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Fermionic Solution of the Andrews-Baxter-Forrester 
Model. I. Unification of TBA and CTM Methods 
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The problem of computing the one-dimensional configuration sums of the ABF 
model, in regime III is mapped onto the problem of evaluating the grand- 
canonical partition function of a gas of charged particles obeying certain 
fermionic exclusion rules. We thus obtain a new fermionic method to compute 
the local height probabilities of the model. Combined with the original bosonic 
approach of Andrews, Baxter, and Forrester, we obtain a new proof of (some 
of) Melzer's polynomial identities. In the infinite limit these identities yield 
Rogers-Ramanujan type identities for the Virasoro characters Z~.] t. ,~(q) as con- 
jectured by the Stony Brook group. As a result of our work the corner transfer 
matrix and thermodynamic Bethe Ansatz approaches to solvable lattice models 
are unified. 

KEY WORDS: Corner transfer matrices; thermodynamic Bethe Ansatz; ABF 
model; one-dimensional Fermi gas; Rogers-Ramanujan identities. 

1. INTRODUCTION 

The thermodynamic  Bethe Ansatz (TBA) and comer  transfer matrix 
(CTM) methods are two of the most fruitful techniques developed for 
studying solvable lattice models. The TBA approach, originating from the 
work of Yang and Yang ~ and refined and extended in the work of, e.g., 
Takahaski,  ~2~ Takahashi  and Suzuki, ~3~ and Bazhanov and Reshetikhin ~*-6~ 
has been applied most successfully in studying the thermodynamic  proper- 
ties of the energy spectrum of the row-to-row transfer matrix. Also, in 
establishing connections between (off-) critical solvable lattice models and 
(perturbed) conformal field theories, the TBA method has proven to be 
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extremely useful. The CTM method, in turn, was invented by Baxter (see 
ref. 7 and references therein) and developed for computing order param- 
eters of solvable models. 

At first sight, the two methods seem rather distinct. Different types of 
transfer matrices are used for computing different quantities of interest. 
One key step in both approaches is, however, similar. 2 Given a model 
system on a finite lattice of size m, one is naturally led to define a 
"truncated" or "finitized" system, which in the limit m --* oo becomes identi- 
cal to the true model of interest. Let us describe this step in some details, 
as it turns out to be of unexpected importance. 

In using the Bethe Ansatz technique, one has to solve a coupled set of 
nonlinear equations, known as the Bethe Ansatz equations (BAE). These 
BAE have many solutions corresponding to the different eigenvalues of the 
row-to-row transfer matrix. In solving the BAE numerically for small 
system sizes, one observes that the roots of the BAE occur in so-called 
strings, a string being a set of complex numbers with equal real part but 
distinct imaginary parts. For large m, the imaginary positions of the roots 
within a string tend to a limit (fixed by the parameters in the model) and 
the only degrees of freedom left in the problem are the positions of the 
strings on the real axis and the "occupation" number of a string of given 
type. For finite m the string picture is violated by the following observa- 
tions: (i) The roots within a string do not exactly have equal real part, i.e., 
the strings are generally slightly curved. (ii) The imaginary parts of the 
roots within a string deviate from their fixed m ~ oo position. (iii) A num- 
ber of roots do not fit the string picture at all, where it is to be remarked 
that the number of such roots divided by the total number of roots tend 
to zero in the large-m limit. 3 

Based on the above observations, one usually proceeds by making a 
string hypothesis, which amounts to assuming that all solutions to the BAE 
consist of sets of strings, each string being taken from a set of allowed 
string types. Of  course the string hypothesis, if correct at all, will only 
describe the spectrum of the row-to-row transfer matrix in the m ~ oo 
limit, and the set of "reduced" Bethe equations obtained after substitution 
of the strings makes sense in the thermodynamic limit only. It is 
nevertheless tempting to view the reduced equations as those of some ideal 
solvable model for which the string hypothesis holds true even for finite m. 
We call this virtual model the finitized model Of course, the finitized model 

2 Throughout this paper we only refer to models that satisfy the Yang-Baxter equation with 
difference property. ~7~ 

3 Recently solutions to the Bethe equations for the three-state Potts model have been found 
which are neither of string type nor thermodynamically irrelevant. For the full details on 
such nonstring solutions see ref. 8. 
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should not be confused with the original model on a finite lattice, but 
should be viewed as a model on a fnite lattice inheriting all simplifying 
features of the original model when the lattice size is taken to infinity. 

A similar finitization occurs in the CTM calculations. Provided the 
corner transfer matrices commute, Baxter showed that all eigenvalues of 
the CTMs of a solvable model take a special exponential form, which can 
be computed explicitely by considering the ordered low-temperature limit. 
Since commutativity of the CMTs holds only in the infinite lattice limit, we 
can only diagonalize the CTMs in this limit. Let us think of the exponential 
form of the eigenvalues as being at the same level as the string hypothesis. 
Again we can substitute this form in the relevant finite-m equations and 
think of the equations thus obtained as those of an ideal solvable model for 
which the CTMs commute for finite system size. We again call this the 
finitized model 

The aim of this paper is to show that given a particular solvable 
model, the finitized models obtained from the TBA and from the CTM 
approach are the same. To be precise, we show that the finite-m TBA and 
finite-m CTM calculations for the finitized model are mathematically equiv- 
alent. Letting m go to infinity, this establishes the claim that the true 
(infinte-m) TBA and CTM methods are equivalent as well. We prove the 
above assertion for what is probably the most generic example of a 
solvable lattice model, the ( r - 1 )  state Andrews-Baxter-Forrester (ABF) 
model. (91 To do so we present a new fermionic method for computing the 
one-dimensional configuration sums of the ABF model. This method is 
based on a mapping of the configuration sums onto the grand-canonical 
partition function of a one-dimensional gas of charged fermions. Up to 
terminology, this gas is equivalent to the system of strings and holes 
describing the TBA. 

The remaining sections of this paper are organized as follows. In 
Section 2 we briefly review the definition of the ABF model and sketch the 
bosonic approach for computing the local height probabilities as followed 
by Andrews et al. Then, in Section 3, we present the main ideas of our fer- 
mionic method by computing the simplest possible configuration sum, 
using the Fermi gas. In the subsequent section we discuss Melzer's polyno- 
mial identities ~~ and their limiting Rogers-Ramanujan-type identities, (1~ 
which are proven by combining the bosonic and fermionic methods. In 
Section 4 we also discuss the relevant differences between our approach to 
proving Melzer's identities and the original proof given by Berkovich. (12~ In 
Section 5, we discuss the equivalence between CTM and TBA as follows 
from Section 3, and we end with a summary and discussion in Section 6. 

