
ELSEVIER Nuclear Physics B 499 [PM] (1997) 621-649 

I ~ ! m B  

Bailey flows and Bose-Fermi identities 
for the conformal coset models 

(AI1))N × (A~I))N,/(AI1))N+N , 

Alexander Berkovich a,1, Barry M. McCoy b,2, Anne Schilling b,3,5, 
S. Ole Warnaar c'4'5 

a Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA 
b Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840, USA 

c Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 19 February 1997; accepted 23 May 1997 

A b s t r a c t  

We use the recently established higher-level Bailey lemma and Bose-Fermi polynomial identities 
for the minimal models M ( p , p ' )  to demonstrate the existence of a Bailey flow from M ( p , p ' )  
to the coset models (A~I))N X (A~I))N,/(AII))N+N , where N is a positive integer and N'  is 
fractional, and to obtain Bose-Fermi identities for these models. The fermionic side of these 
identities is expressed in terms of the fractional-level Cartan matrix introduced in the study 
of M ( p , p ' ) .  Possible relations between Bailey and renormalization group flow are discussed. 
(~) 1997 Elsevier Science B.V. 

PACS: ll.25.Hf; 02.10.Nj; 02.20.Tw; 05.90.+m 
Keywords: Conformal field theory; Branching functions; Bailey construction; Rogers-Ramanujan identities 

1 E-mail: berkov.a@math.psu.edu. 
2 E-mail: mccoy@insti.physics.sunysb.edu. 
3 E-mail: schillin @ phys.uva.nl. 
4 E-mail: warnaar@phys.uva.nl. 
5Present address: Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam, The 

Netherlands. 

0550-3213/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved. 
PII S0550-321 3 ( 9 6 ) 0 0 3 3  1-3 



622 A. Berkovich et aL/Nuclear Physics B 499 [PM] (1997) 621-649 

1. Introduction 

A decade ago Zamolodchikov [ 1 ] and Ludwig and Cardy [2] studied the phenomena 

of renormalization group (RG) flow from the minimal model M(p, p + 1) to the model 

M ( p -  1, p)  by means of perturbation theory when p is very large. These flows define a 

one parameter family of  massless field theories. In 1991 Zamolodchikov [3 ] studied the 

ground state energy (or, equivalently, the effective central charge) for the one parameter 

flow from M(4,  5) to M(3 ,4 )  in terms of the thermodynamic Bethe Ansatz equations 
and conjectured the generalization to all M(p ,p  ÷ 1). Since then many other flows 
have been discovered using this perturbative method, such as the flow from M ( p , p  t) 
to M(2p - p ~ , p )  [4] and flows between coset models [5,6]. 

All of these studies have been made using the techniques and philosophy of the 

renormalization group and all of them illustrate the famous c theorem [7] by flowing 
from a larger to a smaller effective central charge. For this reason it is often stated that 

renormalization group flow is irreversible. 

It is thus most interesting that recently a non-perturbative construction from the math- 

ematical literature of the Rogers-Ramanujan identities was used [8-10] to make con- 

nection between the minimal models in the opposite direction from the renormalization 

group flow. This construction is referred to as Bailey flow. 
Bailey flow originates in the work of Bailey [ 11] and Slater [ 12,13] in their proofs 

of the many q-series identities of Rogers [ 14,15] and has been greatly extended by 
Andrews [ 16,17] and others [ 18-23]. The prototypical q-series identity is the original 

identity of Rogers and Ramanujan [ 14,24], 

(1.1) 

where a = 0, 1, and 

(x;q)n = (x)n = (1 - x)(1 - x q ) . . . ( 1  - xq n-l)  (1.2) 

for n ~> 1 and (x)0 = 1. The le•hand side is recognized as the character of the 
M(2 ,5 )  minimal model in the form of Refs. [25,26] which is computed using the 
construction of Feigin and Fuchs [27]. This construction involves the elimination of 
states from a bosonic Fock space. Thus we refer to the left-hand side as a bosonic 
representation. Conversely, the right-hand side has an interpretation in terms of fermionic 
quasi-particles [28,29] and is called a fermionic representation. 

Bailey's lemma is a constructive procedure which starts from a polynomial general- 
ization of a Bose-Fermi identity for the characters/ branching functions of  the initial 
conformal field theory (CPT) and produces a Bose-Fermi equality for a rational gen- 
eralization of the characters/branching functions of some other CFT 
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BOSE = FERMI 

Bailey's lemma 

BOSE I = FERMIC 

The Bailey flow from M(p - 1,p) to M(p,p  + 1) is discussed in Refs. [8-10] and 

further flows to the unitary N = 1 supersymmetric model SM(p,p  + 2 )  and to the N = 2 
supersymmetric models with c = 3( 1 - 2/p) are given in Ref. [ 10]. The Bailey flow 

from M(p  - 1,p) to M(p ,p  + 1) is in the opposite direction from the RG flow and the 

remainder of the Bailey flows give relations between CFT's which have not previously 

been seen in the RG analysis. In a sense the Bailey construction is an "Aufbau Prinzip" 

and as such it promises to provide an alternative construction for most (possibly all) 

conformal field theories. 

In this paper we extend these ideas to find a flow from the general minimal model 

M ( p , p  ~) to the coset models 

(AI1))N × (AI1))N, 
( AI1))N+N, (1.3) 

for integer level N and fractional level N ~. For brevity these coset theories will be 

denoted by (P, P~)N, where 

NP NP I 
N c - - -  2 or N c = - 2  

pc _ p pc _ p '  

with the restrictions P < pc, p~ _ p _ 0 (rood N) and gcd( P'~----£-P, P~) = 1. In this 

notation the minimal models M(p,p¢) correspond to the coset model (p, pC) 1 [ 30]. 

Using the method of Feigin and Fuchs [27] the bosonic form of the characters 

was given explicitly in Ref. [31] for the unitary minimal models M(p,p  + 1) and 
in Refs. [25,26] for the non-unitary cases M(p,p~). The branching functions for the 

cosets (1.3) for integer levels was given in Refs. [32,33] by computing configuration 
sums of RSOS models and in Refs. [34-36] using the Feigin and Fuchs construction. 
Kac and Wakimoto [37] introduced admissible representations of affine Lie algebras 

which in general correspond to fractional levels and non-unitary CFTs. This paved the 
way for the study of the coset models (1.3) with one fractional level [38] and two 

fractional levels [39]. Further aspects of coset (1.3), including its spin content, have 

been studied in Ref. [40] in the context of unifying W-algebras. 

Our method to obtain the Bailey flow from M(p,p  ~) to the cosets (1.3) is to use 

the polynomial identities for M(p ,p  c) recently established in Refs. [41,42] with the 
new extension of the Bailey construction obtained in Refs. [22,23]. The branching 
function identities obtained from this flow have previously been found for the unitary 
case (p ,p  ÷ N)N [43,44], for (3 ,2N + 3)N [45] and the cosets (1.3) with pc < 
(N + 1)P [46] without the use of the Bailey flow. 

The plan of the remainder of this paper is as follows. In Section 2 we summarize 
the results on Bailey flow which are needed for our construction. In Section 3 we 
construct the required Bailey pairs from the bosonic polynomial generalizations given 
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in Refs. [47,48] of the characters v(p,P') of the minimal model M(p,p')  leaving the /~t r,s 

fermionic side still undetermined. We establish the Bailey flow M(p,p ~) --~ (p',p' + 
N(kp' ÷ P))N for k a non-negative integer by comparing the results of the bosonic 
side of the Bailey flow with the branching functions of the coset model (1.3) which 
are recalled in the appendix. To make the Bose-Fermi identities explicit we need the 
fermionic polynomials of the M(p,p')  models of Ref. [42]. Here we find it convenient 

to consider the regime p~ < 2p and state the results in Section 4. We present our 

final explicit results for the Bose-Fermi (or Rogers-Ramanujan) identities for the coset 
models (P, U)N in Section 5 where the case P '  < ( N + I ) P  is treated in Section 5.1 and 
P '  > (N + 1 ) P in Section 5.2. The fermionic form for the branching functions involves 
the same "fractional-level" Caftan matrix which arises in the study of the characters of 
M(p,p')  [41,42]. We conclude in Section 6 with a discussion of the relation between 

Bailey and RG flow. 

2. The theory of Bailey flow 

In this section we summarize Bailey's original lemma [11,17,49] and the recent 
results on the higher-level Bailey lemma [22,23] which we will use. 

