of A(1)
𝑟−1 are the standard or integrable highest

weight modules. There is a unique such module, 𝐿λ, for each λ ∈ 𝑃+ mod C𝛿. If 𝑣λ
denotes the highest weight vector of 𝐿λ, then 𝔥̂ acts diagonally on 𝑣𝜆 and 𝑐𝑣λ = lev(λ)𝑣λ.
The principal subspace𝑊λ ⊂ 𝐿λ is defined as [9, 35, 81]7

𝑊𝜆 := 𝑈
(
𝔫− ⊗ C[𝑡, 𝑡−1]

)
𝑣λ = 𝑈

(
𝔫− ⊗ C[𝑡−1]

)
𝑣λ,

where 𝔫− ⊕ 𝔥 ⊕ 𝔫+ is the triangular or Cartan decomposition of 𝔤 and 𝑈 (·) denotes the
universal enveloping algebra. Let 𝑓1, . . . , 𝑓𝑟−1 ∈ 𝔤 denote the standard generators of 𝔫− .
Then the character of the principal subspace𝑊λ is defined as

ch𝑊λ :=
∑︁

𝑛,𝑑1 ,...,𝑑𝑟−1⩾0
dim

(
𝑊λ;𝑛;𝑑1 ,...,𝑑𝑟−1

)
eλ−𝛿𝑛−

∑𝑟−1
𝑖=1 𝑑𝑖𝛼𝑖 ,

7There are two related but distinct definitions used in the literature, and here we follow the less
standard [9]. In the original paper [81],𝑈

(
𝔫+ ⊗ C[𝑡, 𝑡−1]

)
𝑣λ is used instead.
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where𝑊λ;𝑛;𝑑1 ,...,𝑑𝑟−1 ⊂𝑊λ is the subspace generated by those elements in𝑈 (𝔫− ⊗ C[𝑡−1])
of degree 𝑑𝑖 in 𝑓𝑖 and degree 𝑛 in 𝑡−1. For convenience we in the following use the norm-
alised character

ch𝑊 ′
λ := e−λ ch𝑊λ.

Ardonne, Kedem and Stone [9, Equation (6.9)]8 found an explicit expression for ch𝑊λ in
terms of generalised Kostka polynomials [53,75]. Restricting considerations to 𝑟 = 3, and
assuming the parametrisation

λ = (𝑘 − 𝑎 − 𝑏)Λ0 + 𝑎Λ1 + 𝑏Λ2 ∈ 𝑃𝑘+ , (8.1)

the Ardonne, Kedem and Stone character formula simplifies to [9, Equations (6.9), (6.15)
& (6.16)]

ch𝑊 ′
λ :=

∑︁
𝜆,𝜇∈P

𝑙 (𝜆) ,𝑙 (𝜇)⩽𝑘

( (
1 − 𝑧𝑤𝑞𝜆𝑎+𝜇𝑏−1) 𝑘∏

𝑖=1

𝑧𝜆𝑖𝑤𝜇𝑖𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

)
, (8.2)

where 𝑞𝜆0 = 𝑞𝜇0 := 0 and 𝑞 := e−𝛿 , 𝑧 := e−𝛼1 , 𝑤 := e−𝛼2 . The restrictions 𝑙 (𝜆), 𝑙 (𝜇) ⩽ 𝑘

in the sum imply that 𝜆𝑘+1 = 𝜇𝑘+1 = 0. By mild abuse of notation we in the remainder of
this section use ch𝑊 ′

λ
to mean the right-hand side of (8.2) for all 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , despite the

fact that for 𝑎 + 𝑏 > 𝑘 the weight λ is not dominant.
In the vacuum case, corresponding to 𝑎 = 𝑏 = 0, Feigin et al. [31, Corollary 7.8] obtained

an alternative ‘bosonic’ expression for𝑊λ. This is the 𝑎 = 𝑏 = 0 case of our next theorem.

Theorem 8.1. For 𝑎, 𝑏, 𝑘 integers such that 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 , let the weight λ and partition 𝜈
be given by (8.1) and 𝜈 = (𝑎 + 𝑏 + 2, 𝑏 + 1, 0) respectively. Then

ch𝑊 ′
λ =

∏
1⩽𝑖< 𝑗⩽3

1
(𝑥𝑖/𝑥 𝑗 ; 𝑞)∞

(8.3)

×
∑︁
𝑦∈𝑄+

det
1⩽𝑖, 𝑗⩽3

(
(𝑥𝑖𝑞𝑦𝑖 )𝜈𝑖−𝜈 𝑗

) 3∏
𝑖=1

𝑥
(𝑘+2)𝑦𝑖
𝑖

𝑞 (𝑘+2) (𝑦𝑖2 )−𝜈𝑖 𝑦𝑖 (𝑥𝑖/𝑥3; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥1; 𝑞)𝑦𝑖

,

where 𝑥1/𝑥2 := e−𝛼1 and 𝑥2/𝑥3 := e−𝛼2 .

By (8.2) this is Theorem 1.4 of the introduction.