In this paper we have limited ourselves to the fermionic evaluation of 
just a single configuration sum. The computation of all configuration sums 
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will be the content of a subsequent paper, referred to as Part  II. In Part II, 
we show that two additional boundary particles with fractional charges 
have to be introduced on top of the Fermi gas to treat the most general 
configuration sums. A brief explanation of the origin of these boundary 
particles is given in Section 3.3. 

Before we start reviewing the aspects of the ABF model relevant to 
this paper, several final introductory remarks have to be made to put some 
of the ideas and results of this paper in proper context. First of all, we have 
to mention the remarkable series of papers written by the Stony Brook 
groupjl~, 13-16) Based on a study of the completeness of states of the Bethe 
Ansatz solution for the three-state Ports model, t~3' ~4) large classes of new 
expressions for conformal characters were conjecturedJ ~6" ~1 Because of 
exclusion rules labeling the Bethe states, these character expressions were 
called fermionic. Combining the fermionic forms with the well-known 
Rocha-Caridi type bosonic character expressions led to conjectures of 
many new identities similar to those of Rogers and Ramanujan. Second, 
Jimbo et  aL (17) pointed out that computing one-dimensional configuration 
sums using the recursion method of ABF leads to bosonic character expres- 
sions. This, together with the fermionic forms originating from the Bethe 
Ansatz approach, indicates a deep connection between (T)BA and CTM 
methods. Signs of an even stronger connection were found by Melzer, I~~ 
who conjectured that finitizations of the fermionic character expressions, 
originating from TBA for the finitized ABF model, equal finitizations of the 
bosonic character expressions originating from CTM for the finitized ABF 
model. It has especially been this last result and its many generalizations to 
other solvable models tt8-26) that has motivated our attempt to unify TBA 
and CTM approaches to solvable models. 

2. THE ABF M O D E L  

This section serves as a brief introduction to the ABF model, and, 
apart from the model definition, reviews part of the calculation of the order 
parameters for regime III  as carried out in ref. 9. 

2.1. Def in i t ion of the Mode l  

The ABF model is a restricted solid-on-solid (RSOS) model defined 
on the square lattice ~ .  Each site i of s carries a spin or height variable 
a;, which can take any of the values 1, 2 ..... r -  1. A restriction is imposed 
on each pair of neighboring sites i and j by [ g ; -  gj[ = 1. The Boltzmann 
weight of a configuration of heights on the lattice is computed as the 
product over elementary face weights, with nonzero faces parametrized as 
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(a~a l  a ) O~(2-u)  
W a_+ 1 = 01(2) 

W (  a a T-1)=(O,((a+l ,2 ,  g]( (a- l ,2) )mO,(u)  
a•  1 a O~(a~.) Ol().) 

W (  a a+ l)=O,(a2-t-u) 
a-t-1 a ~91(a2) 

(2.1) 

Here we have used the elliptic theta function with argument u and arbitrary 
but fixed nome p, IPl < 1, 

01(u) = 2p 1/8 sin u I~I (1 - 2p" cos 2u +p2")(1 -p") (2.2) 

The variable u in (2.1) is the usual spectral parameter, and 2 is the crossing 
parameter, fixed by the number of states of the model as 

2 = ~/r (2.3) 

In ref. 9 the weights W were shown to solve the Yang-Baxter equation (7~ 
and hence quantities like the free energy and order parameters can be 
computed exactly. In their calculations, ABF distinguished four different 
physical regimes, but here we restrict ourselves to regime III, given by 

regimelII: 0 < u < 2 ,  0 < p < l  (2.4) 

2.2. Computa t ion  of the Local He ight  Probabi l i t ies 

As a first step in calculating the order parameters of the ABF model 
(see ref. 27 for the actual definitions), one has to compute the so-called 
local height probabilities Pb"(a). Here PbC(a) is the probability that a spin 
of the (infinite) lattice takes the value a provided that the model is in a 
phase indexed by b and c. In their computation of Pb"(a), ABF start with 
a finite lattice 2" with size measured by m and consider the probability 

b c  P.,(a) that the center spin of 2" takes the value a, provided the boundary 
spins on 2 '  are fixed according to a ground state labeled by b, c. For 
regime III there are 2 r - 4  antiferromagnetic ground states, corresponding 
to all spins on the even sublattice taking the value b and all spins on the 
odd sublattice taking the values c = b +_ 1, b = (3 -T- 1)/2, (5 T- 1)/2 ..... 
( 2 r -  3 T- 1 )/2. We can thus write 

PbC(a) = lim bc P,,(a) (2.5) 
m ~  c o  
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with b, c taking any of the above ground-state values. At the same time 
ABF showed, using the corner transfer matrix method, that 

l m "  E(x ~, x') X,,(a, b, c; x 2) (2.6) pbC(a) 
,,11- ct~ Y~,r~ l 1 E ( X  a) X r) X m ( a  , b,  c'~ x 2) 

with the one-dimensional configuration sums defined as 

r - - I  
X, , (a ,b , c ;q )=  ~ q "Zl'=tkl'~k+'-'k-tl/4, ao=a,  a , ,=b,  a,, ,+l=c 

a l  , . . . , O ' m - I  ~ l 

[ t r j+  I - - o ' j [  = 1 

(2.7) 

The nonstandard labeling of the a's from 0 to m + 1 is chosen for later 
convenience. The variable x in (2.6) relates to the nome p of the Boltzmann 
weights as 

x = e  -4n/(re) with p = e  -~ (2.8) 

The function in E in (2.6) is the elliptic function 

E ( z , p ) =  FI ( 1 - p " - ~ z ) ( 1 - - p " z - ~ ) ( 1 - p " )  (2.9) 
n =  l 

for all z, p e C ,  ]p[ < 1. 
We remark here that in deriving (2.6), one has to assume commuting 

CTMs, and hence that the size of the lattice is infinite. Therefore, the 
parameter m in (2.6) is not the same as the system size m in (2.5). As 
described in the introduction, we now define our finitized model by iden- 
tifying the m's in (2.6) and (2.5). In other words, we define the finitized 

p(b,.) ^ ~ model through ,, ( , )  as 

pOc, , E(x a, x ')  Xm(a, b, c; x 2) 

The problem now is to perform the sum in (2.7) to obtain manageable 
closed-form expressions for the configuration sums X,,(a, b, c;q). In the 
remainder of this paper we will give two approaches to the solutions of this 
problem. The first is the method originally employed by Andrews et al. (9) 
It results in expressions for the configuration sums as the difference of two 
finite q-series. This can be viewed as a finitization of the Rocha-Caridi 
expressions for Virasoro characters, having the characteristics of the parti- 
tion function of a free boson. Adopting the terminology introduced by the 
Stone Brook group, (16' ]l) we hence call this method bosonic. The second 
method is new, and amounts to interpreting the sum in (2.7) as the grand- 
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canonical part i t ion function of a one-dimensional  gas of  charged particles, 
obeying certain exclusion rules. This t ime the resulting expressions involve 
just a single finite q-series. Infinite q-series analogs of these results were 
obtained in ref. 16, where Virasoro characters were generated using a 
system of fermionic quasiparticles. Again following refs. 16 and 11, we call 
the second method fermionic. 4 

2.3. Bosonic Evaluat ion of  the  C o n f i g u r a t i o n  Sums 

Let us begin with a brief reminder  of the original bosonic approach  of 
Andrews, Baxter, and Forrester,  as detailed in ref. 9. 

