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Bethe-Ansatz Results for a Solvable O(n) Model on the Square Lattice
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The Bethe-Ansatz approach is used to solve a nineteen-vertex model equivalent to a spin model with
O(n) symmetry on the square lattice. The bulk free energy is determined exactly on four branches of
critical points. On two of these branches, the central charge is derived from finite-size corrections. On
the two other branches, the nature of the Bethe-Ansatz solutions prevents us from computing the central
change analytically. In this case, our approach still allows the exact numerical determination of the free
energy on strips hundreds of sites wide.

PACS numbers: 05.50.+q, 03.70.+k, 05.70.Fh, 64.60.Cn

The critical point and low-temperature phase of O(n)
models in two dimensions have been studied primarily by
means of a specific soluble example on the honeycomb
lattice. ' Recently another soluble O(n) model, this
time on the square lattice, was sho~n to be equivalent
to a nineteen-vertex model, previously studied in the
framework of the quantum inverse scattering method by
Izergin and Korepin. For this same vertex model Reshe-
tikhin found the spectrum of the transfer matrix via a
functional equation method.

Here we study this square O(n) model via the coordi-
nate Bethe Ansatz to verify that the critical behavior is
lattice independent, and in search of new universality
classes of O(n) multicritical behavior. A reason to ex-
pect such behavior is the presence in the model of an in-

teraction akin to dilution in discrete spin models and to
chain attraction in polymer solutions, thus allotting for
tricritical or 0 behavior. We find and confirm evidence
for the existence in this model of critical and low-
temperature behavior of the same type as in the honey-
comb model. We present analytical results for the bulk
free energy and the value of the conformal anomaly. Be-
sides this we also find critical behavior of another type.
Though we could also derive the free energy in this case,
a novel structure of the solutions to the Bethe-Ansatz
equations prevented us from deriving the central charge.

For the O(n) model we study here, the n-component
spin variables reside on the edges of the square lattice.
They interact via a Boltzmann weight which is the prod-
uct over the vertices of

Q —up+ u ] ts~ ' sp+s2' s3+ s3 s4+s4' s~) + u2 ts~ ' s3+s2' s4) + u 3 1(s& ' s2) (s3' s4) + (sp' s3) (s4' s~ )J,

where s; are the four spin variables adjacent to the ver-

tex, labeled anticlockwise, and u~ are four coupling con-
stants. When the partition sum is expanded in powers of
ul, u2, and u3 it naturally turns into a gas of loops ' in

which each loop has a weight n. This loop gas can be
mapped onto a nineteen-vertex model by placing arrows
on the edges occupied by the loops, thus orienting each
loop with a left- or right-handed sense of rotation. The
weight n for each loop is recovered by giving a phase fac-
tor to each corner of the oriented loops, just like in the
case of the Potts model ' ' and the honeycomb O(n) mod-
el. ' This results in nineteen allowed vertex config-

up=1,

u) =u3p(p' —2),
u2=u3(p' —1),
u3 = f2 —(3 —p')(1 —p') 'l

r =exp'�(-,' 0 ——,
' n)l,

(2)

t urations, each of which, along with the corresponding
weight, is shown in Fig. 1. We find that the model is
solvable by the Bethe-Ansatz method when
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where p =2cos[ —,
' (0—x)], and the variable 0 is defined

by n = —2cos20, with 0 E [—z, z]. In this parametriza-
tion in 0 there are, in the space of u;, four branches for
each value of n C [ —2, 2], apart from the sign of u~. We
wi11 label these branches by the integral part of
2(~ —0)/~.

We consider the square lattice wrapped on an
infinitely long vertical cylinder with L sites around the
circumference, and define the row-to-row transfer matrix

T between two successive rows of vertical edges. Be-
cause each edge can be in three states, T is a 3 by 3
matrix. Since the number of upward minus the number
of downward arrows in each row is a conserved quantity,
T breaks up into 2L+1 disjoint sectors. We follow
closely Baxter's diagonalization of the transfer matrix of
the honeycomb seven-vertex model. This results in the
following eigenvalues of the transfer matrix in the sector
with net number / of upward arrows:

I I I

A[zj =lg3r +M —(z )+92 pMp(z )+ll3r +M~(z ),j=l j=l j=l
where the functions M(z) are defined by

(3)

2

M (z)= +
&3 Q3Z Q2Q3

Q2M+(.) = +
u3 u3z —u2u3

and the parameters z l, . . . , zI satisfy

4-' S( I 'i)
zJ. =( 1) r jiP=) S(z),zi, )

for j=1, . . . , i with

Qp
M, (z) = +

&2 Q2z 0293 2 —
1Q2z Q2Q3

(4)

(5)

S(z,w) = [1 —z —w+zw+z(p —2) j jl —2w+zw+w(p —2) j.

u, r

u, r

u3

u (r +r ) uo

FIG. 1. The allowed vertex configurations. The correspond-
ing Boltzmann weights are indicated to the left.