Proof of Theorem 8.1. The main steps of the proof are the same as in the proof of the
Kanade–Russell conjecture in Section 5. Key difference is the root identity to which the
A2 Bailey tree is applied, which essentially is the A2 unit Bailey pair (4.33). Also, since
the right-hand side of (8.3) does not admit a product form, this time round there is no need
for the A(1)

2 Macdonald identity in the final stages of the proof.

8Forλ = (𝑘 − 𝑎)Λ0 + 𝑎Λ𝑖 , 𝑖 ∈ 𝐼, the dependence on the generalised Kostka polynomials trivialises
and the result is essentially due to Georgiev [41], with the caveat that he used the definition of principal
subspace from [81].
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For 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑄, let

Ψ𝑦 (𝑧, 𝑤; 𝑞) := 𝑞−𝑦13 (𝑧𝑞; 𝑞)𝑦12 (𝑤𝑞; 𝑞)𝑦23 (𝑧𝑤𝑞; 𝑞)𝑦13Φ𝑦1 ,𝑦1+𝑦2

(
𝑧𝑞𝑦12 , 𝑤𝑞𝑦23 ; 𝑞−1) . (8.4)

Point of departure for our proof is (4.3) for 𝑁 = 𝑀 = 0. Identifying (𝑟, 𝑠) = (𝑦1, 𝑦1 + 𝑦2)
and using (4.12), this may also be written as

𝛿𝑛,0𝛿𝑚,0 =
∑︁
𝑦∈𝑄+

Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)Ψ𝑦 (𝑧, 𝑤; 𝑞), (8.5)

where 𝑛, 𝑚 ∈ N0. Since Φ𝑛,𝑚;𝑦 vanishes unless 𝑦1 ⩽ 𝑛 and 𝑦1 + 𝑦2 ⩽ 𝑚, the sum over 𝑦 in
(8.5) has finite support.

As in the proof in Section 5, let 𝑎, 𝑘 be integers such that 𝑎 ⩽ 𝑘 . Then, by a (𝑘 − 𝑎 + 1)-
fold application of (4.13) starting with the root identity (8.5), we obtain∑︁

𝜆⊆(𝑛𝑘−𝑎 )
𝜇⊆(𝑚𝑘−𝑎 )

𝑘−𝑎+1∏
𝑖=1

K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑧, 𝑤; 𝑞) (8.6)

=
∑︁
𝑦∈𝑄+

(
𝑧𝑦1𝑤𝑦1+𝑦2𝑞

1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )

) 𝑘−𝑎+1
Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞)Ψ𝑦 (𝑧, 𝑤; 𝑞),

where 𝜆0 := 𝑛, 𝜇0 := 𝑚. Next we use (4.17) to replace Φ𝑛,𝑚;𝑦 (𝑧, 𝑤; 𝑞) in the summand on
the right by Φ𝑛,𝑚;𝑦 (1, 1, 𝑧, 𝑤; 𝑞) and define

𝑍 := 𝑧𝑞𝑦12 and 𝑊 := 𝑤𝑞𝑦23 .

Then, by an (𝑎 − 𝑏)-fold application of (4.18b) where (𝑢, 𝑣) = (𝑍 𝑖−1,𝑊 𝑖−1) in the 𝑖th step,
as well as the use of (5.10) for (𝑎, 𝑏) = (1/𝑞, 1), we find∑︁
𝜆⊆(𝑛𝑘−𝑏 )
𝜇⊆(𝑚𝑘−𝑏 )

𝑘−𝑏+1∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎−𝑏)𝜆𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑧, 𝑤; 𝑞)

=
∑︁
𝑦∈𝑄+

(
𝑧𝑦1𝑤𝑦1+𝑦2𝑞

1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )

) 𝑘−𝑏+1
𝑞−(𝑎−𝑏)𝑦1Φ𝑛,𝑚;𝑦

(
𝑍𝑎−𝑏,𝑊𝑎−𝑏; 𝑧, 𝑤; 𝑞

)
Ψ𝑦 (𝑧, 𝑤; 𝑞),

for integers 𝑎, 𝑏, 𝑘 such that 𝑏 ⩽ 𝑎 ⩽ 𝑘 . Again denoting this by 𝐼𝑎, it follows from Corol-
lary 4.10 that (𝐼𝑎 − 𝑧𝑤𝑞𝑚−1𝐼𝑎−1)/(1 − 𝑧𝑤𝑞−1) is given by∑︁

𝜆⊆(𝑛𝑘−𝑏 )
𝜇⊆(𝑚𝑘−𝑏 )

1 − 𝑧𝑤𝑞𝑚+𝜆𝑎−𝑏−1

1 − 𝑧𝑤𝑞−1

𝑘−𝑏+1∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎−𝑏)𝜆𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑧, 𝑤; 𝑞) (8.7)

=
∑︁
𝑦∈𝑄+

( (
𝑧𝑦1𝑤𝑦1+𝑦2𝑞

1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )

) 𝑘−𝑏+1
𝑞−(𝑎−𝑏)𝑦1

×Φ𝑛,𝑚;𝑦
(
𝑍𝑎−𝑏,𝑊𝑎−𝑏; 1, 1; 𝑧, 𝑤; 𝑞

) Ψ𝑦 (𝑧, 𝑤; 𝑞)
Δ𝑦 (𝑧, 𝑤; 𝑞)

)
.
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Once again this holds for 𝑏 ⩽ 𝑎 ⩽ 𝑘 instead of the more restricted range 𝑏 < 𝑎 ⩽ 𝑘 since
(8.7) for 𝑏 = 𝑎 simplifies to (8.6) by 𝜆0 := 𝑛 and (4.27). The final iterative step in our proof
is a 𝑏-fold application of Corollary 4.11, where