First, notice that  the X.,(a, b, c; q) can be (re)defined in terms of the 
following recurrence relations: 

X.,(a, b, b+ 1 ) =  X.,_](a, b+_q, b)+q"'/2X.,_l(a, b ~  1, b) 

3 ~<2b+ 1 ~ < 2 r - 3  (2.11) 

subject to the initial and boundary  conditions 

Xo(a, b, c) ~-(~ a.b6c.b+ l 

X.,(a, O, 1) =X,,,(a, r, r -  1 ) = 0  
(2.12) 

Then, introducing the Gaussian or q-binomials as 

I m]q .... 
O <<. m <<. N 

(2.13) 
otherwise 

with (q),,, =l-I~ '=l(1 _ q k )  for m > 0 and (q)o = 1, we have the following 
theorem:l 9) 

Theorem.  Form~>O,  l < ~ a , b , c < . r - l , c = b + _ l , m + a - b ~ 2 Z > ~ o ,  
the one-dimensional  configuration sums read 

X.,(a, b, c) 

=q(.-o)(,,-c,/4 ~ qj(r(r--l)j+r(b+c--l)/2--lr--l)a)[ m ] 
j=_~ � 8 9  q 

_ q. r - -  lU+ (b + c--' V2)l~i+,,, [ m ] }  (2.14) 
[ �89 q 

4We remind the reader that Baxter's original method of computing PbC(a) for the hard 
hexagon model also led to infinite fermionic q-series. (:s~ Our method can thus be seen as a 
generalization of the approach of ref. 28. 



664 Warnaar 

For the proof of this result we refer the reader to ref. 9. Let us, however, 
remark that it follows in straightforward manner upon substituting (2.14) 
into (2.11) and using the elementary recurrences (291 

1 q lq (2.15) = [ N _ ~ I ]  +q" ' [N~n l 

Also the conditions (2.12) are readily checked for the expression (2.14). 
Before concluding this section, we note that the Xm(a, b, c; q) can be 

viewed as finitizations of the Rocha-Caridi expressions for the (normalized) 
Virasoro characters , / " -  1. , )  / ' n ) , ( 3 0 )  A(b + c - -  1 ) /2,  a%~I 

lim q-(~-~ b, c; q) 

_ 1 ~ {qjtrlr--l)j+r(b+c--I)/2)--(r--l)a) q((r--l)j+(b+c--l)/2)(rj+a)} 
(q),~ j= -o~ 

~ v  ( r , r -  1) [/7"~ - ,t(b +,.- tvz.,,~uJ (2.16) 

3. F E R M I O N I C  E V A L U A T I O N  OF THE C O N F I G U R A T I O N  S U M S  

We now come to the main part of this paper, the alternative method 
to evaluate the sum (2.7). As mentioned earlier, we can interpret this sum 
as the grand-canonical partition function of a one-dimensional gas of 
charged particles. Once this identification has been made, the problem of 
course remains to actually compute this partition function. For pedagogical 
reasons this is in fact what we do first, that is, we start by defining our 
system of particles and compute its generating function. Only afterward do 
we perform the actual mapping from the one-dimensional configuration 
sums onto the Fermi gas partition function. To keep things as simple as 
possible we restrict ourselves to the evaluation of X,,(1, 1, 2). The case of 
arbitrary X,,(a, b, c), which involves the additional concept of boundary 
particles with fractional charge, will be treated in Part II of this paper. 

3.1. A One -D imens iona l  Fermi  Gas 

We consider a system of charged particles occupying a one-dimen- 
sional lattice of m + 1 sites, with sites labeled from 0 to m, m being even. 
The number of particles with charge j is nj ( j  = 1 ..... r -  2) and a particle of 
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rn 

Fig. 1. A possible charge configuration of the Fermi gas for r/> 7. 

charge j has diameter 2j. The lattice is completely occupied with particles, 
yielding the completeness relation 

r - -2  

2 Z jnj=m (3.1) 
j = l  

A typical configuration of particles is shown in Fig. 1, where we have 
drawn a particle of  charge j as a triangle with height j. 

To describe the allowed mot ion of  the particles, we have the following 
set of  rules: 

R 1  Hard-core repulsion between particles of  equal charge. Therefore, 
given an "initial" configuration, the order of  the particles with 
charge j remains fixed. For  obvious reasons we can therefore 
think of  the particles as being fermions. 

' (e)  / ~  

Fig. 2. The movement of a particle of charge k through a particle of charge j > k. According 
to rule R3, the configurations in c and c' are to be identified. The dashed lines are the 
baselines as described in the text. We note that the procedure for drawing the baselines in fact 
rules out possibility c', thus avoiding overcounting of configurations. 
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0 6 20 34=m 

A typical charge configuration in which some of the particles have formed charge 
complexes. 

Fig. 3. 

R2 

R3 

Two particles with charge j and k , j  ~ k, can penetrate each other 
and eventually exchange position. An example of the mot ion  of  a 
particle with charge k through a particle with charge j > k  is 
shown in Fig. 2. We note that  the diameter  of the charge complex 
is this figure remains 2 ( j + k ) = 2 j + 2 k  throughout  the mot ion  
and hence that we obey charge conservation. We also note that  
both the position and the number  of  peaks of  the complex remain 
fixed. 

We identify configurations that  lead to the same profile as being 
the same. Hence the charge configurations c and c' in Fig. 2 are 
identical. (Although R1 is a special case of  R3, we wish to state 
it as a separate rule.) 

With the above rules it is clear that a configuration as drawn in Fig. 1 
is not generic, since all particles are properly separated and no charge com- 
plexes occur. A more general situation, which can be obtained from the 
configuration of Fig. 1 by moving around the particles following the rules 
of  mot ion R1-R3, is shown in Fig. 3. 

