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Abstract 

The spectrum of the critical king model on a lattice with cylindrical and toroidal boundary 
conditions is calculated by commuting transfer matrix methods. Using a simple truncation pro- 
cedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. 
These finitizations imply polynomial identities which in the large lattice limit give rise to the 
Rogers-Ramanujan identities for the c = I /2 Virasoro characters. 

1. Introduction 

Though the square lattice king model [l] was solved by Onsager [ 21 over fifty 

years ago, a large number of papers devoted to this favourite toy model in statistical 

mechanics have appeared perennially ever since. Despite its simplicity, the Ising model 

has fascinating mathematical structures underlying its integrability, as well as simple 

but realistic applications to a wide variety of physical systems. Indeed, many well- 

known physicists have been motivated by this model, and such names as Onsager, 

Yang, Kasteleyn, Fisher, McCoy, Wu, Baxter and Cape], to name a few, are irretrievably 

associated with the Ising model [ 2-81. 

Another much more modern chapter of statistical mechanics is the application of 

conformal invariance to critical systems [9,10]. For the particular case of the critical 

Ising model, Cardy [ 1 I] considered the finite-size effects on both toroidal and cylindrical 
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geometries using the principles of conformal and modular invariance. He was thus able 

to make precise predictions about the form of the corrections to the eigenvalues of the 

row transfer matrix and to give the modular invariant (covariant) partition functions in 

terms of characters of the Virasoro algebra. 

Cardy’s predictions were indeed proven to be correct by analysis of the critical Ising 

model partition function in the scaling limit. In the case of toroidal boundary conditions, 

this was first carried out by Ferdinand and Fisher [ 121, who in fact derived the modular 

invariant partition function fifteen years prior to the advent of conformal invariance! In 

the case of cylindrical boundary conditions, Cardy’s results were confirmed by Bugrij 

and Shadura [ 13 1. 

It is the aim of this paper to extend the analysis of Refs. [ 12,131, following the 

approach of Baxter’s commuting transfer matrices [7]. In particular, we solve functional 

equations for the row transfer matrix eigenvalues, which are satisfied as a consequence 

of the star-triangle relation. The reason for repeating the calculation of the conformal 

spectrum of the Ising model is the recent interest in fcrmionic character representations 

and the discovery of many “natural” polynomial hnitizations of the c < 1 Virasoro 

characters; see for example Refs. [ 14-191. In particular, WC should mention Mclzcr’s 

paper [ 1.51, in which finitizations were proposed for the unitary minimal Virasoro 

characters and modular invariant partition functions. Interestingly, the linitized characters 

had appeared previously in the corner transfer matrix calculations of a series of solvable 

lattice models by Andrews, Baxter and Forrester [20]. By computing the spectrum ol 

the row transfer matrix for the Ising model, we show that also the row transfer matrix 

naturally acts as a generating function of finitized characters. This is similar to findings 

based on Bethc Ansatz studies of the row transfer matrix spectrum [ 16,19,21], but 

without the use of the so-called string-hypothesis. 

The rest of this paper is organised as follows. In the next section we define the 

critical Ising model with cylindrical and toroidal boundary conditions, and review some 

of the predictions of conformal invariance concerning the spectrum of the model. Then 

in Section 3 we present functional equations satisfied by the transfer matrix eigenvalues 

and solve these exactly for arbitrary system size. In Section 4 we derive the tinitized 

conformal spectra using a simple truncation procedure, and discuss the c = l/2 character 

identities. We briefly discuss and summarize our results in Section 5. 