(𝑢, 𝑣, 𝑐, 𝑑) = (𝑍𝑎−𝑏+𝑖−1,𝑊𝑎−𝑏+𝑖−1, 𝑍 𝑖−1,𝑊 𝑖−1)

in the 𝑖th step. By (5.10) for 𝑎 = 𝑏 = 1/𝑞 this yields∑︁
𝜆⊆(𝑛𝑘 )
𝜇⊆(𝑚𝑘 )

1 − 𝑧𝑤𝑞𝜆𝑎+𝜇𝑏−1

1 − 𝑧𝑤𝑞−1

𝑘+1∏
𝑖=1

𝑞−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖K𝜆𝑖−1 ,𝜇𝑖−1;𝜆𝑖 ,𝜇𝑖 (𝑧, 𝑤; 𝑞) (8.8)

=
∑︁
𝑦∈𝑄+

( (
𝑧𝑦1𝑤𝑦1+𝑦2𝑞

1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3 )

) 𝑘+1
𝑞−

∑3
𝑖=1 (𝜈𝑖+𝑖)𝑦𝑖

×Φ𝑛,𝑚;𝑦
(
𝑍𝑎,𝑊𝑎; 𝑍𝑏,𝑊𝑏; 𝑧, 𝑤; 𝑞

) Ψ𝑦 (𝑧, 𝑤; 𝑞)
Δ𝑦 (𝑧, 𝑤; 𝑞)

)
,

where we have used that−𝑎𝑦1 − 𝑏(𝑦1 + 𝑦2) = −∑3
𝑖=1 (𝜈𝑖 + 𝑖)𝑦𝑖 for 𝜈 := (𝑎 + 𝑏 + 2, 𝑏 + 1,0).

As for the analogous result (5.14) in the proof of the Kanade–Russell conjecture, this holds
for all 0 ⩽ 𝑎, 𝑏 ⩽ 𝑘 . Specifically, making the simultaneous substitutions (𝑧, 𝑤, 𝑎, 𝑏, 𝑛,𝑚) ↦→
(𝑤, 𝑧, 𝑏, 𝑎, 𝑚, 𝑛), changing the summation indices (𝑦1, 𝑦2, 𝑦3) ↦→ (−𝑦3,−𝑦2,−𝑦1) on the
right and (𝜆, 𝜇) ↦→ (𝜇, 𝜆) on the left, it follows from (8.8) that the both sides are invariant
under the interchange of 𝑎 and 𝑏.

Taking the large-𝑛, 𝑚 limit using (4.26), using definitions (4.28) and (8.4), and elim-
inating 𝑧 and 𝑤 from the right-hand side in favour of 𝑥1, 𝑥2, 𝑥3, we obtain∑︁

𝜆,𝜇∈P
𝑙 (𝜆) ,𝑙 (𝜇)⩽𝑘

(
1 − 𝑧𝑤𝑞𝜆𝑎+𝜇𝑏−1) 𝑘∏

𝑖=1

𝑧𝜆𝑖𝑤𝜇𝑖𝑞𝜆
2
𝑖
−𝜆𝑖𝜇𝑖+𝜇2

𝑖
−𝜒 (𝑖⩽𝑎)𝜆𝑖−𝜒 (𝑖⩽𝑏)𝜇𝑖

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1 (𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

=
∏

1⩽𝑖< 𝑗⩽3

1
(𝑥𝑖/𝑥 𝑗 ; 𝑞)∞

∑︁
𝑦∈𝑄+

( ∏
1⩽𝑖< 𝑗⩽3

(𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖 𝑗
3∏
𝑖=1

𝑥
(𝑘+1)𝑦𝑖
𝑖

𝑞 (𝑘+1) (𝑦𝑖2 )−𝜈𝑖 𝑦𝑖

× det
1⩽𝑖, 𝑗⩽3

(
(𝑥𝑖𝑞𝑦𝑖 )𝜈𝑖−𝜈 𝑗

)
Φ𝑦1 ,𝑦1+𝑦2

(
𝑥1𝑞

𝑦12/𝑥2, 𝑥2𝑞
𝑦23/𝑥3; 𝑞−1) ) .

Since, by (𝑎/𝑞; 𝑞−1)𝑛 = (𝑎𝑞−𝑛; 𝑞)𝑛,

Φ𝑦1 ,𝑦1+𝑦2

(
𝑥1𝑞

𝑦12/𝑥2, 𝑥2𝑞
𝑦23/𝑥3; 𝑞−1) = ∏

1⩽𝑖< 𝑗⩽3

1
(𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖 𝑗

3∏
𝑖=1

𝑥
𝑦𝑖
𝑖
𝑞(

𝑦𝑖
2 ) (𝑥𝑖/𝑥3; 𝑞)𝑦𝑖

(𝑞𝑥𝑖/𝑥1; 𝑞)𝑦𝑖
,

this gives (8.3).