We now come to a crucial observat ion about  our Fermi gas. Fix the 
number  of  particles of  given charge, i.e., fix n~, 17_, ..... nr__,, and call the con- 
figuration with all particles being separated, and all particles of  charge j 
being positioned to the left of all particles of  charge k < j ,  a mhTimal con- 
figuration. 5 Then all other configurations with the same particle content,  
i.e., with the same n~, n,_ ..... n r -2 ,  can be obtained by the following mot ion  
starting from the minimal configuration: 

SThis tenninology, suggested to the author by O. Foda, stems from a partition-theoretic 
interpretation of minimal configurations. 
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M1 Keep the particles with charge r - 2  fixed. 

M2 Move the leftmost particle of  charge r -  3, denoted P r -  3. ~ to the 
left through some (and possibly all) of the particles of charge 
r - 2 .  It can end up either as a charge complex or as a separate 
particle. 

M3 Move the second-leftmost particle of  charge r - 3  (denoted 
P , . - 3 . 2 )  to the left. Of  course, this time the movement  to the left 
is bounded by the position of particle p , . _  3, I due to the fermionic 
exclusion rule R1. 

M4 Continue to move all particles P r -3  .... n = l , 2  ..... n,._ 3, to the 
left, one at the time and P r - 3 . , , + l  after P , . - 3 . , , .  Each time the 
mot ion of particle p , . _  3. ,, § ~ is bounded to the left by the position 
of particle P,.-3, n "  

M5 After having moved  the particles of  charge r - 3 ,  start a similar 
procedure for the particles of  charge r - 4 ,  the leftmost particle 
P r - 4 ,  ! first and r ightmost  particle P r - 4  ..... 4 last. 

M6 Continue this process till all particles have moved to the left, 
always obeying the order p j. , ,  before pj., , ,  for n < n' and pj . , ,  

before Pk. ,,, for j > k. Each time the particle pj .  ,, +~ is bounded to 
the left by pj.,,, with p j. ~ bounded by the origin of the lattice. 

In Fig. 4 we show how to obtain the configuration of Fig. 3 by con- 
secutively moving the particles of  the corresponding minimal configuration 

(c) 

Fig. 4. The construction of the charge configuration of Fig. 3 out of a minimal configuration 
by carrying out the steps described under MI-M6. 
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leftward. To prove that we indeed can obtain all allowed configurations by 
starting from a minimal configuration carrying out the above steps, we first 
note that given a configuration, e.g., that of Fig. 3, we can uniquely deter- 
mine its particle content the following way: 

�9 First locate all charge complexes, regarding a separate particle as a 
complex (though trivial) as well. This amounts to marking all coordinates 
on the lattice that have zero height. In the case of the configuration of 
Fig. 3, the first complex ranges from 0 to 6, the second from 6 to 22, and 
the third from 22 to 34 = m. 

�9 For each separate complex we now determine its particle content as 
follows: 

- -  Draw a dashed line along the lattice from the origin (leftmost 
point) of the complex to its endpoint (rightmost point). We call this the 
zeroth baseline of the complex. The result of this trivial step is shown in 
Fig. 5a for a typical charge complex. 

- -  Start from the highest point of the complex. If there is more than 
one highest point, start from the leftmost highest point. Move down to 
the right of the peak along the contour of the complex till its endpoint. 
(The point were the next complex starts.) If a local minimum is reached, 
i.e., the contour of the complex starts going up again, we draw a dashed 
line from this local minimum to the right, until we cross the contour of the 
complex. At that point we move further down along the contour. If another 
minimum occurs we repeat the above, etc. 

We do exactly the same, now starting from the same leftmost highest 
point, but moving down to the left. If a local minimum is reached, we draw 
a dashed line to the left and continue our movement down when the 
dashed line intersects the contour of the complex. 

The result of the above procedure is shown in Fig. 5b. The total of 
dashed line segments drawn in this step is called the first baseline. 

- -  We now view the first baseline as the zeroth baseline of smaller 
complexes. Let there be L such smaller complexes. We then divide the first 
baseline into L pieces by marking the beginpoint and endpoint of these 
complexes by arrows pointing to the left and right, respectively; see Fig. 5b. 

Either these complexes consist of a single particle (complexes with one 
maximum and consequently no local minima), or they are again complexes 
in the true sense of the word. In the latter case, we repeat the procedure 
of drawing dashed lines, again starting from the leftmost highest point. 

The result of this third round of drawing dashed lines is shown in 
Fig. 5c. The total of dashed lines drawn in this step is called the second 
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The drawing of baselines in a charge complex to determine its particle content. The Fig. 5. 
small arrows indicate how to divide the jth baseline into zeroth baselines of smaller com- 
plexes. (a) The zeroth baseline. (b) The first baseline. (c) The second baseline. (d) The third 
baseline. 

baseline. Again this baseline is divided into pieces, marking yet smaller 
complexes. 

- -  We repeat the above procedure of  drawing and cutting up higher 
order baselines iteratively. That  is, we view the j t h  baseline as the zeroth 
baseline of  yet smaller objects, we draw arrows accordingly, and, if some 
of these smaller complexes have more than one maximum, we start 
drawing the ( j +  1 )th baseline. 

Since the highest point of  the complex is alway less than r - 1 ,  the 
iteration terminates within r -  2 steps (including the drawing of  the zeroth 
baseline). In the case of  Fig. 5, we are done in four iterative steps, Fig. 5d 
being the final result. 

- -  Given the complex with all the baselines, we can read of  its particle 
content straight away. First of  all, according to R2, each peak corresponds 
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Fig. 6. 

J 

2 

-1  

0 2/ 0 2k 

Particles of charge j and k with labeling of begin, end, and interior points. 

to a particle. To determine its charge we move down vertically from its 
peak till we meet the zeroth baseline relative to this particle, i.e., we move 
down till we first intersect a baseline. The height of the peak minus the 
height of the baseline at the intersection point is its charge. In the example 
of Fig. 5d, we thus get (n,, n_,, n3,...) = (2, 5, 1, 0, 1, 0, 0,...). 

�9 Clearly we now determine the content of a given configuration as 
the sum of the particle content of all its complexes. 

We note that in solving the problem of determining the particle con- 
tent of a configuration we have actually localized each individual particle. 
Hence we can start moving the particles to the right to obtain the minimal 
configuration. We perform this motion in exactly the opposite order as 
described under M1-M6. Since our rules of motion are reversible (left- 
right invariant), we have consequently proven our assertion that each 
configuration can be obtained from a minimal configuration following the 
previously described rules. 