2. The Ising model on the cylinder and torus 

2.1. Definition of the model 

Cylindrical geometry 

To conveniently define the Ising model with a variety of boundary conditions, it is 

useful to define two different two-dimensional lattices. We define the lattice C as a 

square lattice rotated by 45 degrees, in which the rows have alternately L - I and L 

faces. Similarly, we define the lattice L’ as a rotated square lattice in which each row 
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I 2 . . . L I . L 

Fig. I. The lattices L and L’, respectively 

has L faces. Vertically both lattices have columns of L’ faces, and we impose periodic 

boundary conditions in this direction by identifying the first and the (L’ + 1) th rows of 

faces. Both the lattices C and C’ are depicted in Fig. 1. We note that C consists of 2L 

and l’ of 2L + 1 (zigzagging) columns, and that both lattices have 2L’ rows of edges. 

For later use we denote these numbers by N and M, so M = 2L’ and 

N=2LforL, N = 2L + 1 for C’. (2.1) 

Those sites of the lattice incident to only two edges define the boundary. Note that both 

C and C’ have M left and right boundary sites. 

We now define the usual Ising model on C and C’ by putting Ising spins on each site 

of the lattice. We are concerned with the following four types of boundary conditions: 

+ + (fixed) boundary We choose the lattice L and fix the spins at the left and right 

boundaries to be + 1. 

+ - (fixed) Boundary We choose the lattice C and fix the spins at the left and right 

boundaries to be + 1 and - 1, respectively. 

mixed boundaries We choose the lattice C’ and fix the spins at the left boundary to be 

+l, but place no restriction on the right boundary spins. 

free boundaries We choose the lattice L and place no restriction on either boundary. 

Denoting the set of spins not fixed by the boundary condition by {(T}, we define the 

partition function in each case to be 

zNM=Cexp(IC~i”j+KC~i~,i). (2.2) 

I(T) &.i) GJ) 

For fixed and mixed boundaries, the first sum within the parenthesis is over edges in 

odd columns and the second sum over edges in even columns of the lattice. Conversely, 

for free boundary conditions the first sum corresponds to even columns and the second 

sum to odd columns. Since we restrict ourselves to the critical Ising model, we have 

sinh( 2.J) sinh( 2K) = 1. This condition can be conveniently parameterized by introducing 

a so-called spectral parameter u, so that 

sinh( 2J) = cot( 2u), sinh( 2K) = tan( 2u), 

with 0 < u < 7~14. 

(2.3) 

Let us remark here that we could of course equally well have defined the i-t, +- 

and the free boundary model on the lattice C’ and the mixed boundary model on L. The 
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particular choices made above arc purely for computational convenience and nothing 

else. In fact, we have performed the complete calculations on both lattices, but since the 

relevant results are independent of either choice, we have chosen to restrict ourselves to 

the above. 

Toroidul geometr) 

To get the Ising model with the usual doubly-periodic boundary conditions, we take 

the lattice L and identify the first and the (L + I )th columns of faces. Again we define 

the partition function as in (2.2), but now the first sum within the parenthesis is over 

NW-SE edges, and the second sum over NE-SW edges. 

2.2. Conformal properties 

The critical properties of the Ising model arc described by a conformal ticld theory 

charactcriscd by a central charge c = I /2 and conformal weights A = 0, I /2 and I / 16. 

Here we review the relevant predictions which arise by applying the theory of conformal 

invariance to the model [ 1 I 1. 

Cylirrdrical geometr> 

Consider the finite-size partition function ZNM of the critical Ising model on a cylindri- 

cal lattice of N columns and M rows as described previously. The asymptotic behaviour 

01‘ Z~M in the limit of large N and M with the ratio M/N fixed is given by 

ZNM(II) = Tr(T(rr)“) N cxp(-NM,fh(r,) - Mf,(lri) Z(q). (2.4) 

Here T is the transfer matrix to be defined in the next section, jib is the bulk free energy, 

,fs is the surface free energy and Z(q) is the universal conformal partition function with 

the modular parameter q given by 

y = exp( -2r sin( 411) M/N). 