As mentioned in the introduction, the A1-analogue of Theorem 8.1 was first proved by
Andrews, who showed that the right hand sides of (1.7) and (1.8) both satisfy

𝑄𝑘,𝑖 (𝑧; 𝑞) −𝑄𝑘,𝑖−1 (𝑧; 𝑞) = (𝑧𝑞)𝑖−1𝑄𝑘,𝑘−𝑖+1 (𝑧𝑞; 𝑞) (8.9)
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for 1 ⩽ 𝑖 ⩽ 𝑘 , where 𝑄𝑘,0 := 0. Since both expressions satisfy the same initial conditions
𝑄𝑘,𝑖 (0; 𝑞) = 𝑄𝑘,𝑖 (𝑧; 0) = 1, this proves the equality of (1.7) and (1.8). The equation (8.9)
may also be derived purely algebraically using the theory of intertwining operators for
vertex operator algebras, see [23]. For general A(1)

𝑟−1 this approach has only been completed
fully for level-1 modules, see [22, Theorem 5.3]. Restricting to 𝑟 = 3, this yields

ch𝑊 ′
Λ0
(𝑧, 𝑤; 𝑞) − ch𝑊 ′

Λ0
(𝑧𝑞, 𝑤; 𝑞) = 𝑧𝑞 ch𝑊 ′

Λ0
(𝑧𝑞2, 𝑤𝑞−1; 𝑞), (8.10a)

ch𝑊 ′
Λ0
(𝑧, 𝑤; 𝑞) − ch𝑊 ′

Λ0
(𝑞, 𝑤𝑞; 𝑞) = 𝑤𝑞 ch𝑊 ′

Λ0
(𝑧𝑞−1, 𝑤𝑞2; 𝑞), (8.10b)

where the exponents of 𝑞 in the argument of ch𝑊 ′
Λ0

on the right are the Cartan integers of
𝔰𝔩3. Together with

ch𝑊 ′
𝑘Λ0

(𝑧, 𝑤; 𝑞) = ch𝑊 ′
𝑘Λ1

(𝑧𝑞, 𝑤; 𝑞) = ch𝑊 ′
𝑘Λ2

(𝑧, 𝑤𝑞; 𝑞)

for arbitrary level 𝑘 and ch𝑊 ′
Λ0
(0,0; 𝑞) = ch𝑊 ′

Λ0
(𝑧, 𝑤; 0) = 1, this uniquely determines the

characters ch𝑊 ′
Λ𝑖

for 0 ⩽ 𝑖 ⩽ 2. It is routine to show that the right-hand side of (8.2) for
𝑘 = 1 and 𝑎 = 𝑏 = 0 satisfies (8.10). The same cannot be said for the bosonic representation

ch𝑊 ′
Λ0
(𝑧, 𝑤; 𝑞) = 1

(𝑧𝑞, 𝑤𝑞, 𝑧𝑤𝑞; 𝑞)∞

×
∞∑︁

𝑟 ,𝑠=0

(
(−1)𝑟+𝑠𝑧2𝑟𝑤2𝑠𝑞2𝑟2+2𝑠2−2𝑟𝑠+(𝑟2)+(𝑠2) (1 − 𝑧𝑞2𝑟−𝑠) (1 − 𝑤𝑞2𝑠−𝑟 ) (1 − 𝑧𝑤𝑞𝑟+𝑠)

(1 − 𝑧) (1 − 𝑤) (1 − 𝑧𝑤)

× (𝑧𝑤; 𝑞)𝑟 (𝑧𝑤; 𝑞)𝑠 (𝑧; 𝑞)𝑟−𝑠 (𝑤; 𝑞)𝑠−𝑟
(𝑞; 𝑞)𝑟 (𝑞; 𝑞)𝑠

)
,

for which showing (8.10) holds requires a lengthy computation. It would be very interesting
to extend the approach using functional equations to ch𝑊 ′

λ
(𝑧, 𝑤;𝑞) for weights of arbitrary

level.

9. Outlook

An important open question is how to generalise Theorems 1.2 and 1.4 to A(1)
𝑟−1 for all 𝑟 .9 As

far as the A𝑟−1-analogue of the Bailey chains of Lemma 3.1 and Theorem 4.2 is concerned,
things are relatively straightforward. Let 𝒏 = (𝑛1, . . . , 𝑛𝑟−1), 𝒎 = (𝑚1, . . . ,𝑚𝑟−1) be integer
sequences and 𝒛 = (𝑧1, . . . , 𝑧𝑟−1) a sequence of indeterminates. In [89] the definition of
the rational function Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) was extended to A𝑟−1 as:

Φ𝒏 (𝒛; 𝑞) :=
∑︁

𝜆(1) ,...,𝜆(𝑟−1) ∈P

𝑟−1∏
𝑖=1

∏
𝑙⩾1

𝑧
𝜆
(𝑖)
𝑙

𝑖
𝑞

1
2
∑𝑟−1

𝑗=1 𝐴𝑖 𝑗𝜆
(𝑖)
𝑙
𝜆
( 𝑗)
𝑙

(𝑞; 𝑞)
𝜆
(𝑖)
𝑙−1−𝜆

(𝑖)
𝑙

, (9.1)

9The vacuum case 𝑎 = 𝑏 = 0 of Theorem 8.1 was generalised to all 𝑟 in [34, Theorem 3.1] without
the use of the Bailey machinery.
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where 𝜆 (𝑖)0 := 𝑛𝑖 and where (𝐴𝑖 𝑗 )1⩽𝑖, 𝑗⩽𝑟−1 is the Cartan matrix of A𝑟−1. For an arbitrary
sequence 𝒂 = (𝑎1, . . . , 𝑎𝑟−1), let 𝒂̄ := (𝑎𝑟−1, . . . , 𝑎1). Replacing 𝜆 (𝑖) by 𝜆 (𝑟−𝑖) in (9.1) it
follows that