A final ingredient needed in the Fermi gas is the actual Boltzmann 
weight of a given charge configuration. Given this, we can try to compute 
the partition function. Before we describe this missing piece of information, 
let us first compute the total number of configurations keeping the particle 
content fixed, as this naturally leads us to introduce some final notation 
needed. Consider the particle of charge j as shown in Fig. 6. We denote the 
leftmost point of the particle its origin and its rightmost point its endpoint. 
All points 1, 2 ..... 2 j -  1 will be referred to as interior points of the particle. 
Let us now ask in how many ways l(j, k) this particle and the particle with 
charge k < j shown in the same figure can form a charge complex. Clearly 
(see also Fig. 2), we can place the origin of the particle with charge k at the 
following interior points of the particle of charge j :  

2 j -  1, 2j,...,j+k (3.2) 
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Similarly, we can place the endpoint of the particle at the following interior 
points: 

1,2 ..... j - k  (3.3) 

If we now remark that, according to rule R3, placing the origin at j +  k 
gives the same configuration as placing the endpoint at j - k  (see Figs. 2c 
and c') we have a total of 

I ( Z k ) = 2 j - - 2 k -  1 (3.4) 

ways to form a complex of charge j + k. 
This prepares us to answer the combinatorial question raised above. 

The number of ways to move the particles with charge r - 3  to the left, 
starting from the minimal configuration, is 

�9 . i = - ( 3 . 5 )  

k l = O  k 0 knr_3=O \ nr--3 ./ 

since I ( r -  3, r -  4) = 1, and since we can position a particle not only in the 
interior of a large particle as a charge complex, but also in between two 
larger particles as a separate unbound particle. 

Similarly, the number of ways to move the particles with charge r - 4  
to the left is 

4-,-.,+2,,r-3 k, k"r-,-' (4nr_2 + 2nr_3 + n r _ 4 )  
E E "" E 1=  (3.6) 

kl = 0  k2=O knr_4=O rlr--4 

since l ( r -  2, r - - 4 ) =  3 and I ( r -  3, r -  4 ) =  1. In the general case with par- 
ticles of charge j we obtain 

2(r--2--j) nr-2+ ... +4nj+2+2nj+l kl knj -I 

Y, E . . 2 1  
kl = 0  k2=O kn)=O 

= ( 2 ( r - 2 - j ) n r - 2 n t - ' ' ' - k 4 n j + z - l - 2 t ' j + l + n j )  (3.7) 
nj 

as I ( r - -  2,j) = 2 ( r - -2 - - j )  -- 1 ..... I ( j+ 1,j) = 1. Of course the above calcula- 
tion is rather clumsy, and we could have written the binomial answers 
straight away. As we later need the q-analogs of (3.5)-(3.7), we nevertheless 
thought it instructive to present the result in the above form. 

Collecting the above results, we get for the total number of configura- 
tions Z with fixed particle content n~, n2 ..... nr_z 

Z(n,,n2 ..... n,._,_)=rf-]3 (2 S~k-=3~ (3.8) 
j=-" \ n j  

822/82/3-4-5 
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In turn summing over different particle contents, computing the number of 
configurations 3,,, in a grand-canonical setting, we get 

3,,, = ~.,' Z ( n l ,  n2 ..... n~_2) (3.9) 
nhn2,...,nr--2>~O 

where the prime over the sum indicates the restriction (3.1), i.e., we sum 
over particle numbers, keeping the size of the system fixed. 

This last result suggests in fact to ehminate one degree of freedom. To 
do so we introduce the variables m; as the number of antiparticles of charge 
- j ,  

m j = 2 n j + l + 4 n ; + 2 +  . . .  + 2 ( r - 2 - - j ) n , _ 2 ,  j = l  ..... r - - 2  (3.10) 

From this we see that antiparticles of charge - ( r - 2 )  are absent, and 
hence we can eliminate the dependence on the particles of charge r - 2 .  
Using the vector notation rfi = (m], m2 ..... m,_3) T, ~ =  (nl, nz ..... n,_3) r, 
and (e~);=~l.; ,  and denoting the incidence matrix of the Ar_ 3 Dynkin 
diagram as or we find 

n~ + rT= �89 + m~,) (3.11) 

and 

"-3  ( m ; + n ; ~  
z.,=E'l-I 

j=l \ mj / 
(3.12) 

Here the sum is over all (integer) solutions to the constraint equation 
(3.11 ), where the prime denotes the restriction to even antiparticle numbers 
rn;, as follows from (3.10). Equation (3.11), relating the variables n; to the 
new variables m j, originates from the work on fermionic sums by 
Berkovich. (]2) As we will see in Section 5, it also appears in the context of 
TBA. 

3.2. Computation of the Partition Function 

We now finally come to the actual definition of the Boltzmann weight 
of a charge configuration and to the calculation of the grand-canonical par- 
tition function. 

Let us return to the charge configuration of Fig. 3. Clearly, at each 
(integer) point x (x = 1 ..... m - 1 ) of the lattice there are four possibilities 
for the contour of the configuration. 6 We either have a straight line going 

6 To be precise, we should of course say "contour in a small neighborhood of position x." 
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up or down, or there is a cusp corresponding to a (local) minimum or 
maximum. We now assign an energy E(x) to each site x of the lattice by 

-flE(x)= {~ x l~ q if the contour at position x is a straight line 

if the contour at position x is a cusp (3.13) 

Clearly, with this definition the ground state of the model is given by the state 
with only particles of charge 1. For given, fixed particle content, the energy 
is minimized by ordering the particles to form a minimal configuration. 

The remainder of this subsection is devoted to the computation of the 
grand-canonical partition function of our Fermi gas, 

S,,(q) = ~, Z(nl ..... n,._2; q) (3.14) 
particle content 

with the partition function of fixed particle content given by 

Z(rt I,..., r tr_2, q) = ~ exp --fl E(k) (3.15) 
charge configurations k = 1 

To compute Z we follow a procedure similar to that employed in Section 3.1. 
First we consider the minimal configuration, and from that we obtain all 
other configurations with equal content by carrying out the steps M l-M6. 
The only extra input will be that changing the position of a particle 
changes the energy of a configuration. 