These equations are of the same form as for the honey-
comb seven-vertex model, apart from the powers of r
explicitly appearing in Eqs. (3) and (5). This deviation
from Baxter's derivation was introduced for the honey-
comb model by Batchelor and Blote and Suzuki for the
following reason. The vertex weights in Fig. 1 and Eq.
(I ) are constructed such that each loop acquires a
weight r or r from the accumulated phase factors of

1+e"w
e"+ wj

The Bethe-Ansatz equations (5) then read

1+e"wj
iO+

J

I iO 2iO
I 28 WJ+ wke wk —WJe

'
=( —1)e '

k =1 wk+ wje' wj —wke '

its corners. This is to get a total fugacity of n =r +r
for each loop, after the arrows are summed out. Howev-
er, the loops that wind the cylinder have a total phase
factor 1, since they turn right and left equally often.
This is corrected by the artificial introduction of a factor
r (r ) for each loop of arrows that wraps the cylinder
to the left (right). These factors, that do not belong to
the nineteen-vertex model per se, are the ones that ap-
pear in Eqs. (3) and (5). They ascertain that loops that
wrap around the cylinder are treated exactly like those
that do not, so that the partition sum correctly describes
an O(n) model. One may modify the vertex model so as
to justify these factors by giving an additional weight of
r ~ (r ~ ) to each arrow pointing left (right) and
change the weights in Fig. 1 accordingly. Or alternative-
ly one may introduce a seam running along the cylinder
and give a weight r" (r ) to each arrow piercing the
seam from the right (left).

It is convenient to introduce new variables wl, . . . , wI
(Ref. 2) by
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(io)

The dominant term in Eq. (3) is the one involving Mo, which with the change of variables, Eq. (7), leads to

Bulk free energy .—A numerical investigation of the eigenvalues of the transfer matrix has revealed that the critical
behavior on branches 1 and 2, i.e., (tr/2) & 0& tr and 0 & 0& (tr/2), is of the same type as found in the honeycomb
model. ' In this case the parameters zk lie on the unit circle and wk are real. The bulk free energy per site

f = lim —InA .,„1 (9)

can be derived in the same manner as for the honeycomb model. When we rewrite Eq. (8) in terms of real w~. =e ' and
take the logarithms of both members of the equation, its imaginary part reads

I

2L arctan[tan —,
' 0 tanhk)l =2trI~+20 —2 g [arctan [tan —,

' 0 tanh(kj —
Ai, )]+arctan[cot0 tanh(X~ —Xi, )]j,

lc=[
where the (half) integer I~ accommodates the indefiniteness of the phase of the equation. The real part of the equation

is automatically satisfied, which justifies the search for real-w solutions. The largest eigenvalue occurs in the I =L sec-
tor and has I~ =j—(L+1)/2. In the limit l =L ~ the solution to Eq. (10) turns into a continuous distribution of X.

Therefore, Eq. (10) can be written as an integral equation involving the density of roots o (X), ' and is solved by

2 sinh [4trk/[3 (tr —0) ]} (1 i)
J3(~ 0) sinh [2trk/(tr —0)]

f (0) = ln
t u2 t

+„dA, o (X)ln
cosh2X+ sin —,

' 0

cosh2X —sin —,
' 0

(i2)

Taking Fourier transforms of o (X) and InMO, Eq. (12) can also be written as

sinh(Ox)sinh[ —,
' (tr —0)x]f (0) =In

t u2 t +2 dx
x [2cosh (trx —Ox ) —1]sin h (trx )

e slnh2 xf (tr) =ln —,', +4 dx
x(2coshx —1)

' (i4)

This result again agrees with finite-size data.
The situation is more complicated on the branches 3

and 4, i.e., Oe [—tr, 0]. By solving the Bethe Ansatz-
equations (5) numerically for finite but large systems,