Φ𝒏 (𝒛; 𝑞) = Φ𝒏̄ ( 𝒛̄; 𝑞). (9.2)
Another immediate consequence of the definition (9.1) is the A𝑟−1 Bailey chain

𝑛1∑︁
𝑚1=0

· · ·
𝑛𝑟−1∑︁
𝑚𝑟−1=0

K𝒏,𝒎 (𝒛; 𝑞)Φ𝒎 (𝒛; 𝑞) = Φ𝒏 (𝒛; 𝑞), (9.3)

with K𝒏,𝒎 given by

K𝒏,𝒎 (𝒛; 𝑞) :=
𝑟−1∏
𝑖=1

𝑧
𝑚𝑖

𝑖
𝑞

1
2
∑𝑟−1

𝑗=1 𝐴𝑖 𝑗𝑚𝑖𝑚 𝑗

(𝑞; 𝑞)𝑛𝑖−𝑚𝑖

.

Moreover, by Hua’s identity [47, Theorem 4.9] for A𝑟−1,

lim
𝑛1 ,...,𝑛𝑟−1→∞

Φ𝒏 (𝒛; 𝑞) =
1

(𝑞; 𝑞)𝑟−1
∞

∏
1⩽𝑖< 𝑗⩽𝑟

1
(𝑧𝑖 · · · 𝑧 𝑗−1𝑞; 𝑞)∞

. (9.4)

The alternative expressions for Φ𝑛 (𝑧; 𝑞) and Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) as given in (3.1) and (4.1)
follow from Corollaries 3.2 and 4.3, or from [34, Proposition 2.2] which is based on the
decomposition in the Gelfand–Zetlin basis of the Whittaker vectors for the quantum group
𝑈𝑣 (𝔤𝔩𝑟 ) over C(𝑣). This more generally implies that

Φ𝒏 (𝒛; 𝑞) =
∑︁∏

𝑘⩾1

(
𝑟−1∏
𝑖=1

(−1)𝜆
(𝑖)
𝑘+1𝑞(

𝜆
(𝑖)
𝑘+1
2 )

(𝑞; 𝑞)
𝜆
(𝑖)
𝑘

−𝜆(𝑖)
𝑘+1

∏
1⩽𝑖< 𝑗⩽𝑟

(
𝑧
𝜆
(𝑖)
𝑘+ 𝑗−𝑖
𝑗−1 𝑞

−(𝜆(𝑖)
𝑘+ 𝑗−𝑖−𝜆

(𝑖)
𝑘+ 𝑗−𝑖+1 )𝜆

( 𝑗)
𝑘 (9.5)

×
1 − 𝑧𝑖 · · · 𝑧 𝑗−1𝑞

𝜆
(𝑖)
𝑘+ 𝑗−𝑖−𝜆

( 𝑗)
𝑘

1 − 𝑧𝑖 · · · 𝑧 𝑗−1

(𝑧𝑖 · · · 𝑧 𝑗−1; 𝑞)
𝜆
(𝑖)
𝑘+ 𝑗−𝑖+1−𝜆

( 𝑗)
𝑘

(𝑧𝑖 · · · 𝑧 𝑗−1𝑞; 𝑞)
𝜆
(𝑖)
𝑘+ 𝑗−𝑖−1−𝜆

( 𝑗)
𝑘

))
,

where the sum is over partitions 𝜆 (1) , . . . , 𝜆 (𝑟 ) such that 𝑙 (𝜆 (𝑖) ) ⩽ 𝑟 − 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑟 (so
that 𝜆 (𝑟 ) = 0) and 𝜆 (𝑖)1 + 𝜆 (𝑖−1)

2 + · · · + 𝜆 (1)
𝑖

= 𝑛𝑖 for 1 ⩽ 𝑖 ⩽ 𝑟 − 1. For 𝑟 = 2 this yields (3.1)
and for 𝑟 = 3 it gives

Φ𝑛,𝑚 (𝑧, 𝑤; 𝑞) = 1
(𝑞, 𝑧𝑞1−𝑚; 𝑞)𝑛 (𝑞, 𝑤𝑞; 𝑞)𝑚

(9.6)

× 6𝑊5
(
𝑧𝑞−𝑚; 𝑞−𝑚/𝑤, 𝑞−𝑛, 𝑞−𝑚; 𝑞, 𝑧𝑤𝑞𝑛+𝑚+1) .