To compute the energy of a minimal configuration we proceed as 
follows. The energy of a particle with charge j, with its origin at position 
x, is 

2 j - - ]  

-flE(j,x)=�89 Z 
k = I ,k  ~ j  

(k+x)=( j+x)( j -1) logq (3.16) 

Hence, for the minimal configuration with content n] ..... nr-2 we compute 

- f lEmin= l~  Z ~, E j, 2j(l--1)+2 Z knk 
j = l  / = 1  k = j + l  

= l o g q  2 ( j - l ) n j  + 2  2 knk 
j = l  k = j + l  

r - - 3  r - - 3  

= l o g q  ~' ~ nj+tAj.knk+t 
j = l  k ~ l  

(3.17) 
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with matrix A defined as 

~ j ( k +  1), j<<.k 
AJ'k= ~Ak, j, j > k  (3.18) 

Writing this in favor of the occupation numbers of antiparticles mj defined 
in (3.10), we can simplify to 

e - f lEmin  .~_ qmrcm/4 (3.19) 

where C denotes the Cartan matrix of the simply laced Lie algebra A r_ 3. 
As before, all other states with the same content n~ ..... nr-2 are 

obtained from the minimal configuration by moving particles to the left 
following M1-M6. The combinatorics of this rearranging of particles has 
been considered in Section 3.1. What has not yet been worked out is the 
increase of energy associated with the leftward motion of a particle. Since 
we move one particle at a time, we only have to calculate the energy 
increase of the movement of a particle of charge k relative to a charge com- 
plex with charge j > k positioned immediately to the left of this particle. 
Possibly the simplest way to go about is to first view the complex and the 
particle as one single complex with charge j + k. Suppose that relative to 
the origin of this complex we have (local) minima and maxima of the con- 
tour at 0 < x l < y l < x 2 < Y 2 < . - .  < x , , _ l < y , , _ l < x , , < 2 k + 2 j ,  labeling 
minima by y and maxima by x. Note that the simplest possible scenario, 
the complex of charge j consisting of a single particle, corresponds to n = 2. 
The total weight of the complex relative to its own origin is thus 

2 j + 2 k  - -  I 

2 
I = 1  

I ~ x i  Yi 

qk/2 (3.20) 

Now start moving the particle with charge k one step to the left, as shown 
in Fig. 2. This results in a decrease of both y,,_ ~ and x ,  by 1. The weight 
increase of this step is hence a factor 

q (  Yn - t + x n  + 2 ) / 2  

qCV.-~ +.,-.v2 = q (3.21) 

Taking another step to the left again leads to a decrease of y,,_ ~ and x,, by 
1 and we pick up another factor q. This process can be repeated until 
y , _  ~ - x , _  1 = x ,  - y , _  1, corresponding to the situation that the maxima 
at x,, and x ,_  1 have equal height (see Fig. 2c). From then on, moving the 
particle a single step leads to a decrease of x, ,_  ~ and y,,_ 1 by 1. However, 
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this still leads to an increase by a single factor q, and we are led to 
conclude that each step of particle k through the complex yields an extra 
factor q. 

With this result we can simply carry out the q-analog of the previous 
subsection. To do so we repeatedly make use of the identity 129~ 

N kl kM- I 

Y,--- 2 
k l : O  k2=O kM=O 

qk~+k'+ " +kM=I NMM ] (3.22) 
q 

First we start moving the particles of charge r - 3 .  By (3.22) this gives a 
Boltzmann factor 

2nr - 2 kl knr - 3 - 1 
E ~ ... E qk,+k'-+'"+k.~_, 

k l = O  k2=O knr_3=O 

Ilr--  3 J q m r - - 3  J 
(3.23) 

Similarly, moving the particles with charge r -  4 to the left results in 

4nr- 2 + 2nr- 3 kl knr- 4-  I 

E E "'" E q kt+k '++k'-4 
kl = 0  k2=O knr_4 = 0 

= [ 4 ' l r - 2 - [ - 2 H r - 3 - [ - n r - 4 1  = E n r - 4 + m r - 4 ]  

n r - 4  j q m , . - 4  j q 
(3.24) 

In the general case of particles with chargej  we end up with the contribution 

2(r- -2- - j )nr_2+ "" +4nj+2+~lj+l kl kn]-I 

~. E "'" E qk,+k:+...+% 
k I = 0 k2 = 0 k#j = 0 

nj .~ q L I'll~ J q 

From the results (3.23)-(3.25) and (3.19) we obtain an expression for 
the partition function Z 

r--3[ ] 
Z ( n l ,  ll2 ..... r / r - 2 ;  q)=q r~rCff~/4 I '~ m j - b  n j  

j = l  k m j  I q  
(3.26) 

with Eqs. (3.10) and (3.11) relating the antiparticle numbers mj to the 
particle numbers nj. 
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We can finally end this section by stating the result for the grand- 
canonical partition function, 

~,,(q) = ~ Z (n l ,  n2 ..... nr_2; q) 
particle c o n t e n t  

] = y,, q,~rc~/4 1-[ rnj+nj  (3.27) 
j = l  1- mj Jq 

where, as in (3.12), the second sum is over all solutions to (3.11) with each 
entry of pfi being even. 

3.3. Mapping of Configuration Sums onto 
Fermi Gas Partition Function 

To show that the result (3.27) is indeed the evaluation of (2.7) with 
a = b = l  and c = 2 ,  we fix the spins as~{1,2  ..... r - l }  such that 
laj+~ - a j l  = 1 for all j, and such that a o = a , , =  1, cr,,,+~ =2.  We call such 
a sequence (ao, al ..... a,,+~) admissible. Next we plot crj as a function o f j  
and interpolate between (/, aj) and ( j+  1, aj+~) by a straight line. We call 
the graph thus obtained the contour of (ao ..... a,,§ 1). A typical contour of 
an admissible sequence of sigmas is shown in Fig. 7. From the definition 
(2.7) of the configuration sums we see that a straight-line segment through 
(j, a j), corresponding to Icrj_~-crj+,l =2, yields a factor qj/2. The total 
weight of an admissible sequence can therefore be written as 

e x p l - f l " ; ~ ' E ( j ) ]  (3.28) 

where the energy function E(j)  is precisely that of the Fermi gas given by 
Eq. (3.13). Since summing over all admissible sequences corresponds to 

0 

r--1 

0 2 m 

. - j  

Fig. 7. A contour  of a typical admissible sequence of spins (ao, cr~ ..... a , ,+ j). 
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summing over all contours, which in turn corresponds to summing over all 
charge configuration, we have established the desired equivalence. 

We note"that particle-like interpretations of admissible contours (or 
paths) have been previously formulated for the minimal conformal series 
M(2, k) in refs. 31-33. 

The above equivalence also explains the defining rules R1 and R3. 
From (2.7) we have to count each admissible sequence of spins just once. 
However, interchanging two identical particles leads to the same contour, 
and would therefore lead to multiple counting of one and the same 
admissible sequence. Similarly, we have to impose R3 to avoid over- 
counting of admissible sequences. 