2.1. Bailey's lemma 

Consider two sequences a = {aL}L/>  0 and fl = {/3L}L/>0 which satisfy the relation 

L 
Oli (2.1) 

/3L = 
(q)L-i(aq)L+i" i--O 

A pair (a , /3)  satisfying (2.1) is called a Bailey pair relative to a. 
Consider a second pair of sequences 7 = {YL}L~>0 and ~ = {SL}L)0 which satisfies 

the relation 

oo ~i 
(2.2) 7L = ~ 

i=L (q)i-L(aq)L+i 

which we call a conjugate Bailey pair. Bailey's lemma states that given a Bailey pair 
(a , /3)  and a conjugate Bailey pair (7, a), the following equation holds 

oo oo 

Z aLTL = ~-'~/3L6L. (2.3) 
L=O L=0 

In Ref. [I I], Bailey proved that the following (T, 8) pair satisfies (2.2) 

( P l ) L ( P 2 ) L ( a q / P l P 2 )  L 

TL = (aq/Pl)L(aq/p2)L(q)M--L(aq)M+L' 
(2 .4)  
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(pl)L(p2)t~(aq/PlP2)L(aq/PlP2)M--L 
t% = (2.5) 

( aq/ pl ) ~t( aq/ p2) M( q) M-L 

Using this pair in (2.3) yields 

M (Pl)L(P2)L(aq/plP2)L OlL 
Z (aq/pl)L(aq/pz)L (q)g-L(aq)g+L L--O 

M (pl)L(p2)L(aq/plpz)L(aq/plP2)M_L 
= Z  (aq/pl)M(aq/pz)M(q)M-L ilL, (2.6) 

L--O 

where the variables pl and p2 can be chosen freely. When pl,  P2 --* c~, (2.6) simplifies 

to 

M aLqL2 M aLqL.___~2 
(q)M_L(aq)M+LO~L= ~ (q)M_LflL, (2.7) 

L--O L=O 

where we used 
L L--l)  

lira p-L(p)L=(--1)Lq : (2.8) 
p----~ OG 

For later use we will need several results of Andrews [ 17] concerning the Bailey pair 
(~,B). 

Dual Bailey pairs 
Given a Bailey pair (a, fl) = (a(a ,q) , f l (a ,q))  relative to a, we may replace q by 

1/q to find that (A, B) defined by 

AL = aLq L2 aL(a- l ,q  -1 ) and BL = a--Lq -L(L+I) f l L ( a - l , q  - l  ) (2.9) 

is again a Bailey pair relative to a. The pair (A,B) is called the dual Bailey pair of 
(a,/3). 

! 
O{ L - -  

a n d  

Iterated Bailey pairs 
Let (a, fl) be a Bailey pair relative to a. Then from (2.6) the sequences (a' , f l ' )  

defined by 

( R1) L ( R2 ) L ( aq / Pl P2 ) L 
(aq/pl)L(aq/p2)t~ at. (2.10) 

L 
flL Z (Pl)r(P2)r(aq/PlP2)r(aq/PlP2)L-r~ / = ~ t-'r (2.11) 

r--O ( a q / p l ) L ( a q / p 2 ) L ( q ) L - r  

form again a Bailey pair relative to a. Eqs. (2.10) and (2.11) can of course be repeated 
an arbitrary number of  times, leading to the Bailey chain 

(a, fl) ~ (a' , f l ')  --~ (a", f l")  ---~... (2.12) 



626 A. Berkovich et al./Nuclear Physics B 499 [PM] (1997) 621-649 

Iterating (2.10) and (2.11) k times with pl,  P2 --+ ~ yields the Bailey pair 

Ol(L k) = akL qkL20l L , 

arl+'"+rkq r~+'''+r~ l~r~ ' 
fl(Lk) = Z (q)L-rl (q)r,-r2" (q)rk--,--rk L>/rl >~...>~rk>~O " " 

where k ) I. 

(2.13) 

2.2. Higher-level Bailey lemma 

In this paper we will use the new conjugate Bailey pairs found in Refs. [22,23]. To 

state the result needed, we denote by 2- the incidence matrix of  the Lie algebra AN-1, 
2-j,k = ~j,k-1 + ~j,k+l, and by C the Cartan matrix C = 2 1 - 2 -  with I the identity matrix. 

The vectors ei are the unit vectors (ei)j = ¢~i,j for i = 1 . . . . .  N -  1 and ei = 0 for 

i # 1 . . . . .  N - 1. Also define the q-binomial coefficient as 

(q)m+n for m,n  E Z+, 
( m + n ]  = (q)m(q)n (2.14) 

n 0 otherwise, 

where Z+ denotes the set of  non-negative integers. 

Then for M ~> 0, N ~> 1, ,~ ~> 0, 0 ~< g < N and o- = 0, 1, the following conjugate 

Bailey pair relative to a = qa is given in corollary 2.1 of  Ref. [23] 

N--I 
aL/NqLZ/N ~ qrlC-'(rl--ee) I-[ [/ZJ q- TlJ ] 

YL 
(q)M--L(aq)M+L Zu- t  t-+~aNC)/2 j=l T]j 

9 

8L-- ~ q nc-l(n-ee) , (2.15) 
(q)M-L N-I L+l~e)/2 (C_ln)IEZ+~ j=l [- Hj J nEZ+ , 

where/~,  ~/and m, n are related by 

~ + ~ = ~  2 - ~ + ( M - L )  el + ( M + L + , ~ ) e N _ t + e e  , (2.16) 

m + n = Z m  + ( 2 L  + A) e u - I  + ee • ( 2 . 1 7 )  

The sums of  the type 

nGZ+N I, ~ - - ( C  In ) IGZ+~  

are taken over the vector n E Z+ N-I such that ~ - (C- ln) l  is an integer when o" = 0 

and half an odd integer when o- = 1. 
Before using the above conjugate Bailey pair to derive the higher-level Bailey lemma, 

we make some observations. Since the q-binomials are defined to be zero when its entries 
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are non-integer or negative we only need to sum over those r/, n E Z+ u - I  in (2.15) which 

yield/x,  m C Z+ N-1 from (2.16) and (2.17). Using further C--) = min{i , j}  - ij/U this i,j 
implies that (L  - (A - g)/2) /N - C- iv  (v = rl, n) is half an integer, explaining the 

restrictions on the above sums. The fact that one can in fact independently choose this 

expression to be half an even integer (o- = 0) or half an odd integer (o- = 1), follows 

from other considerations [23].  We also note that since C-Iv is a multiple of  l/N, we 

only obtain a non-trivial (non-zero) conjugate Bailey pair if we take A + g + No- to be 

even. 

We may now insert the conjugate Bailey pair (2.15) into (2.3). For later use we take 

M -~ c~ and eliminate n in favour of  m via (2.17). This gives the following lemma: 

Lemma 1 (higher-level Bailey lemma). Fix integers N >~ 1, A ~> 0, 0 ~< g < N and 

o- = 0, 1, such that g + A + No- is even, and let (a , /3)  form a Bailey pair relative to qa. 

Then the following identity holds: 

1 oo 

(q)oo L--O nez~-', L+~a-e,/2u 

- -  g (N- -g I+a  2 O0  
- -  q 4N 

(q)~ 

where m - Q 

odd, and 

Q = (ee+l +e~+3 + . . . )  + ( 0 +  1)(el  + e 3  + . . . ) .  

q,! c -I (~t-ee) 

(q)nl " "  (q)nN-, 
- - - ( C  I~)~CZ+~ 

N--1 [ m j + n j ]  
q¼(2L+a)ZflL Z q¼mCm--½(2L+a)mU_l 1--[ ' 

L--0 mEZ N-I, m=-Q (mod2) j=l [- mj 

(2.18) 

(mod 2) stands for mj even when Qj is even and mj odd when Qj is 

(2.19) 

Note that for N = 1 lemma 1 reduces to (2.7) with M --~ ~ and a = qa. 