To leading orders, each transfer matrix eigenvalue A(U) reads [ 221 

(2.5) 

$log~(~~)=-~,fb-f;+~(&-A-~)sin(4~~)+0 A . 
0 

(2.6) 

with A one of the conformal weights, and n a non-negative integer which is zero for 

the largest eigenvalue. Therefore, all cigenvalues naturally divide into three towers, and 

after taking the ratio of each eigenvalue with the largest, we can write 

Z(Y) =x4- 1’/2%AN( A ) c 4”“, 

_I x 

with N(A) = 0 or I. In fact, Cardy has predicted that [ I 11 

(2.7) 

z(q) = ~N(A)xdh (2.8) 
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with the operator content given by 

[ (l,O,O) ++ boundary, 

(N(O),N(l/2),N(,/16))= ;;*;9;; - - boundary: 

( 1: 1: 0) 

mixed boundartes, 

free boundaries. 

The X~ (4) in the above are the c = l/2 Virasoro characters, 

k=l k=l 
)I 

= 2 g = & ,g {qiCl2_i+l) _ q(%+l)(4.i+l)}, 

- .J---oo 

4 
-23148X1,2 = iq-l/2 1 +qk-l/2) -@I _qk-'/2 

k=l 

cc 

9 -"24x1,16(q) = I-J (1 +qk) 

k=l 

= ,z 4”‘11;“i2 = & ,g {qjC12.j-2) _ q(3.i+1)(4i+2)} , 
nr w 

.1---m 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where (qltll = rg, (1 - Yk) f or m > 0 and (q)o = 1. The three different forms of 

each of the characters constitute the c = l/2 Rogers-Ramanujan identities, and will all 

appear in finitized (polynomial) form in our subsequent calculations. 

Toroidul geomett-) 

In the toroidal geometry, the partition function is still given by (2.4), but with 

y = exp 
( 

-2rrie-4iu M/N). (2.13) 

Of course, since the lattice is periodic, there is no surface free energy. The finite-size 

corrections of the Ising model eigenvalues are given by [22,23] 

10gA(u)=-N~t,+~[(~c-2A)sin(4u)-inr-4’”+ifie4iU] +0(i), 

(2.14) 

with II and 2 non-negative integers, both of which are zero for the largest eigenvalue. 

so again the eigenvalues divide into three towers, and the modular invariant partition 

function can be written as 
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Z(q) = -J$r 
++2:‘,,@) x4& c(q)% , (2.15) 

A k L 

where N(A) can be 0 or 1, and q is the complex conjugate of q. In fact, N(A) is 

always 1, and the sums over k and ! can be expressed in terms of the c = I /2 Virasoro 

characters to yield [ I I] 

Z(4) = xo(4)xo(c?) + x1/2(q)xl/2(a + xlj16(q)/y,,,fj(q). (2.16) 

3. Calculation of the partition function 

In this section WC compute all eigenvalues of the transfer matrices for the Ising models 

defined in Section 2. I. For the cast of toroidal boundary conditions, WC omit the details 

altogether and simply state the results obtained by Baxter in Ref. [ 71. 

3. I. Trutnfer matrices 

Following Ref. [24], we define finite-width transfer matrices for each of the four 

different boundary conditions on the cylinder. First, for the fixed boundary conditions 

we set 

(3.1) 

with 7 = +1 for the ++ case and 7 = -1 for the +- case. The Boltzmann weights W 

are given by 

with CT = 51. 

WUZ 
( > 

=&cos2($Mi), 

W-CT,” 
( 1 

= JZsin2( trr - II), 

WC O- 
( ) -CT = COS(2U)/Jz, 

w Cr -CT 
( > (T = cos(2u)/& 

Similarly, for the mixed boundary conditions we define 

T,,,,,t (u) = c W ~~,,,~ 

(3.2) 

(3.3) 

and for free boundaries 
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(3.4) 

We remark here that for computational reasons we have normalized the weights in 

comparison with (2.2) so that in all cases T(0) and T(97/4) become the identity 

matrix. Specifically, the weights in the first column of (3.2) have been multiplied by 

the factor sin(2u)/& and the weights in the second column by cos(2u)/\/z. 