At the same time the mapping explains why the particular choice of 
Xm(1, 1, 2) is simplest to evaluate using the fermionic technique. If, e.g., we 
take a > 1, we have to introduce a particle which, in separated unbound 
form, would have a profile of a single straight line going down. This 
boundary particle has a (fractional) charge of ( a -  1)/2. Similarly, when 
b = c - 1 > 1, we need a boundary particle of charge b/2 with profile of a 
straight line going up. These particles are in contrast with the particles 
introduced so far, which have origin and endpoint of equal height. Since 
the motion of a (bulk) particle through a boundary particle is very different 
from that defined in R2, the general X,,(a, b, c) case becomes quite 
complicated and technical. For this reason the computation of all one- 
dimensional configuration sums will be deferred to Part II. 

4. P O L Y N O M I A L  A N D  R O G E R S - R A M A N U J A N - T Y P E  
I D E N T I T I E S  

Since the bosonic and fermionic methods to evaluate the configuration 
sum Xm(1, 1, 2) yield rather different types of expressions, we can of course 
combine results to find some nontrivial identities. Setting a - - b - - 1  and 
c = 2  in (2.14), substituting (3.11) into (3.27), and replacing m by 2m, we 
obtain 

E 
m l  , , . . ,n~ ' r -  3 ~> 0 

nl, e 2 Z r -  3 

r--' I 
j =  l m j  Jq 

j =  --co {q"r'r '"' "Im%] q- 2m 1} m -  1 - r j  q 

(4.1) 
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These identities are precisely the polynomial identities for X,_m(1, 1, 2) as 
conjectured by Melzer. (]~ A different proof of (4.1) has been published by 
Berkovich/]2) In his proof Berkovich showed that a larger class of fer- 
mionic expressions, corresponding to all X,,(1, b, b-I-1), solves the same 
recurrences (2.11) as the bosonic expressions (2.14) of ABF. To establish 
this, elegant generalizations of the decompositions (2.15) for the 
q-binomials were used. One of the great merits of the recursive proof of 
ref. 12 is that it proves a whole set of fermionic expressions at the same 
time, and that complications with the boundary for general X,,(a, b, c) are 
avoided. (34) On the other hand, the proof as given in this paper has the 
advantage of providing detailed information relating BA solutions (see next 
section), admissible sequences of spins occurring in th CTM calculation, 
charge configurations of the Fermi gas, and actual terms within the sum on 
the left-hand side of (4.1). As to the proof of the above identities, we finally 
mention that a recursive proof of fermionic expressions for all X,,(a, b, c) 
was given by Meher for the cases r =  3 and 4. (~~ 

In taking the m ~ oo limit of (4.1), using 

I' I tk] = 1/(q)k and lim [ 2 m ] = l / ( q ) ~  . l m  q m ~ ~ q 

we find the following Rogers-Ramanujan-type identities for the Z~[I L r~(q) 
Virasoro characters: 

(q),,, j=2 m1 m I...., m r -  3 >1 ntr - 2 =-- 0 q 
o q ~ 2 ~  r - 3  

1 =~_ {qjCr(r-l)j+l) q,r-Z)j+lJ(rj-1)} (4.2) 
- ( q ) ~  j 

These identities were first conjectured by the Stony Brook group in ref. 11. 
To obtain Rogers-Ramanujan-type identities for the branching func- 

tions of the Z~_: parafermion conformal field theories of ref. 35, we replace 
q by 1/q in (4.1) and again let m -~ ~ .  This results in 

q r n r c - l m  

E 
,,, ......... 3>~o (q)m* ' ' '  (q) .... 3 
( C - I ~ ) r _ 3  E 2 ~ 

q - - l r - -  3 ) l r - -  2) /24r  

- [(q).~_]~-3 ~ ~ sgn(w) 
E Q w ~ W 

x q~l~- ~)I~- [~p- , ' -  i),,.(p)]/~,- I )1-72 (4.3) 
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with Q the root lattice, W the Weyl group, and p the Weyl vector of At_ 3. 
We note that the left-hand sides of these identities are the expressions for 
the branching functions obtained by Lepowsky and Primc. t361 To derive 
the above we have used the level-rank equivalence between the (r - 1 )-state 
ABF model in regime III  and the level-2 Ar-3 J imbo-Miwa-Okado  model 
in regime II, tt7) to rewrite the SU(2)-type right-hand side of (4.1) into an 
SU(r-2)-type form t241 (see also the discussion in ref. 25). For r = 4  we 
note that (4.2) and (4.3) coincide. 

5. C T M  V E R S U S  T B A  

The reader familiar with the TBA computations for the ABF model of 
Bazhanov and Reshetikhin (BR) 141 will have noticed the many similarities 
between the TBA and the Fermi gas. This section serves to indeed show the 
mathematical equivalence between the fermionic CTM calculations of 
Section 3 and the TBA calculations of ref. 4. 

First let us recall the Bethe Ansatz equations for the ABF model ~4' 51 

(,91({2 + ia j )y"  = ,,,/2 ,9,(i~j-i0~ + 2) 
(~ ",2xt9.(12- i~ --k=l 1--[ tgI(iCxj-- i0tk-- 2) '  j =  1 ..... �89 (5.1) 

Here co = exp(i/2), l =  1 ..... r - -  1, 2=z~/r, and each set of roots {cq ..... c~,,,/2} 
yields an eigenvalue A(u) of the row-to-row transfer matrix. 

Based on exact information for the cases r = 3 (trivial two-state model) 
and r =  4 (Ising model) and on a numerical investigation for other r values, 
BR formulated the following string hypothesis: For m ---, oo all solutions to 
the BAE consist of sets of strings, with the allowed string types given by 

~ ( j )  _ _  t i C ( j )  _ _  i~ / , - _ _  ~T r ( J+ l -2 / . t ) ,  , u = l  ..... j ;  j = l  ..... , ' - -2  (5.2) 

where p labels the j roots within a string and j the different types of strings. 
The real variable etjl is the string center. 