3. Bosonic polynomials for the minimal models M(p, p') and Bailey flow 

3.1. Bosonic polynomials 

In order to make effective use of  any of  the forms of  Bailey's lemma given in the 

preceding section it is necessary to find solutions of  the defining Eq. (2.1) for Bailey 

pairs. Here we derive such pairs from polynomial identities for finitizations of  the 
characters of  the minimal models M(p,p t) given in Ref. [42] ,  

B (p'p') (L, b) = F (p'p') (L, b), (3.1) r , s  ~ r , s  

where 1 ~< b, s ~< p~ - 1, 1 ~< r ~ p - 1. The bosonic function Br, s(p'p') (L,b) is given by 

B (p'P') (g, b) = 4 (J~p'+rp'-sp) L 
r , s  l ( L _ . ~ _ s _ b )  _ jp ,  

j = - -  o o  
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L 
-q(jp+r)(jp'+s) [ l ( L _ s _ b) _ jpt  ] ) , (3.2) 

which first appeared in the work of Andrews, Baxter and Forrester [47] for p~ = p + 1, 
and for general p,p~ in the work of Forrester and Baxter [48]. Since the Bailey flows 
can be determined without knowledge of the explicit form of the fermionic side, we 
postpone giving E (p'p') (L, b) until Section 4. F~S 

The limit L --~ ~ of the polynomials (3.2) are the characters of the minimal models 
M(p,p~) ,  namely l i m L ~  B~Ps "p') (L, b) ^ (P'P') = Xr, s (q) where [27,31,26] 

Xr,s(P'P') (q ) = ~OAr'~-~C'(P'P')/tr, s (q) ,  (3.3) 

with 

^(P'P') ~'(P'P') " " Z qJ(Jpp +rp --sp) __ q(jp+r)(jp +s) . (3.4) 
X~,s (q)  = / ( p - r , p ' - s t q )  -- (~cx~ j=_ 

The central charge and conformal dimensions are given by 

6(p '  - p ) :  (rp'  - sp) 2 - (p'  - p)2 
c = 1 and Ar,s = , (3.5) 

ppl 4ppl 

respectively. 

3.2. Bailey pairs 

To obtain Bailey pairs from (3.1), we use the definition of the q-binomials (2.14) 
in (3.1) and replace L by 2L+,~ where ,~ = Ib - s l .  Then multiplying by (q)a/(q)2r+a 
we note that the resulting left-hand side is in the form of the right-hand side of (2.1) 
and we find the following Bailey pairs relative to qa = qlb-sl. 

Bailey pair arising from (3.1) and (3.2) 

O~ L = 

1 for L = 0 ,  

4 (J~p''I-rp':Tsp) for L = jp '  - (A 7z b ± s ) /2 ,  

__q(jp+r)(jp'+s) for L = jp '  - ( A - b - s ) /2 ,  

_ q ( j p - r ) ( j p ' - s )  for L = jp '  - ( h + b + s) /2,  

0 otherwise, 

( q ) a  E(p,p')t , ,9l (q)2L+a r,s ~ + A, b). 

(j~> 1), 

( j  ~> 0), 

(j~> 1), 

flL (3.6) 
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Dual Bailey pair  arising from (3.1) and (3.2) 

629  

O~ L = 

1 

¢( j (p ' -p )p '4 - (b-r )p 'qZs(p ' -p ) )  

_q(j(p' -p ) +b--r) (jp' + s) 

_q(j(p'--p )--b+r) (jp'-- s) 

0 

for L = O, 

for L = j p '  - (A q: b ±  s) /2 ,  

for L = jp '  - ( A - b - s) /2 ,  

for L = j p '  - ( A +  b +  s ) / 2 ,  

otherwise, 

flL =qL(L+h) (q)a F(p,p, ) (2L + ,~, b; l / q ) .  
(q)2L+A- r,s 

(j>~ 1), 

( j  ~> 0), 

(j~> 1), 

(3.7) 

Iterated Bailey pair  arising from (3.1) and (3.2) 

1 

4(jp' (p+kp') 4-p' (r+kb)Tzs(p+kp') ) 

Or(k) = _q(jp' +s)(j(p+kp')+kb+r) 

_q(jp'-s) (j(p+kp') -kb-r) 

0 

for L = O, 

for L = j p '  - (a  q: b ±  s ) /2 ,  

for L = jp '  - (A - b - s) /2,  

for L = j p '  - (A + b +  s ) /2 ,  

otherwise, 

( j ~  1) 

( j  >/0),  

( j ~  1), 

qr,(r,+,~)+...+rk(rk+,~) (q)a F~Ps,p')(2r k + / l , b ) .  
fl[k) = Z ( q ) L - r , ( q ) r , - r 2 . . .  (q)rk-,--rk (q)2rk+a " 

L>/rl >~... >/rk >/O 

(3.8) 

Iterated dual Bailey pair  arising from (3.1) and (3.2) 

1 for L=O,  

4 (jp'(kp'+p'-p)4-p'(kb+b-r)qzs(kp'+p'-p)) for L = jp~ - (~ q: b ± s) /2 ,  ( j  >/ 1), 

OI(L k) -- __q(jp'-s)(j(kp'+p'-p)-kb-b+r) for L = jp '  - (,~ - b - s ) / 2 ,  ( j  >>. 0) ,  

_q(jp'+s)(j(kp'+p'--p)+kb+b-r) for L = jp '  - (A + b + s) /2 ,  ( j  >~ 1), 

0 otherwise, 

qrl(rl+,~)+...+rk--l(rk--l+a)+2rk(rk+A) (q)a F~,s (2rk + A,b; 
fl(Lk)= E (q)L--r,(q)r,--rE'''(q)rk--t--rk (q)2rk+a ( P ' P ' )  l / q ) .  

L~rl~...~rk~O 

(3.9) 
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3.3. Bailey flow 

We use the explicit expressions for eel for the four sets of Bailey pairs derived 
previously to establish a Bailey flow from the minimal models M(p ,p  ~) to the Al l) 

cosets. The normalized branching functions of these cosets, obtained from [39] and 
, , , (PP"N) r 

denoted ?(r,~e' tq:, are given in Appendix A in Eq. (A.2) for N integer and N ~ 
fractional. 

Substituting aL of Eqs. (3.6) and (3.8) into the left-hand side of the higher-level 
Bailey lemma (2.18) yields, after using the symmetry properties (A.7), 

^ (p ' ,p '+N(p+kp');N) ~ , 
,)(s,b+N(kb+r);g (q) (3.10) 

for k/> 0 and g +/ l  + N(kb + r) even. 

Similarly, from aL in Eqs. (3.7) and (3.9) we find that the left-hand side of (2.18) 
becomes 

, ~ ( p ' , p ' + N ( k p ' + p ' - p )  ;N) i" ~,'~ 
s,b+U(kb+b-r);g ~.ttJ (3.11 ) 

with k ) 0 and g + .t + N ( kb + b - r) even. 

Hence we have demonstrated the following Bailey flows 

M(p,p ' )  = (P,P')1 ~ (P',p' + N(kp'  ÷P))N (k/> 0) (3.12) 

and 

M ( p , P ' ) = ( P , P ' ) I  d (P',P' + N ( k p '  + p ' - p ) ) N  (k>~O). (3.13) 

The flows (3.12) and (3.13) show that the spectra of the cosets (1.3) with N ~> 2 can 
be expressed entirely in terms of truncated or finitized spectra of the c < 1 theories, a 
property noted to hold for the unitary models by Nakayashiki and Yamada [50]. 

We note that if we start with M(p ~ -p ,p~ )  instead of M(p ,p  t) the Bailey flow and 
dual Bailey flow interchange 

M(p'  - p ,p ' )  d (p,,p, + U(kp'  ÷ P))N'  

M(p'  - p ,p ' )  ~ (p,,pt + N(kp'  ÷ p' - P))N" (3.14) 

Thus we see that to obtain fermionic representations for the (P, P~)N theories using the 
right-hand side of the higher level Bailey lemma, it is sufficient to restrict our attention 
to M(p ,p  ~) with p < p~ < 2p. 

4. The fermionic polynomials for M(p, p') with p < pr < 2p 

In (3.1) the Bose-Fermi polynomial identities for the minimal models M(p ,p  ~) 
were given implicitly. In this section we give the explicit forms for F(P,P')CL, b) for r,s 
p < p~ < 2p which is dual to regime p~ > 2p in the sense of q ---+ 1/q. Whilst the 
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implicit identities (3.1) were stated for all 1 ~< b,s  ~< p~ - 1 and 1 ~< r ~< p - 1, the 

explicit form for F (p'p') (L,  b) is so far only known for several special cases in b, r, s. In r ,s  

particular we cannot treat the variables b and r independently, and the choice of  b fixes 
r. As a further restriction only certain values of  s and b have been treated at present. 

Hence in the remainder of  this paper we will only deal with a subset of  all possible 

(L, b). 
For the cases M ( 2 k  - 1,2k + 1 ) and M(p ,  p + 1 ) the fermionic forms were proven in 

[51,52] and [53-55,9] ,  respectively (for the first case by applying the duality q --+ I / q ) .  

For general p,p~ the results were proven in Refs. [41,42]. 

The fermionic functions F (p,p') ( L h] r,s , _ , _ ,  are much more involved than the bosonic func- 

tions (3.2) and several preliminary sections are needed to introduce all the necessary 

notations and definitions. In Section 4.1 we review the continued fraction expansion 

of  p t / ( p t  - p )  and the closely related Takahashi-Suzuki decomposition. Then, in Sec- 

tion 4.2, we define fundamental fermionic functions which are the building blocks of  

F~,Ps 'p') (L,  b). In Section 4.3, F(, p'p') (L,  b) is given for four classes of  values of  b (and 

hence r) ,  listed in Table 1. 