By Jackson’s 6𝑊5 summation [40, Equation (II.20)] this simplifies to (4.1). The expression
(9.5) obscures the symmetry (9.2), although it can be simplified relatively easily to a

(𝑟−2
2

)
-

fold multisum that is symmetric. For example, for 𝑟 = 4 two of the three summations can
be carried out to give an expression as a balanced 4𝜙3 basic hypergeometric series:

Φ𝒏 (𝒛; 𝑞) =
(𝑧1𝑧2𝑞; 𝑞)𝑛1+𝑛2 (𝑧2𝑧3𝑞; 𝑞)𝑛2+𝑛3

(𝑞, 𝑧1𝑞, 𝑧1𝑧2𝑞; 𝑞)𝑛1 (𝑞, 𝑧2𝑞, 𝑧1𝑧2𝑞, 𝑧2𝑧3𝑞; 𝑞)𝑛2 (𝑞, 𝑧3𝑞, 𝑧2𝑧3𝑞; 𝑞)𝑛3

× 4𝜙3

[
𝑞−𝑛2/𝑧2, 𝑞

−𝑛1 , 𝑞−𝑛2 , 𝑞−𝑛3

𝑞−𝑛1−𝑛2/𝑧1𝑧2, 𝑞−𝑛2−𝑛3/𝑧2𝑧3, 𝑧1𝑧2𝑧3𝑞
; 𝑞, 𝑞

]
.
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Regardless of howΦ𝒏 (𝒛;𝑞) is expressed, it is an open problem to lift the A𝑟−1 Bailey chain
(9.3) to an A𝑟−1 Bailey tree. It follows from the work of Ardonne, Kedem and Stone (see
[9, Equation (6.16)]) that the 1 and −𝑞−1 in 1 − 𝑧𝑤𝑞𝜆𝑎+𝜇𝑏−1 in formula (8.2) — this factor
can be traced back to the structure of the numerator of (4.22) — should be interpreted as
entries of the inverse of the matrix of generalised Kostka polynomials [53,75] for 𝔰𝔩3. This
suggests that the as-yet-to-be-discovered A𝑟−1 Bailey tree involves the generalised Kostka
polynomials for 𝔰𝔩𝑟 . Another open problem is to find the A𝑟−1-analogue of the (3.14b)
and (5.2). For 𝑦 = (𝑦1, . . . , 𝑦𝑟 ) ∈ 𝑄, let

Φ𝒏;𝑦 (𝒛; 𝑞) :=
Φ𝒎 (𝒘; 𝑞)∏

1⩽𝑖< 𝑗⩽𝑟 (𝑧𝑖 · · · 𝑧 𝑗−1𝑞; 𝑞)𝑦𝑖 𝑗
,

where 𝑚𝑖 := 𝑛𝑖 − 𝑦1 − · · · − 𝑦𝑖 and 𝑤𝑖 := 𝑧𝑖𝑞𝑦𝑖,𝑖+1 for 1 ⩽ 𝑖 ⩽ 𝑟 − 1. The problem then is to
find a manifestly positive representation for the rational function 𝑔𝒏;𝜏 (𝑞) defined by

𝑔𝒏;𝜏 (𝑞) :=
∑︁
𝑦∈𝑄

Φ𝒏;𝑟 𝑦 (𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑟−1 times

; 𝑞)
∏

1⩽𝑖< 𝑗⩽𝑟

1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖
1 − 𝑞 𝑗−𝑖

𝑟∏
𝑖=1

𝑞𝑟 (𝑟+𝜏 ) (
𝑦𝑖
2 )−𝜏𝑖𝑦𝑖 ,

where 𝒏 ∈ N𝑟−1
0 and 𝜏 ∈ {2 − 𝑟, . . . , 0, 1}. For general 𝑟 this is a very hard problem since

Φ𝑛1 ,...,𝑛𝑖−1 ,0,𝑛𝑖+1 ,...,𝑛𝑟−1;𝑟 𝑦 (𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑟−1 times

; 𝑞)

= Φ𝑛1 ,...,𝑛𝑖−1 (𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑖−1 times

; 𝑞)Φ𝑛𝑖+1 ,...,𝑛𝑟−1 (𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑟−𝑖−1 times

; 𝑞)
𝑟∏
𝑖= 𝑗

𝛿𝑦 𝑗 ,0,

which implies that

𝑔𝑛1 ,...,𝑛𝑖−1 ,0,𝑛𝑖+1 ,...,𝑛𝑟−1;𝜏 (𝑞)

= Φ𝑛1 ,...,𝑛𝑖−1 (𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑖−1 times

; 𝑞)Φ𝑛𝑖+1 ,...,𝑛𝑟−1 ( 𝑞, . . . , 𝑞︸   ︷︷   ︸
𝑟−𝑖−1 times

; 𝑞).

For example, setting 𝑚 = 0 in (1.3) gives 𝑔𝑛,0;𝜏 (𝑞) = 1/(𝑞, 𝑞2; 𝑞)𝑛 = Φ𝑛 (𝑞; 𝑞). Some
properties of 𝑔𝒏;𝜏 (𝑞) are easily deduced for general 𝑟. From (9.4) followed by (5.16) it
immediately follows that

lim
𝑛1 ,...,𝑛𝑟−1→∞

𝑔𝒏;𝜏 (𝑞) =



∏
1⩽𝑖< 𝑗⩽𝑟

1
(𝑞 𝑗−𝑖; 𝑞)∞

if 𝜏 = 1,

(𝑞; 𝑞)∞
(𝑞𝑟 ; 𝑞𝑟 )∞

∏
1⩽𝑖< 𝑗⩽𝑟

1
(𝑞 𝑗−𝑖; 𝑞)∞

if 𝜏 = 0,

0 if 𝜏 ∈ {2 − 𝑟, . . . ,−1}.