In Ref. [24] it was shown that each of the above-defined transfer matrices forms a 

commuting family, i.e., T(u)T(u) = T(u)T(u). Furthermore, they all satisfy the same 

symmetry T(U) = T( 97/4 - u) and functional equation 

T(u)T(u + $%-) = 
COS*(~+‘)( 2~) - sin 2(N+1)(2U) 

cos( 4U) 
I, (3.5) 

with I the identity matrix. 

In the following two sections we solve this functional equation to obtain all eigenval- 

ues of the Ising model transfer matrices for arbitrary finite strip-width N. 

3.2. Fixed and free boundary conditions 

For these cases the functional equation (3.5) together with the commutativity of T 

implies that the eigenvalues of the transfer matrix satisfy 

A(u)A(u + $r) = (cos~(~~+‘)(~u) - sin2(2L+‘)(2U)) /cos(~u). (3.6) 

The right-hand side can simply be factorized to yield 

2L+I 

n(u)A(u + +r) = (4e4’U)-2L F (eRiu+tan2 (I((::+ ::>). 

k#L+I 

This in turn implies 

(3.7) 

(3.8) 

k#L+1 

with e2 = pi = 1 for all k. 

From the symmetry A(u) = A(7r/4 - w), we have ,_Lk = ,_QL__k+2, and from A(0) = 1 

we find nk=, ,Uk = E. This allows the eigenvalue expression to be simplified to 

n(U) =zeLfi (COSeC (~~~~~ :;) +Pksin(4a)). (3.9) 

Each ,_Lk in this expression can be chosen independently, and hence (3.9) gives rise to 

2L eigenvalues. This is indeed the dimension of the transfer matrix for free boundaries, 
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but for either of the two fixed boundary cases the size of T is 2L-‘. To determine which 

choices of ,UI, . , pi correspond to eigenvalues for the ++ transfer matrix and which 

to the +- transfer matrix, we study the so-called braid limit iu 4 cx). Appropriately 

renormalizing the transfer matrix and then taking this limit, we have 

( 1 
L 

.4’ = lim 4iee”‘” 
11,‘CC 

.4(U) = fi/&. 
k=l 

(3.10) 

From this we see that in the braid limit all eigenvalues of the transfer matrix are il. 

This is in agreement with the braid limit of the functional equation (3.6), which reduces 

to (Ah)2 = I. 

In fact, we can show that Ah = I for all eigenvalues of the ++ transfer matrix, and 

.4’ = - 1 for all cigcnvalues of the +- transfer matrix. To see this we note that from 

the explicit form of the weights (3.2) it follows that 

lim 4ie-“i” 

i(f+(x 
F WC W(P ;) = ar&,,,,,. (3.1 I) 

In the braid limit the fixed boundary transfer matrices are therefore diagonal, with 

diagonal elements 

(3.12) 

where r = 1 for the ++ boundary and -1 for the +- boundary. Hence /lb = r for 

all eigenvalues, and (3.10) then implies that Hi=, &Lk = 1 for the ++ boundary and 

nk, ,LL~ = -I for the +- boundary. This correctly yields 2L-’ cigenvalues for either 

of the fixed boundary cases. and 2L eigenvalues for the free boundary model with 

unrestricted ,Uk. 

3.3. Mixed boundary conditions 

This time we have to solve the functional equation 

,4(u)~l(rr + $77) = (cosJ”.+“(2r*) - sin”“*+“(2~~)) /cos(4u). (3.13) 

As before, we factorize the right-hand side, use the symmetry A(U) = A(7r/4 - II) and 

initial condition n(O) = 1, to fnd 

,4(U) = 2-LJG-i f[ k=, (cosec (2([t ,)> +Pksin(4u)) 3 (3.14) 

with ,uz = I for all k. Since the size of the transfer matrix is 2L, all independent choices 

of ~1,. , pi are allowed. 
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3.4. Toroidal boundary conditions 

Following Baxter [ 71, we solve the functional equation 

A(u).4(u+ $-) =cos2L(2~i) +rsin2L(2u), (3.15) 

with ,4(~) = z(rr/4 - U) and A(0) the shift operator. Here r can take the values & 1, 

and for r = 1 and L even one finds [ 71 

e4’“+i&tan (r(2i[ I))), (3.16) 

with $ = pz = 1 for all k, and nf=, ,.Lk = 1. Similarly, for r = - 1, the solution reads 

)lpL i (e4iu+ipktan (g)) , 
k=I 

(3.17) 

with e2 = ,u: = 1 for all k. 