4.1. Takahashi-Suzuki decomposition 

Given p and pl such that g c d ( p , p  t) = 1 and such that p < p~ < 2p, we define 

integers 1'0 . . . . .  z,n by the continued fraction expansion 

pl 1 (4.1) - l + v o +  1 
P'  - P Vl + 

The number n + 1 is referred to as the number of  zones, ~'i being the size of  the ith 

zone. Using the ~'i's we define another set of  integers tl . . . .  , t,+l as 

i - - I  

ti = ~_~ l)j. (4.2) 
j---0 

For convenience we also set to = - 1 .  Given these integers we define a generalized or 

fractional-level incidence matrix 2-e with entries 

{ ~j,k+l + ~j,k-I for 1 ~ j < tn+l, j 4= ti, 
(~T'B)j,k = t~j,k+ 1 "3 t- 6j,  k --  t~j ,k-  1 for j = ti, 1 ~ i ~ n - 6~,,,o, 

8j, k+l + 8~,,,08j, k for j = tn+l, 

(4.3) 

and a fractional-level Cartan matrix B as 

B = 21 - 2-B. ( 4 . 4 )  

To give the fermionic forms F ( P , P ' ) ( L ,  b) we need to decompose r, s and b in terms r,s 

of Takahashi-Suzuki (TS) lengths [56].  To describe this decomposition we first define 
the recursions 
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Ym+l = Ym-1 q- (Pro -k ~m,0 -'k 2~m,n)ym, Y-1 = 0, Y0 = 1, (4 .5)  

Ym+l = Ym--1 -~- (b'm + (~m,O + 2~m,n)Ym, Y-I = --1, Y0 = 1. (4.6) 

For j = 0 . . . . .  tn+l + 1, the TS lengths lj+l and truncated TS lengths [/+1 are then given 

by 

l j+l = Ym-1 + ( j  - tm)Ym 
for tm < j <~ tm+l + 3m,n with 0 ~< m ~< n. (4.7) 

[j+l = Ym--I J¢- ( j  - tm)Ym 

An arbitrary integer b (1 ~< b < p~) may be uniquely decomposed into TS lengths as 

k 

b = E l#;+l (4.8) 
i=1 

provided that t(i < t~i ~ t(i+l -Jr ~(i,n with 0 ~< ~:1 < (2 < . . .  < ~k ~< n with the 

additional restriction, (i+l /> (i "4- 2 w h e n / 3 / =  t¢,+i. 
The following tn+l-dimensional vectors Q(J) ( j  = 1 . . . . .  t,+l + 1) are needed to 

specify parities of  summation variables. For 1 <~ i <~ tn+l and 0 ~< m ~< n such that 
tm < j <~ tm+l q- ~m,n the components of  Q(J) are recursively defined as 

O for j <~ i <~ tn+l, 

Q[J) = j - i for tm <~ i < j, (4.9) 

to(J) _l_tO(J) for tm,-1 <<.i<tm,, 1 <~m'<~m. 
~ i +  1 ~ ~ t . , ,  + 1 

tO(t,,+l) When vn = 0, so that tn+l = tn, we need to set the initial condition ~t,+l = 0. 
Finally, we define the projection operator *: u ---, u* as u* = (ul . . . . .  UM-l) for an 

arbitrary M-dimensional vector u = (Ul . . . . .  UM). 

4.2. The fundamental fermionic functions 

With the definitions of  the previous subsection we now introduce fundamental fermionic 
functions f and f used as building blocks for E (p'p') (L, b). First, for u, v C Z t'+l+l, r ,s  

t"+' [nj + mj] (4.10) 
: ( t , u , 1 2 ) =  E q¼raBm--½A"'vmI-I[ mj' J '  

t,+l j=l raEZ+ , m=-Qu+~ (rood 2) 

with B as in (4.4),  the ( m , n ) - s y s t e m  given by 

1 u* 
m + n = ~ ( Z B m +  + v * + L e l ) .  (4.11) 

Furthermore 

tn+ l + 1 

Qu = E uJQ(J) '  
j=l 
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and, for ti < j <<. ti+l, 

(Au , v ) j  = I 
uj  

t vj 

The notation m ---_ Q 

for i odd, 

for i even. 
(4.12) 

(mod 2) stands for mj even when Qj is even and rnj odd when 

Qj is odd. The q-binomials P+"l in (4.10) differ slightly from those of (2.14), 
L ? r t  t J 

I n + m ]  I (qn+l)m for m E Z+,n C Z, 
= (q)m (4.13) 

[ m~ ] [ 0 otherwise. 

rn+ml 
Notice that for negative n, tm'  J can only be non-zero when n + m < 0. 

The second function f is defined for the special vectors u = e v o - j - i  - evo + U t with 

0 ~ < j < v 0 a n d  ( u t ) i = 0 f o r  1 ~<i~<vo, 

f ( L , u , v )  = 

q~ f ( L , u , v )  + (I - q L ) f ( L -  l ,u  - e~o_l + e,o,v) 

for j =0 ,  
(4.14) 

q~ [f  ( L + l , u - e~o - j - l  +e~o-j,v) - q  2 f (L ,u -e~o_ j_  l+e~o_j+l,v)] 

for 1 ~< j<v0 .  

We make a final remark about the notation employed in this and subsequent sections. 

In Section 2.2 the vectors ej were defined as (N - 1)-dimensional unit vectors. In the 

above we use tn+l-dimensional vectors ej in (4.11) and (tn+l + 1)-dimensional vectors 
in (4.14). Indeed we will throughout use ej for the jth unit vector, and assume that its 

dimension is clear from the context. 

4.3. Explicit fermionic functions 

Using the functions f and f as fundamental objects, we now give explicit forms for 

ECP,P')(L,b), with p < p~ < 2p such that v0, vn >~ 1 and vj > 1 (j = 1, , n -  1). 
r , s  " " " 

We consider here s being a single TS length 

S = l~r+l w i t h  t~ < O" ~< t¢+l + ~¢,n 

and we limit ourselves to b being one of the cases listed in Table 1. Case 1 corresponds 
to b being a single TS length and case 2 deals with values of b in the vicinity of a 
single TS length. Cases 3 and 4 are rather generic and deal with classes of b having 
a TS decomposition with TS lengths in adjacent zones (starting in zone 0 for case 3 

and in a zone > 0 for case 4). The labels tim are restricted to lie not too close to 

the upper boundary of the zone. The reason for having to distinguish between many 
different cases (of  which we have only listed a few) is that F~P'P')(L,b) is a linear r,s  
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Table 1 
Cases  for b considered  

Case  b r Addit ional  restrictions 

1: b = l/3+1 r = f/3+l t~: < / 3  ~< t~:+l + 6(,n 
o~<~<n 

2a: b = 1/3+1 - j r = [/3+1 t~- + ~(,1 "~/3 < ts¢+l + 3(,n 
l ~ s C ~ < n ,  l ~ < j < v 0  

2b: b = l / 3 + l + l + j  r = 1 +[/3+1 t ~ < / 3 < t ~ + i + 3 ( ,  n 
l ~ ( ~ n ,  O ~ j ~ v o  

¢ 
= ~-~m--O 1/3.,+I 0 <~/30 <~ vo - 1 3: b = ~-~m---o l/3m+J r ~: - 

t,n </3,,, ~ tm+l - 3 ( 1 ~< m ~< s c - 2)  
t ~ - 1 < / 3 ~ : - 1  - . .< t~ : -2  
t~ < & ~< te+~ - 1 + ,~e,. 
l~<(~<n 

,1~-,,% E ~: - 
4 :  b ~__~;~_( l/3m+, r = ~-~,,,=( 1/3.,+1 tm</3,,, < t,n+l -- 3 ( (  < m < ( -- 2)  

t ( - I  </3~:-1 < t ( - - 2  
t( < /3s¢ <~ t(+l -- 1 4-~,n 

combination of  f ( L ,  u, v )  and f ( L ,  u, v)  where the vectors u in this linear combination 

can be determined by a recursive procedure [42] .  To give explicit  formulas for the 

vectors u as arising from this recursive procedure one needs to distinguish many cases. 

As mentioned before, the choice of  b fixes r and given b and its decomposit ion (4.8) 

in TS lengths, r reads 

r ( b )  = i=l 

i=1 

for 1 ~< b < p~ - v0, 

for p~ - vo <. b <. pt  _ 1. 

(4.15) 

In all four cases for b an overall normalization constant kb,s is fixed by the condition 

(P'P') q--O F;, s (L ,  b) = 1. 