(9.7)
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We can do slightly better for special values of 𝜏. First we note that by [89, Equation (6.3)]10

it follows that for 𝑟 ⩾ 3

lim
𝑛2 ,...,𝑛𝑟−2→∞

Φ𝒏;𝑦 (𝒛; 𝑞) =
1

(𝑞; 𝑞)𝑟−3
∞

∏
2⩽𝑖< 𝑗⩽𝑟−1

1
(𝑧𝑖 · · · 𝑧 𝑗−1𝑞; 𝑞)∞

×
(𝑧1 · · · 𝑧𝑟−1𝑞; 𝑞)𝑛1+𝑛𝑟−1∏𝑟

𝑖=1 (𝑧1 · · · 𝑧𝑖−1𝑞; 𝑞)𝑛1−𝑦𝑖 (𝑧𝑖 · · · 𝑧𝑟−1𝑞; 𝑞)𝑛𝑟−1+𝑦𝑖
,

generalising (9.4). Hence, for such 𝑟 ,

𝑔
(𝑟 )
𝑛,𝑚;𝜏 (𝑞) := lim

𝑛2 ,...,𝑛𝑟−2→∞
𝑔(𝑛,𝑛2 ,...,𝑛𝑟−2 ,𝑚);𝜏 (𝑞)

= (𝑞; 𝑞)∞
∏

1⩽𝑖< 𝑗⩽𝑟−1

1
(𝑞 𝑗−𝑖; 𝑞)∞

𝑟−1∏
𝑖=1

1
(𝑞𝑟−𝑖; 𝑞)𝑛+𝑚+𝑖

×
∑︁
𝑦∈𝑄

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

𝑞𝑟 (𝑟+𝜏 ) (
𝑦𝑖
2 )−𝜏𝑖𝑦𝑖

[
𝑛 + 𝑚 + 𝑟 − 1
𝑛 − 𝑟𝑦𝑖 + 𝑖 − 1

]
.

By (5.6), (A.4) and 𝑞 ↦→ 1/𝑞 duality this may be expressed in closed form for 𝜏 ∈ {−1,0,1}
as

𝑔
(𝑟 )
𝑛,𝑚;𝜏 (𝑞) = 𝑞(

𝜏
2) (𝑟−1)𝑛𝑚

[
𝑛 + 𝑚
𝑛

]
𝑝

(𝑞; 𝑞)∞
∏

1⩽𝑖< 𝑗⩽𝑟−1

1
(𝑞 𝑗−𝑖; 𝑞)∞

𝑟−1∏
𝑖=1

1
(𝑞𝑟−𝑖; 𝑞)𝑛+𝑚

,

where 𝑝 = 𝑞 if 𝜏 ∈ {−1, 1} and 𝑝 = 𝑞𝑟 if 𝜏 = 0. For 𝑟 = 3 this is (5.2), and in the limit of
large 𝑛 and 𝑚 this gives (9.7) for 𝜏 ∈ {−1, 0, 1}.

Appendix A. New proof of (5.3)

We begin with the following 𝑞-Pfaff–Saalschütz summation for the root system A𝑟−1:∑︁
𝑦∈N𝑟

0

(
(𝑏, 𝑞−𝑁 ; 𝑞) |𝑦 |

∏
1⩽𝑖< 𝑗⩽𝑟

𝑥𝑖𝑞
𝑦𝑖 − 𝑥 𝑗𝑞𝑦 𝑗
𝑥𝑖 − 𝑥 𝑗

𝑟∏
𝑖, 𝑗=1

(𝑎 𝑗𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖

(A.1)

×
𝑟∏
𝑖=1

(𝑏𝑞1−𝑁/𝑐𝑥𝑖; 𝑞) |𝑦 |−𝑦𝑖𝑞𝑦𝑖
(𝑎𝑖𝑏𝑞1−𝑁/𝑐𝑥𝑖; 𝑞) |𝑦 | (𝑐𝑥𝑖; 𝑞)𝑦𝑖

)
=

𝑟∏
𝑖=1

(𝑐𝑥𝑖/𝑎𝑖 , 𝑐𝑥𝑖/𝑏; 𝑞)𝑁
(𝑐𝑥𝑖 , 𝑐𝑥𝑖/𝑎𝑖𝑏; 𝑞)𝑁

,

where 𝑁 is a nonnegative integer and |𝑦 | := 𝑦1 + · · · + 𝑦𝑟 . It should be noted that the
summand vanishes unless |𝑦 | ⩽ 𝑁 so that only finitely many terms contribute to the sum.
The result (A.1) was first obtained in the appendix of a preliminary version of Leininger and
Milne’s paper [56]; an appendix that was dropped in the published version. Subsequently
(A.1) was rederived and published by Bhatnagar and Schlosser, see [16, Remark 5.11].