As described in the introduction, we define our finitized model by 
assuming the string hypothesis to be correct for finite m. Let nj denote the 
number of strings of type j. Then, since the total number of roots in a 
solution equals }m, we have the completeness relation 

r--2 
~. jn j  = �89 (5.3) 

] = l  

We note that this is exactly the completeness relation (3.1) for the particle 
numbers of the Fermi gas. 
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Substituting the hypothesis into the finite-m BAE, a set of reduced 
equations is obtained which only involve the string centers. Carrying out 
the standard TBA procedures, ~4'37"2~ we find that the reduced equation 
yield the following set of constraint equations for the number of strings nj 
and the number of holes mj (counting the missing Takahashi numbers): 

r - - 2  

mbj=mj+ ~ Bj, knk (5.4) 
k = l  

with 

j >k. 
Bj.,= bj= r - j  

r 
~.Bk.j, j < k, 

(5.5) 

Following BR, we set j =  r - 2  in (5.4) to find mr-2 = 0. Now eliminating 
n~_2 yields precisely the constraint equation (3.11), and we conclude that 
we can identify the strings (holes) of type j with the particles (antiparticles) 
of charge j ( - j )  of the Fermi gas. In other words, with each solution to the 
BAE for the finitized model there corresponds a configuration of the Fermi 
gas, and vice versa. We remark here that we can in fact easily establish a 
bijection between Bethe Ansatz solutions and Fermi gas configurations. 
So, e.g., minimal configurations in the Fermi gas correspond to solutions 
without holes, and the leftward motion of a particle with charge j 
corresponds to shifting the Takahashi numbers I Ijl by "inserting" numbers 
7 ti~ corresponding to the creation of holes. Using the map from the Fermi 
gas configurations to the configuration sums, we have in fact a bijection 
between admissible sequences of spins (a, ..... a,,,§ and solutions to the 
Bethe Ansatz equations labeled by their Takahashi numbers. In this 
context we should mention that several a u t h o r s  137"19"12'21t have indeed 
conjectured and/or computed the total number of solutions to the Bethe 
equations to be expression (3.12), here counting the number of charge 
configurations in the Fermi gas. 

To further obtain the equations of TBA, we first let m-* oo in the 
Fermi gas partition function (3.27), and then take the limit q ~  1-.  This 
procedure, developed in refs. 38 and 39, is equivalent to computing the 
T ~ 0  asymptotics of the entropy in TBA. Writing lira . . . . .  ~ , , (q )=  
~k akq k, we have the asymptotics 

log ak ~ (3n S ( ~  T=O) ~/'- - -  ( 5 . 6 )  
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Computing a~ by steepest descent gives us t~5~ 

8 T r~3 
S(T) = [ L( ~j) - L(qj) ] + o(T) (5.7) 

;r j=l 

with L the Rogers dilogarithm function t4~ 

1 [log(l--(). log(] L/zl= I _ (5.8) 

The numbers ~j follow from the TBA equations ~4~ 

r - - 3  

2 log(1 - ~j) = ~ Cj.k log(~k) (5.9) 
k = l  

which arise here as the conditions for the saddle point. The ~1,,+, follow 
from the TBA equations with r replaced by r -  1, and r/I = 1. 

Using the identity " j l  

~, [L(~j)--LOb)] = -  1-- (5.10) 
j=t r(r-- 1) 

we finally get 

, -  

in accordance with the TBA result of BR. From this last result the central 
charge of the ABF models can be read off as 1421 

6 
c = l  (5.12) 

r ( r - -  1) 

To conclude this section, we wish to make a comment on the TBA 
calculations of 'BR as carried out in ref. 4. One of the shortcomings of their 
calculation is the failure to also derive results for the scaling dimensions of 
the ABF model. However, from the equivalence between the Fermi gas and 
the TBA approach, it is clear that the constraint equations (3.11) which 
follow from the string hypothesis (5.2) only describe the vacuum or 
ground-state sector of the model. As argued before, to compute other con- 
figuration sums than X,,,( l, 1, 2) (which corresponds to computing scaling 
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dimensions), additional boundary particles have to be introduced on top of 
the Fermi gas. These extra particles result in a modification of the con- 
straint equations (3.11 ).7 We therefore believe that the string hypothesis as 
formulated by BR is incomplete and does not describe all solutions to the 
BAE. Indeed, the total number of eigenvalues of the row-to-row transfer 
matrix of the ABF model exceeds the number of configurations of the 
Fermi gas. The fractional structure of the additional boundary particles 
needed for the general configuration sums seems to suggest the existence of 
half-strings which have roots in the upper or lower part of the complex 
plane only. 8 

6. S U M M A R Y  A N D  D I S C U S S I O N  

In this paper we have presented a new method for computing the one- 
dimensional configuration sums of the ABF model in regime III. Our 
approach, based on the interpretation of the configuration sums as the 
grand-canonical partition function of a one-dimensional gas of charged fer- 
mions, results in polynomial expressions of fermionic type. This is opposed 
to the bosonic polynomials obtained by employing the recurrence method 
of Andrews e t a l J  9) Combining both bosonic and fermionic techniques 
leads to a proof of Melzer's polynomial identities ~~ different from the 
recursive proof by BerkovichJ ~2~ In taking the thermodynamic limit, this 
also proves the Rogers-Ramanujan identities for unitary minimal Virasoro 
characters as conjectured by Kedem e t  al. c ~ Since our fermionic method is 
mathematically equivalent to the thermodynamic Bethe Ansatz calculations 
for the ABF model of Bazhanov and Reshetikhin, c4~ we have established a 
unification of the corner transfer matrix and of the TBA technique. Here it 
is to be noted that in our calculations the particle content of the model 
follows without making the usual string hypothesis characterizing TBA 
calculations. 

Although we have applied our method to the simplest possible con- 
figuration sum of the ABF model, the other sums can be computed by 
introducing additional boundary particles to the Fermi gas. The details of 
this procedure will be treated in Part II of this paper/44~ What is more, our 
method is by no means restricted to the ABF model, and we believe that 
all restricted solid-on-solid models for which the TBA program has been 

7These modifications correspond to the "additional inhomogeneities" discussed in refs. 12 
and 25. 

8 In a recent preprint ~43) the generalization of TBA to compute scaling dimensions was also 
briefly mentioned. How it relates to the half-strings proposed here remains unclear. 
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carried out (4-6' 45" 46) admit a fermionic computation of their configura- 
tion sums. We thus hope that our approach leads to proofs of the many 
polynomial arid Rogers-Ramanujan identities conjectured in the recent 
literature.t6, ~ ~, 24, 26) 

We also note that our Fermi gas formulation of the ABF configuration 
sums can be reformulated to obtain a partition-theoretic proof of Melzer's 
identities. Such a proof corresponds to establishing a bijection between par- 
titions with prescribed hook differences t47~ and charge configurations of the 
Fermi gas. Work on this bijection is currently in progress in collaboration 
with O. Foda. 1481 

Finally, it would be extremely interesting to connect the approach to 
fermionic character representations of Bouwknegt et al.149-5~ using Yangian 
symmetries, and of Georgiev using vertex operators, t521 to that of this paper. 
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