Furthermore, in all of  the cases below, we use the abbreviation Us for 

J 
Us = eo~ - E¢+l,n, where Ei,j = ~ etk. 

k=i 

Case 1: 

F (p'p') ( L ,  b) = qk" . ' f (L ,  e~ - E~+t.,, Us). r , s  (4.16) 

Case 2a: 

(p,p~) kb ( -2p0+0(~: aid)+2) 
F~, s ( L , b )  = q  .s~q 4 f ( L ,  e j _ j  + e/3-1 - El ,n ,Us)  
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q-%+°" even)+2j ~ 

+ 4 f ( L ,  e j_!  + eti-! + e~ - El,i - E~+l,n, Us) 
i=2 

+ f ( L, e~o_ j - e~ o + e ~ - E~+L~, Us)} ,  (4.17) 

with 0( t rue)  = 1 and 0(false)  = 0. 

Case 2b: 

vf)+l--30(~ c@J) 
-F (P 'P ' I (L ,b )  = q  kb's r,s q 4 f ( L ,  ej + ep+l - El,n,Us) 

( 
+ ~ q ~-o(~ ~ 

4 f ( L ,  e j  + e t~- i  + el3 - El , i  - E(+l,n, Us) 
i=2 

. vo-2J-I .a.. } 
+O( j  < vo)q 4 J t L ,  e~o_j_l - e~ o + e ~ - E ~ + l , ~ , u ~ )  . 

(4.18) 

For the remaining two cases some more notation is needed. Let 

( 

b = ~ l/~,,+1, with tm < tim <~ tm+l + 6m., and 0 ~< ( ~< m ~ s c ~< n. (4.19) 

Then we define two vectors 

f l  = (fie,  fl(+l . . . . .  f l ( - l ,  f l ( ) ,  (4.20) 

i = (i¢, i¢+~ . . . . .  i~_~ ,0 ) ,  (4.21) 

where the tim ( (  ~< m ~< s c) are defined from (4.19) and im C {0, 1} ( (  <~ m < ~:). 
Since the components of  i are 0 or 1, the vector i may also be represented by a binary 
word 

a k )  1, l<~k<~g ,  
i = lbl0 a~lo20a2.., lOe0 ae, with (4.22) 

b k ~ l ,  2 < . k < . g ,  bl>>.O. 

The numbers ak and bk give the length of the kth substring of O's and l ' s  (starting with 
a string of  l ' s  of  possibly zero length). Finally let us define for t m <  j <. tm+l + 6m,n 

R ( j  q- 1) = tm+l q - t i n - j -  1, 

and in addition Ro = Id and R1 = R. This prepares us for the cases 3 and 4. 

Case 3: 

F,~(,ps,p')(L,b ) =qk~,~{ ~ q -~ ' f (L ,e~o+i  ~ -e~ ,  o +ui ,~,Us)  
il,...,i~_1=0,1; io=O 
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+ ~ q - ~ ' f ( L ,  evo-Bo- i , - l -evo+Ui ,B ,Us)} ,  
ib....i~_l--O,1; i0=1 

where 

(-1 

Ui,fl = ~ eR,.,(B.,+l)+li.,+~-i.,l-li.,-im-ll + el+&-ie_l -- E2,n 
m=l 

g 
1 '- 

~o i = ~ Z ( - - l  )al+~21(ak+bk) o(bj even) 
j=2 

g 
tbl - / 3 0  + il  - 1 1 J-~ 2 + ~ Z ( - 1 ) Z k = 2  (ak+bk)o(bj even) 

j=l 

and ak, b~ and g follow from the representation (4.22) of i. 

(4.23) 

(4.24) 

Case 4: 

Fr(P'P') ( L b) _ qkO,s [ 
i(+l ,...,i(-l--O,1; if--O 

q-¢i f(L,  uig,  , , + 
i¢+1 ,...,i~,_l=O, 1 ; i¢=1 

(4.25) 

where 

/g~,l d = e.8,+i~.+l -1- ui,fl, 
u(2) + 

i,fl =--et¢ et(+l+tf-fl(-i¢+l-i + ui,fl, 

u},3; = e t : - i  -- et i  + et~+l+t:-B~-i:+l + ui,fl, 

(-1 

Ui,O = ~ eRi.,(fl.,+l)+li.,+~-i.,[-li.,-i.,_l [ + eBe+l-i¢_l -- E(+l,n, 
m=(+ 1 

(4.26) 

and  

g 
¢,=  l (--1)CZ(--1)a'+~-2'(~k+ak)O(b j even), 

j=2 

1 g J-' ~tl = ( - - 1 ) f ( l ( - - 1 ) b l  + ~ Z ( - 1 )  f i l l  (ak+b')o(bj even)), 
j=2 

(4.27) 

with ak, b~ and g as defined in (4.22). 
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5. The explicit Bose-Fermi  identities for the A~ 1) cosets 

637 

We are finally in the position to give explicit Bose-Fermi identities for the A} 1) 
cosets (1.3). Corresponding to the four classes of Bailey pairs given in Section 3.2 we 
treat the cases (i) (N/2  + 1)P < P'  < (N + 1)P, (ii) P < P'  < (N/2  + 1)P, (iii) 
( N k + N / 2 + I ) P <  P' < ( N k + N + I ) P  and (iv) ( N k + I ) P <  P' < ( N k + N / 2 + I ) P  
with k ) 1 separately. 

A principle result of this section will be that in all four cases the fermionic branching 
functions for (P, U)U involve an (r~, h)-system determined from the continued fraction 
expansion 

NP I 1 
- -  = 1 + v0 + 1 (5.1) 
p~ _ p 131 2 I- ~ +...+ ~,~ +----~ 

as observed for the cases (i) and (ii) in Ref. [46]. In order to present the results of this 
section as compactly as possible we introduce a notation which distinguishes between 
variables that occur in the M ( p , p  ~) polynomials - the input in the Bailey lemma - 
and the corresponding quantities for the branching functions of (P, W)N. To this end 
we adopt the notation that all quantities in the (P, P~)N branching functions which have 
a counterpart x for M ( p , p  ~) will be denoted by 2. In particular, using the continued 

fraction expansion (5.1) we def ine  ti, Z~,~,ym,~rn, lj+l,?j+l and  0 (j) by taking the 
corresponding definitions for t i , Ie ,  B, Ym, Y:m, lj+l, lj+l and Q(J) of Section 4.1 and by 
replacing all variables therein by their hatted counterparts. 

5.1. Fermionic branching functions for  ( P, P~)N with P~ < ( N + 1)P 

As in Section 4, we define a fundamental fermionic function f for the A} 1) cosets (1.3), 
which will be the building block of the fermionic branching functions. For fi, .,~, ~. E 
Z ~'~+~ we set 

f ( ~ ,  .21,1)) = Z q ¼ ~ - ½ 2 t t ~  

mEZ+" ta+l, ~ )  (mod 2) 

with (r~, h)-system given by 

~"+' [rhj + ~j] 1 1I [ j ,   52) 
(q),~N j=l, j , u  

(5.3) 

and 2-~ and /~ based on the continued fraction expansion (5.1). Notice that when 
thj + hj ~ Z, then, according to (4.13), f(f i ,  .4, Q) is zero. 

5.1.1. The case (N /2  + I ) P  < P' < (N  + I ) P  
t r N N 

The fermionic representation of "~ (p ,v + v; ) Xs,O+Nr;e (q), with s + b + Nr + g, even, follows 
from substituting/3L of equation (3.6) into the right-hand side of the higher-level Bailey 
lemma (2.18), using the explicit form of F(P'Pt)r,s ,~ -.~(gr A,b). 
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As a first step we substitute just flL leaving Fr(, p'p') unspecified. We extend the 
( N -  1)-dimensional (m,n)-system of Eq. (2.17) to an N-dimensional one by setting 
mN = 2L + A and by defining 

1 
m + n = ~ (2-T~N, m + ee) ,  (5 .4 )  

with 2"r~u~ the incidence matrix of the tadpole graph with N nodes, (ZT,N~)i,j = ~[i-j[,l + 
(~i,j(~i,N. We also define the matrix T (N) as the corresponding Cartan-type matrix T (N) = 

21 - ZT~N). 
With this we obtain 

,•(p',p•+Np;N) I ~'~ 
s ,b+Nr;g ~ 'q)  = q 

N - l [  l F(p,p,)(mN, b ) C(N--~)+A 2 
T'~ E qlraT(mm I I  mj + nj r,s 

mEZ~ , m=-Q (rood 2) j=l L mj ( q)mN ' 

(5 .5)  

where 

Q = (ee+l + eg+3 + . . . )  + (r  + 1)(el + e3 + . . . ) .  (5.6) 

Notice that it follows from (5.4) that mj + nj > 0 if m E Z N. Hence the binomials 

fmj+nj] of (4.13). Similar arguments hold in all [mj+,j] in (5.5) can be replaced by L ,,,/ j 
L n,j j 
three cases to follow. 