10This result is stated in [89] without proof.
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To obtain (5.3), we replace 𝑞 ↦→ 𝑞𝑟 in (A.1) and then specialise 𝑥𝑖 = 𝑞𝑟−𝑖𝑏𝑧/𝑐 and
𝑎𝑖 = 𝑞

−𝑛 for 𝑛 a nonnegative integer. Using
∏𝑟
𝑖=1 (𝑎𝑞𝑟−𝑖; 𝑞)𝑘 = (𝑎; 𝑞)𝑟𝑘 , this gives

𝑟∏
𝑖, 𝑗=1

(𝑎 𝑗𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖
(𝑞𝑥𝑖/𝑥 𝑗 ; 𝑞)𝑦𝑖

↦→
𝑟∏
𝑖=1

(𝑞−𝑛−𝑖+1; 𝑞)𝑟 𝑦𝑖
(𝑞𝑟−𝑖+1; 𝑞)𝑟 𝑦𝑖

,

so that the resulting summand vanishes unless 0 ⩽ 𝑟𝑦𝑖 ⩽ 𝑛 + 𝑖 − 1. Since this is independent
of 𝑁 , 𝑞−𝑟𝑁 may be replaced by the indeterminate 𝑑, resulting in∑︁
𝑦∈N𝑟

0

(𝑏, 𝑑; 𝑞𝑟 ) |𝑦 |
(𝑑𝑞1−𝑛/𝑧; 𝑞)𝑟 |𝑦 |

∏
1⩽𝑖< 𝑗⩽𝑟

1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖
1 − 𝑞 𝑗−𝑖

𝑟∏
𝑖=1

(𝑞−𝑛−𝑖+1; 𝑞)𝑟 𝑦𝑖 (𝑑𝑞𝑖/𝑧; 𝑞𝑟 ) |𝑦 |−𝑦𝑖𝑞𝑟𝑖𝑦𝑖
(𝑞𝑟−𝑖+1; 𝑞)𝑟 𝑦𝑖 (𝑏𝑧𝑞𝑟−𝑖; 𝑞𝑟 )𝑦𝑖

=
(𝑧, 𝑏𝑧/𝑑; 𝑞)𝑛
(𝑏𝑧, 𝑧/𝑑; 𝑞)𝑛

,

where the reader is reminded that 𝑦𝑖 𝑗 := 𝑦𝑖 − 𝑦 𝑗 . Indeed, after multiplying the above identity
by 𝑑𝑛 (𝑧/𝑑; 𝑞)𝑛 and carrying out some standard simplifications of the 𝑞-shifted factorials
involving 𝑑, it follows that both sides are polynomials in 𝑑 of degree 𝑛. Since the differ-
ence between the right- and left-hand side is zero for 𝑑 = 𝑞−𝑟𝑁 where 𝑁 is an arbitrary
nonnegative integer, this difference is zero for all 𝑑. Next, if we set 𝑏 = 0, let 𝑑 tend to
infinity and carry out some elementary manipulations, we find∑︁
𝑦∈N𝑟

0

(
(−1)𝑟 𝑧

) |𝑦 |
𝑞−𝑟 (

|𝑦 |
2 )

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

𝑞(
𝑟+1

2 )𝑦2
𝑖
−𝑖𝑦𝑖

[
𝑛 + 𝑟 − 1

𝑛 − 𝑟𝑦𝑖 + 𝑖 − 1

]
(A.2)

= (𝑧; 𝑞)𝑛
𝑟−1∏
𝑖=1

(1 − 𝑞𝑛+𝑖)𝑖 .

We now consider the sum over the 𝑦𝑖 for fixed |𝑦 | = 𝑚 and carry out what in [42] is referred
to as the rotation trick. That is, if 𝑢, 𝑣 are the unique integers such that 𝑚 = 𝑢𝑟 + 𝑣 for
0 ⩽ 𝑣 < 𝑟 , 𝑢 ⩾ 0, then we shift and rotate the summation indices 𝑦1, . . . , 𝑦𝑟 as

𝑦𝑖 ↦→
{
𝑦𝑖+𝑣 + 𝑢 for 1 ⩽ 𝑖 ⩽ 𝑟 − 𝑣,
𝑦𝑖+𝑣−𝑟 + 𝑢 + 1 for 𝑟 − 𝑣 < 𝑖 ⩽ 𝑟.

This substitution leads to the following alternative expression for the left-hand side of
(A.2):

𝑛∑︁
𝑚=0

∑︁
𝑦∈𝑄

(−𝑧)𝑚𝑞(
𝑚
2 )

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

𝑞(
𝑟+1

2 )𝑦2
𝑖
−𝑖𝑦𝑖

[
𝑛 + 𝑟 − 1

𝑛 − 𝑚 − 𝑟𝑦𝑖 + 𝑖 − 1

]
.

Equating coefficients of 𝑧𝑚 with the right-hand side of (A.2) using the 𝑞-binomial theorem

(𝑧; 𝑞)𝑛 =
𝑛∑︁
𝑚=0

(−𝑧)𝑚𝑞(
𝑚
2 )

[
𝑛

𝑚

]
, (A.3)
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this implies∑︁
𝑦∈𝑄

∏
1⩽𝑖< 𝑗⩽𝑟

(1 − 𝑞𝑟 𝑦𝑖 𝑗+ 𝑗−𝑖)
𝑟∏
𝑖=1

𝑞(
𝑟+1

2 )𝑦2
𝑖
−𝑖𝑦𝑖

[
𝑛 + 𝑟 − 1

𝑛 − 𝑚 − 𝑟𝑦𝑖 + 𝑖 − 1

]
=

[
𝑛

𝑚

] 𝑟−1∏
𝑖=1

(1 − 𝑞𝑛+𝑖)𝑖 .

(A.4)
Finally, replacing 𝑛 by 𝑛 + 𝑚 and specialising 𝑟 = 3 yields (5.3).
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