This result, when evaluated numerically, is found to be
in excellent agreement with the finite-size results of
Blote and Nienhuis in the whole range of OC [O, tr).
This is in contrast with the honeycomb model where
there is a cusp in the free energy as a function of 0 at
0=0.4279. . . . ' At the particular point 0=m, the sub-
stitution (7) is no longer valid, but should be replaced by
z = (1+iX)/(I —iX). In this case the free energy is given

by

w —=+ iexp(2XT- —,
' i0). (15)

Only in the limit as L approaches infinity do the values
of these X approach the real axis. The solution to the
equations for even L consists of pairs of values w~+ and

w~ located on each of the two radii in the w plane, and
related by w, =(wl+)*. Therefore Eq. (8) now has two
forms, one for each radius, and its right-hand side, ex-
pressed in X, now consists of two products over the two
radii. Because of the symmetry we need to investigate
the equations for one radius only:

t
and keeping the solution with the largest eigenvalue,
l =L, we made the following observations. The values of
the w are no longer real but approach, as L increases,
two straight half lines in the complex plane which can be
parametrized by

cosh[k, + —,
' i(0+tr)]

cosh[X, ——,
' i(30 —tr)]

«~ cosh(A j Xi,
—

—,
' iO)sinh(k—l

—
Xt, +i 0)

2ie gi = i cosh(X, —kk+ —,
' iO)sinh(X~ Xk —i0)—

cosh(k~ —
A, i, + 2 i0)sinh(X, Xi, —i0—)

X
cosh(X~ —Xk ——, iO) sinh(k~ —Xk )

In the limit L ~ this can be written as a complex integral equation which is solved by the root density

o (X)= 1 1

t tr+30
t

cosh[2&./(tr+30)l
(i 7)

The fact that the solution is real confirms that we correctly guessed the asymptotic locus of the roots. To compute the
eigenvalue of the transfer matrix this solution should be substituted into (3). We observed numerically that the three
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terms of (3) differ only by a finite factor even in the thermodynamic limit. Therefore for the bulk free energy it suffices
to compute only one. Again taking the term Mo, we obtain

f (0) =ln
~

u p ~
+„d) rr (k) ~ ln

cosh[2) ——,
' i(0+ tr)] —sin —', 0

+ln
cosh[21 —

—,
' i (0+rr)]+sin —,

' 0

cosh [2k+ —,
' i (0+ rr ) ] —sin —', 0

cosh[2X+ —,
' i(0+tr)]+sin —,

' 0

F(-.' )f ( —
—, tr) = —ln8+21n

F(-.' )
(2O)

Central charge. —The derivation of size-dependent
corrections to the eigenvalues of exactly solvable models
is currently receiving considerable attention. ' One
motivation is that the dominant correction to the largest
eigenvalue has been identified with the central charge c
of the associated conformal (Virasoro) algebra. ' In
particular, for an isotropic system in the limit of large L
(Refs. 14 and 15),

ft = =f + 2+o(L ).lnA, ,
6L

(2i)

Given that the Bethe Ansatz equa-tions (5) are the same
as for the honeycomb O(n) model, the calculation of the
central charge on branches 1 and 2 is a straightforward
reworking of the honeycomb derivation. ' The result,

( )
3(rr —20)~

zO
(22)

is in accordance with both the analytic result for the
honeycomb lattice ' and the numerical results for the
square lattice. Although the continuation of the same
solution of the Bethe-Ansatz equations for A,„ to
branches 3 and 4 does correspond to an eigenvalue of the
transfer matrix, it is no longer the largest. As remarked
above, the root distribution for A „. „on these branches is
entirely diAerent. Here our knowledge of these roots is
as yet confined to the infinite-lattice limit, and conse-
quently we have not been able to derive the value of the
central charge. A similar situation prevents an analytic
derivation of c from the Bethe-Ansatz solution of the
Takhatajan-Babujian models. ' However, the Bethe-
Ansatz-equations approach is still useful for the calcula-
tion of eigenvalues of finite systems. ' In this case it is
still possible to solve the Bethe-Ansatz equations numeri-
cally for systems several hundred sites wide. In contrast,
direct diagonalization of the transfer matrix is limited to
systems at least one order of magnitude smaller. Nu-

As before we take a Fourier transform with the result

sin h (0x )sinh [(0+tr )x ]
x cosh [ —,

' (trx + 3 0x ) ]sin h (xx )

This expression is valid for all 0 e [ —rr, 0] except for the
special point 0= —tr/3. At this point the integral and
the weight uq both diverge. The limit 0 —tr/3 can,
however, be taken, yielding

merical estimates of c, based on Bethe-Ansatz computa-
tions of A „for large but finite systems, are currently in
progress and will be published separately.
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