Next we need to substitute the fermionic polynomials. Since E (p'p') is a linear combi- r, S 
nation of the elementary functions f and f ,  we first determine the resulting expressions 

when f and f are used instead of F (p'p') F,S 

The formulas simplify if we define a new (N+t,+l)-dimensional (Or, h)-system, com- 
bining the (m, n)-system (5.4) with the tn+l-dimensional (Or, h)-system of f ( m u ,  u, v) 
obtained from (4.11) 

g n + h = l  (zBOt+u* +v* + m u e , ) .  (5.7) 

Specifically, we define Ot as 

mj for 1 ~<j ~< N, 
r~i = (5 .8)  

Fnj_N for N < j <. tn+l + N, 

and a corresponding vector h through the (Or, h)-system (5.3), where the vector fi is 

given by 

Sj, e for 1 ~<j ~<N, 
t~j = (5.9) 

(u* + v*)j-N for N < j ~< i'~+l, 

and Z~ is based on the continued fraction expansion (5.1) with P = pt and P~ = pt +Np. 
Using/~ = 21 - 2-~ this yields 
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I T(N) 1 

/~ = - 1  (5.10) 

B 

which is in fact also the matrix one obtains for the quadratic exponent (up to the 
antisymmetric part o f / )  which is not fixed by th/)th). 

From (5.10) we see that the continued fraction expansion (5.1) with P = p'  and 
P' = p' + Np is related to that of M(p ,p ' )  -used as input- by 

Po = N and Pi = Pi--I (1  ~< i ~< h) (5.1 1 ) 

where h = n + 1. Hence one additional zone (of size N) is added, and the genuine 
quasi-particle (corresponding to the l/(q)mu in (5.2)) sits at the last entry of this new 
zeroth zone. 

If we further set 

t" 
fi, j = ~ O  for 1 ~<j~<N, 

( (Au,v)j-N for N < j ~< t~+l, 
(5.12) 

and 

¢ 
O-j = ~ Qj for 1 ~<j~<N, 

(5.13) 
( (Qu+v)j-N for N < j ~< t'~+l, 

with Q given by (5.6), we find that 

( ( N - - ( ) ÷ A  2 ^ ^ ^ 

f (mN,  U, V) BF~q - ' - - W ~  f(f i ,  A, Q),  (5.14) 

where the arrow denotes the Bailey flow obtained by inserting f (mN,u ,  V) into (5.5) 
instead of F (p'p') ( mN, b) 

r , s  

Analogously, one finds for u = evo_j_l - e~ o + u ~ with 0 ~< j < v0 and (d ) i  = 0 for 
l<~i<~v0 

g(N--gl+A 2 
f (mN,  u ,v)  BV>q 4N 

X 

f ( f t ,  31 -- e N ,  01) + ? ( ~  -- e N + l  - -  e?2-1 + e~2, A2, Q2) 

- f ( ft - eN+l -- e?2-1 + e? 2, .7t2 -- 2eN, {~2) 

q~ [?(U + eN+l  -- e~2_.j-i  + e~2_ j ,  ,~[2, 02) 

-q½ f(f~ - e~2-j-i + e/'2-j+l,,43 -- e N , 0 3 ) ]  

for j = 0, 
(5.15) 

for 1 ~ j <  vo, 

where fi as in (5.9), ,211,,~12,,4s as in (5.12) and QI,Q2,Q3 as in (5.13) with u 
replaced by u, u - e v o - j - I  -+- evo-j, u -- e v o _ j _  1 + e~0_j+t, respectively. 
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Making the replacements (5.14) and (5.15) in (4.16)-(4.18),  (4.23) and (4.25) 
¢.(pt,p' +Np;N) ( ~ )  

gives the fermionic representation of the branching function As,b+Nr;g tt • 

5.1.2. The case P < Pt < (1 + N / 2 ) P  
" ~ ~+N" t " N" At: .,,tP ,P tP --P); ) l ~  The fermionic representation u, Xs,b+N(b--r):e tqJ, with s + b + N ( b - r )  +g even, 

follows from substituting flL of equation (3.7) into the right-hand side of the higher-level 
Bailey lemma (2.18) again using the explicit expressions for F (p'p')  (2L + A, b; 1/q) r,s 

We follow the same strategy as before, and as an intermediate step we leave the 
fermionic polynomials yet undetermined. We make again the variable change mu = 
2L + h and define the N-dimensional (m, n)-system m + n = I(ZC(N~ m + ee), where 
the matrices Zc~N~ and C (N) are the incidence and Cartan matrix of AN. Then we obtain 

t t+N ~ N ."(P ,P (P--P); )t~'~ 
}(s ,b+N(b--r);g kt4) 

N - l [  ] F ( P ' P ' ) ( m N ,  b;  I/q) £(N--e)+(N+llA 2 
= q-  4N Z q¼mC'~m H mj q- nj r,s (5.16) 

m E Z ~ ,  m=Q (mod2) j=l [ m j  (q)m~ ' 

where 

Q = (ee+l +eg+3 + . . . )  + ( b -  r ) ( e l  +e3 + . . . ) .  (5.17) 

Similar to the previous manipulations, we now determine the result when F (p,p') in r,s 

(5.16) in replaced by f and f .  
Again combining the different (m, n)-systems, making the same variable change as 

in (5.8), we find a new (N+tn+l)-dimensional (Or, h)-system, given by (5.3), with 2-B 
given by the continued fraction expansion (5.1) with P = pt and pt = p~ + N(p t  _ p) .  

The vector ~ is still given by (5.9). Using/~ = 21 - Z~ this yields 

= 

C (N) 

- 1  

- 1  

B 

(5.18) 

which is also the matrix that one obtains for the quadratic exponent. This time no 
antisymmetric part had to be added to the quadratic form matrix to ensure the relation 

=21 -2-~. 
Hence the continued fraction expansion (5.1) is this time related to that of the 

M ( p , p  t) fermionic polynomials as follows 

P 0 = N + v 0  and f~i=vi (1 <~i<~h), (5.19) 

with h = n. This means that no additional zone is added, but instead the size of the 
zeroth zone has increased by N so that the genuine quasi-particle sits in the interior of 
zone zero. 
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Further taking 

z~j { 0  for 1 ~<j ~< N, 
= (5.20) 

(U* + V* -- Au,v) j -U for N < j ~< t'~+l, 

and 6 as in (5.13) (with Q therein being (5.17) instead of (5.6)) we find that 

f (mN,  U, V; 1/q) BF e~N--e,+~N+~IA2 , q -  4u 3~(fi, .;t, 6 ) .  (5.21) 

The analogous transformation for f is given by 

g(N--e)+(N+I)A 2 
f ( m u ,  u,v; 1/q) BF -------4. q - -  4N 

I 
f ( u ,  AI -k- eN, 61 ) + f ( f t  -- e~,_l + e~, -- eN+l, A2, 62) 

- -  f ( ll - -  e f l _ l  -4- e~l --  eN+I , /~2 + 2eu, 62) for j = 0, 
× (5.22) 

q-~ [ f ( ~  - e~,_j_~ + e~,_ s + eN+l, ~2 ,62 )  

- q - ½ f ( f t - e ~ l _ j _  l +e~_j+l,.;13+eN,63)] for 1 ~ < j <  v0, 

where fi as in (5.9), a,,;t ,a3 as in (5.20) and 61 ,~2 ,63  as in (5.13) with u 
replaced by u, u - evo-j-1 + evo-j, u - evo-j-i + evo-j+l, respectively. 

Making the replacements (5.21) and (5.22) in (4.16)-(4.18), (4.23) and (4.25) 
. t i N" t " N" 

gives the fermionic form of the branching function "~P 'p + ~p -P); ~ ' - '  . .  k q ) .  ]( s ,b+N(b-r)  ;~ 

5.2. Fermionic branching functions for ( P, P~) N with pt > ( N + 1) P 

To proceed in a fashion similar to Section 5.1 we now introduce the elementary 
fermionic function 

q¼eai~m- ½Am ~'+' [&j + hj ] 

~(fl, A . , 6 ) =  Z (q)~v, . . . (q)&2(q)~2+ ' I X  [ rh} ' 
mCZ+ ^ ~a+l, t h ~ Q  ( m o d 2 )  j = l ,  j ¢ i ' l + l , . . . , t ' 2 + l  

(5.23) 

with (t~, h)-system given by (5.3), where Z~ and/~ = 21-ZB follow from the continued 
fraction expansion (5.1) as before. Again, ~(fi, .4, Q) is zero if &j +hi ~ Z. In contrast 
to (5.2), however, some of the genuine quasi-particles corresponding to the factors 
1/(q)a are labelled by a = hj instead of a = rhj. Note that hi, determined from (5.3), 
can take negative values, and we adopt the convention here that 1/(q)-n = 0 for n > 0. 

5.2.1. The case (Nk + N/2 + I ) P  < Pt < (Nk + N + l ) P  with k >~ 1 
The fermionic representation of ^ (pt ,p t+N(p+kpt);N) .  \ )(s,b+N(kb+r);t ~ q), with s + b + N( kb + r) + g 

even, follows from substituting/3~ k) of equation (3.8) into the right-hand side of the 
higher-level Bailey lemma (2.18), using the explicit form of F~.Ps'P')(2rk + A, b). 
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As before, we first give the results when F ~p'p') is still unspecified. We extend the r , s  

( N -  1)-dimensional (m,n)-sys tem of the Bailey lemma by defining 

L - rj for j = N, 
nj 

r j - N  - -  rj-N+l for N < j < N + k, 

mN+~ = 2rk + ,,l (5.24) 

and setting the (N + k)-dimensional (m, n)-system 

1 (ZB(N+k,m + et). (5.25) m + n = ~  

The matrix ZB~u+k~ is defined by (4.3) with z'0 = N -  1, ~1 = k, v2 = 1 and ~'3 = 0 
and B (N+k) = 21 - ZB(N~k~. The reason for labelling some of the variables in (5.24) by 

nj is that these do not have any parity restrictions. This way we also ensure that the 

(m, n)-system (5.25) is based on a fractional-level incidence matrix of the form (4.3). 

With these variable changes we obtain 

f((p',pt +N(p+kpt);N) 
s,b÷U(kb+r);g (q) 

N - l [  l F(Ps.p,)(mN+k,b ) g(N--()+(Nk+I)~ 2 = q 4-N Z q¼mB'N+"m I-[ mj + nj , 

mCZN++~,m=O(mod2) j=l L mj (q)n-~?~-'-(q)~N+k-~(-q)mN+,' 

(5.26) 

where 

{ ( # e + l , . i + ~ + 3 , j + . . . ) + ( k b + r + l ) ( ~ j , l + ~ j , 3 + . . . )  for 1 ~ j < N ,  

Qj = 0 for N <~ j < N + k, 

a f o r j = N + k .  

(5.27) 

Next we again substitute f and f for F (p'p') into (5.26). The resulting formulas F,S 

can be simplified by combining the (m,n)-sys tem (5.25) with the tn+l-dimensional 

(Or, h)-system of f(mN+k, U, V) 

as 

+ ~= ~ + + mN+kel) 

f mj  
frlj = 

( fnj 

for 1 <~ j <<. N + k, 

for N + k < j ~ tn+l + N + k ,  

and a corresponding vector h through the (#t, h)-system (5.3), where 

(5.28) 

(5.29) 
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~lj = 0 

(u* + V*)j-N-~ 

for 1 ~< j<  N, 

for N <.j <. N +k,  

for N + k < j <. N + k + tn+l. 

(5.30) 

and Z~ is based on the continued fraction expansion (5.1) with P = p' and P' = 
p~ + N(p + kp'). Using/) = 21 - 2-~ this yields 

= 

T ( N - 1 )  

--1 
T(k) 

1 

--1 1 

(5.31) 

which is indeed also the matrix one obtains from the quadratic exponent by noticing 
that the top-left (N + k) x (N + k) entries o f / )  correspond to B (N+k). 

From (5.3l) we see that /)  is based on the continued fraction expansion (5.1) with 
p = p /and  PI = pr+N(p+kp r) related to the continued fraction expansion of M(p,p')  
by 

13o=N--1,  ~1 =k ,  #2 =1 and ~i =vi-3 for3~<i~<h,  (5.32) 

with h = n + 3, which means that three additional zones have been added. 
Upon further setting 

fi~j = { 0 f o r l  ~<j <~ i'2 + 1, 

(Au,v)j-?z-1 for t'2 + 1 < j <~ t~+l, 
(5.33) 

and 

t "  

O j = J Q j  for 1 ~ < j ~ < h + l ,  

(Q,+v)j-~2-1 for/'2 + 1 < j ~< t'~+l, 
(5.34) 

we obtain 

f(mN+~,U,V) BF e(~'-e)+(tac+l~a2 ^ ^ ) q 4N ~(~, A, Q) (5.35) 

and similarly 

f(2rk + A,U,V) BF _e~N--C~+~Nk+'~ 2 , q 4N 
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~(a, it1 - e~2+x, Q1 ) 

+~(a  - e~2+2 - e~,_l + e~,, ~i2, Q2) 

× -~ ( f i  - e~2+2 - e~'4-1 Aw e~ 4, A2 - 2e~2+1, Q2)  
• ^ 

q z2 [~(fi + e~2+2 - e~4_j_ l + e~4-j, A2,O.2) 

-q½g(fi - e~4-j-i + e~4-j+l, A3 - e~2+t, Q3)] 

for j = 0, (5.36) 

for 1 ~ < j < v 0 ,  

where ~ as in (5.30), -41, .42, ),3 as in (5.33) and Q,,Q2,Q3 as in (5.34) with u 

replaced by u, u -  e,,o_j_~ + e,,o_ j, u -  e,,o_j_l + evo-j+l, respectively. 
Making the replacements (5.35) and (5.36) in (4.16)-(4.18),  (4.23) and (4.25) 

e ( p ' , p ' + N ( p + k p ' ) ; N ) /  ., gives the fermionic expression for the branching function Xs,b+N(kb+r);g  ~,q)" 

5.2.2. The case (Nk + 1)P < P' < (Nk + N/2+I)P with k >1 1 

The fermionic representation of "~ (p',p'+N(kp'+p'-p);N)~ ~ with s+b+N(kb+b-r)  +g 2( s,b+N( kb+b_r);g I, q ) 

even, follows from substituting/3(L k) of equation (3.9) into the right-hand side of the 
higher-level Bailey lemma (2.18) using the explicit form of E (p'p') (2rk + A, b; l/q).  F,S 

We first obtain 

" ' ' N ' k  t+ p " N" ...tP ,P + t P P - P ) ;  ) [ ~  
.)( s,b+N( kb+b-r ) ;g  ~ q )  

N- l [  ] Fr(.Ps'P')(mN+k,b; l/q) C(N--~)+fNk+N+I)A 2 =q -~ Z q¼raB(N+k'mI-[mj+nj q <  
N+* j=l [ mj ] (  ~ ' ~ ( ' ~ m N + k '  mEZ+ , m=_Q (rood2) 

(5.37) 

where 

{ (~t+l,j + 6e+3,j + . . . )  + (kb+ b -  r + 1)(Sj,1 + 6j,3 + . . . )  

Qj= 0 

A 

for 1 ~ < j < N ,  

f o r N < ~ j < N + k ,  

for j = N + k. 

(5.38) 

The (N+k)-dimensional  (m, n)-system is that of Eq. (5.25), but this time with ZB~N+k~ 
(and thus B (iv+k)) based on the continued fraction expansion with v0 = N - 1, vl = k 
and v2 = 1. We note that to get to this result the same variable change as in (5.24) has 
been carried out. 

We now again define variables as in (5.29) and the corresponding (Ot, h)-system 
(5.3) with ~ defined as in (5.30) and Z~ this time based on the continued fraction 
expansion (5.1) with P = pt and P' = p' + N( k /  + / - p). This yields the matrix 
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T(N_I) 

1 

-1  
T (k) 

-1  
1 

2 - 1  

- 1  

B 

645 

(5.39) 

which again agrees with the matrix one obtains from the quadratic exponent (up to 

arbitrary antisymmetric pieces).  

The old and new continued fraction expansions are related by 

~o = N - 1, /)1 = k, ~2 = vo + 1 and ~i -~ Pi--2 for 3 ~< i ~< h (5.40) 

with h = n + 2. This corresponds to the addition of  two extra zones. 

We further define 6 as in (5.34) with Qj as in (5.38) and 

,3 j=  { 0  

(u* ÷ v* - Au,v)j-~2-1 

for 1 ~ < j ~ < h + l ,  

for t'2 + 1 < j ~< t~+l. 
(5.41) 

Then 

f (2rk  + ~,Ub, Us; 1/q) ~F --e~U-C'+'Nk+U+" ~2 q 4U g(fi, A, Q) (5.42) 

and 

g(N g)+(Nkt-N+l); t  2 BF 
f (2rk  + ,~,u,v;1/q) ----+ q "~ 

× 

~(fi,.211 + % + 1 , 6 1 )  + ~ ( f i - % + 2 -  e~3-1 + e~3, A2 ,62 )  

- ~ ( ~  - e~2+2 - e~3_l + e~ 3, ,42 + 2e~2+1,62) for j = 0, 

q-~ [~( ft + e~2+2 - e~3_j_ 1 + e~3_j,~42,62 ) 

- q - ½ ~ ( f t -  e?3_j_ 1 + e~3_j+l,A 3 + e~2+1,63 ) for 1 ~< j < ~'0, 

(5.43) 

where fi as in (5.30),  ,~I1,,212,,213 as in (5.41) and 6 1 , Q z , Q 3  as in (5.34) with u 
replaced by u ,  u - e u o _ j _  1 + e v o - j ,  u - e v o - j - i  ÷ e~,o-j+l, respectively. 

Making the replacements (5.42) and (5.43) in (4 .16) - (4 .18) ,  (4.23) and (4.25) 
" ~ I+N'k  ' ~ " N" gives the fermionic form of  "~(P 'p t p +p -p~, ) X s , b + N ( k b + b - r ) ; e  (q). 

To conclude Section 5.2, let us remark that for N = 1 the continued fraction expansion 
used in (5.1) is not the same as the one used in Refs. [41,42] for the case P~ > 2P.  Here 
we considered the continued fraction expansion of U / ( P ' - P )  whereas in Refs. [41,42] 
that of  P~/P was used. The difference between these two cases is that in the first one 



646 A. Berkovich et al./Nuclear Physics B 499 [PM] (1997) 621-649 

a zero zone of length zero (i.e. ~0 = 0) is obtained whereas the second case starts with 

~ = ~l. This of course changes the Takahashi decomposition, but the final results are 
the same (in particular the fractional-level incidence matrices for the (Or, h)-system are 
the same). 

6. Discussion 

In the introduction we briefly discussed the relation of the massless RG flow of 

[1]-[7]  to Bailey flow. Specifically we noted that the RG flow of [3] flows with a 

continuous parameter from M(p,  p + 1 ) to M ( p -  1, p) whereas, in contrast, Bailey flow 
is a discrete process which adds degrees of freedom and, in this special case, goes from 

M(p  - 1, p) to M(p,  p + 1 ). Moreover the parameter L which appears in the polynomial 

identities for M(p,  p~) is, as emphasized by Melzer [57], an ultraviolet cutoff, which 
certainly is reminiscent of the RG flow phenomena. However, the precise (if  any) 

connection between the two concepts is not yet understood and we will conclude this 

paper by discussing a few of the possibilities. 

The special case of M ( p , p  + 1) might suggest that the Bailey construction could 

be generalized to include a free parameter so that it would be an exact inverse to RG 

flow. This is particularly the case with the flow between M(3 ,4 )  and M(4 ,5 ) .  Here, 

using the equivalence of M(4 ,5 )  with the N = 1 supersymmetric model SM(3, 5), the 

Bailey construction of Ref. [ 10], which utilizes the original lemma of Bailey (2.6) with 

Pl --+ oc provides a one parameter flow (in the variable P2) from SM(3,5)  = M(4, 5) 
to M(3 ,4 ) .  The model SM(3,5)  = M(4 ,5)  corresponds to p2 = ql/2 or q and M(3 ,4 )  

tO P2 --+ oo. The q --~ 1 limit of the vacuum character has been studied in Ref. [58] 
and this provides a function which satisfies the property of the c function of Ref. [7] 
in interpolating between the two models. 

Furthermore, in Ref. [10] the full two parameters in Bailey's lemma (2.6) are 
exploited to give flows from the N = 2 supersymmetric models with central charge 

c = 3(1 - 2/p)  to SM(p ,p  + 2) to M ( p , p  + 1). The corresponding q --+ 1 limit of 

the vacuum character is computed in Ref. [58] and this also interpolates between the 
central charges of the models. In this case no RG flow (or TBA) analysis with two 

continuous parameters has been carried out. 
On the other hand it might be expected that the TBA equations of Ref. [ 3] which 

give the one parameter RG flow M ( p , p  + 1) ~ M(p  - 1,p) should have an extension 
to a one parameter flow of characters. But it seems to us that if this is true it may require 
further identities that are not yet extant. The reason for this is that on the fermionic side 
the Bailey constructions add particles on one side of  the genuine quasi particles (those 
which contribute 1/(q)n)  and the tail of ghost (or pseudo) particles which correspond 
to the q-binomials lies on the other side of the genuine quasi particles. This leads to 
asymmetric fermionic representations of the characters whereas the TBA equations of 
Ref. [ 3 ] treat the two ends of the equations in a symmetric fashion. This problem needs 
to be explored. 
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We also note that the Bailey flows of this paper of M ( p , p  ~) into the cosets (1.3) 

is not the inverse of the flow of Refs. [5,6] which is between different cosets of the 

form (1.3) and does not in general involve M ( p , p ' ) .  
It thus seems that Bailey flow and RG flow give somewhat different relations between 

models of  CFT. However, what is lacking at present in the method of Barley flow is an 
abstract understanding of why Bailey's construction is related to Cb-T at all. At present 

we are only able to make the identification of the Bailey flow characters with the CFT 
characters by comparing the results of two separate computations. Since all examples 
of Bailey flow have been identified with CFT models this cannot be an accidental 

coincidence and it is most desirable to prove that there is a connection between the 

Bailey flow and CFT which allows us to identify the CFT model without the need 

of doing a separate Feigin-Fuchs computation of the CFT characters. Such a theorem 

would allow the Bailey flow to be a complete constructive procedure which could serve 
as an alternative route to the construction of CFT. 
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Appendix A. A~ n bosonie branching functions 

The bosonic form of the branching functions for the coset model (P, P')N with N >/2 

been calculated in Refs. [32-36] for integer levels N and N' (unitary models). The 

cosets (1.3) with fractional N' have been considered in Ref. [38]. Ahn et al. [39] 
determined the branching functions for fractional levels and specializing their results to 
integer N, we find (for all N >~ 1 ) 

' ~ d ~(N--C) ^(P .P"N) ,  
X(rPsil~. ;N)(q) = q-~+ . . . .  21q'N+2'Xr, s;g' tq) 

with the normalized branching function 

,~ ( P,,P';N) e(N-O 
r,s;g (q) = q 2u(u+/~ 

× Z 4.,(q) ( 
O<~ m<~ N/2 jEZ,  

(A.1) 

q N (JPP +P r--Ps) ~ q-} (jv'+s)(je+r) 
) 

m r - , ( j ) ~  +m (rood N) jEZ. m~+s(j)~±m (rood N) 

(A.2) 

Here 1 < ~ r ~ < P - 1 ,  1 ~ < s ~ < P ' - l ,  0 ~ g ~ N ,  and r -  s and g are either both even 
or both odd. The first sum in (A.2) runs over integer m when g is even and half an odd 
integer m when g is odd, generalizing the Neveu-Schwarz and Ramond sector of the 
supersymmetric case corresponding to N = 2. The restriction on ma(j)  := (a /2  + P ' j )  
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in the sum over j indicates that we only sum over those values of j for which ma(j )  =- 

+m (rood N). 
The central charge and conformal dimensions in (A.I) are given by 

and 

2 ( N +  2) (p~__ p )  2,~ 3 N N ' ( N ' + N + 4 )  3N 1 = (A.3) 
c = N +----2 N 2 P 'P  J ( N  + N' + 2) (N + 2) (N' + 2) 

6N 2(N - 1) 
= l - + ( A . 4 )  

(N'  + 2)(N~ + N + 2) N + 2  

( p t r - P s ) 2 - ( P ' - P )  2 [ ( N + N ' + 2 ) r - ( N ' + 2 ) s ] 2 - N  2 
Ar 's  = 4NP 'P  = 4 N ( N  + N' + 2) (N' + 2) (A.5) 

Expression (A.4) for the central charge reflects that in the Feigin and Fuchs construction 
one deals with a Zu-parafermion field with central charge equal to the third term in 
(A.4) and a bosonic field with a background charge with central charge given by the 
first two terms in (A.4). 

The function cem in (A.2) is the level-N A} l) string function [59-62] which for our 
purposes in Section 3.3 we need in the form given by Lepowsky and Primc [62] 

q 2~'uu+~' V" qnC - - 1 (  n - -  et) 
Ogre(q) (A.6) 

( q ) ~  Z__., (q) , , , . . .  (q)nu_ ' 
nCZ~ -I,  ~ + ( C - I n ) I C Z  

We also need the symmetry properties 

g. g N--g 
Cm = Cg--m = Cm+2N = CN--m" (A.7) 
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