We note that the total number of eigenvalues given by the above expressions is 2Lt’ 

and that each eigenvalue appears with its negative. 

4. Finitized conformal partition functions 

In this section we use the solutions of the previous section to derive finitizations of 

the predicted conformal spectra. 

4.1. Fixed boundary conditions 

The ++ boundary 

To compute the partition function (2.7) we have to take the ratio 

Jim, N log (4.1) 

for an infinite number of eigenvalues, where A,(u) is the largest eigenvalue and has all 
(0) 

@k = I. Due to the form of the eigenvalue expression (3.9), only those terms in the 

product over k for which ,LL~ (‘I differs from 1 contribute to m,i. We first consider those 

A., ( II) for which all ,uy’ are 1 for k > L, and define the finitized (and normalized) 

partition function 4 

?‘-‘-_I 

X,(L;q) =X()(L) =-c p. (4.2) 
.j=O 

Obviously, for L -+ CC this sum becomes just (2.7). 

‘The notation XII(~) chosen here is in anticipation of the result; a finitized form of the ,yn(y) character. 
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In computing the ratio (4.1), we need 

lim Nlog 
cosec(7rK/(N+ I)) - sin(41*) 

cosec(77K/(N+ 1)) +sin(4u) > 
= -27rK sin(4z*), (4.3) 

N+XZ 

with K = k - l/2. 

WC then obtain to leading order 

with 4 as in (2.5). This allows the finitized sum to be written as 

)=Cfiq (k - l/2) &,.-I 

{p}; x=1 
Xo(k 4 

(4.4) 

(4.5) 

where here and in the following {/_L}L denotes the set of all sequences ,ut , . , ~1, with 

ph = +I, and {,u}f d enote the subsets of {p} L in which &=, ,uk = + I. 

In the following we present two simple methods to evaluate the sum (4.5), each 01' 

which yields results of a manifestly different form. First, from the elementary consider- 

ations 

where in the last step we have used c, ,U = 0, we get 

(4.6) 

(4.7) 

Alternatively, denoting the number of negative /_L~x by m, and letting I 5 kl < k2 < 

< k,,, 5 L be their respective labels, we can write 

xo(~_) = 2 2 2 . . . k qk,+kzi~...tk,,,-rlr/? 

,,,j) k,=l kz=k,+l I;,,, =k,, _ , + I 

m even 

= 2 4”‘:,2’~~~ .. E qk,+kz+.4,,, 

m=o k,=O k2=k, km=kn,- I 
nr even 

(4.X) 
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Clearly, the sum over kl , . . . , k,, is the generating function of partitions with largest part 

< L - m and number of parts 5 m. As is well known [ 251, this can be expressed in 

terms of Gaussian polynomials, to result in 

where 

O<m<L, 

otherwise. 

(4.9) 

(4.10) 

Taking L + w in (4.7) and (4.9) gives two of the x0(q) character representations in 

(2. IO), in accordance with the prediction of conformal field theory. 

The +- boundary 

The only difference from the previous case is that in the eigenvalue expression (3.9) 

we have to take those eigenvalues for which ni=, ,Uk = -1. Hence we compute a 

finitized partition function as the right-hand side of (4.5) with {,u}; replaced by {,u};, 

obtaining the (normalized) results 

{ 

L L 

Xl/2(-cc7) = ;4- 
112 

N 
1 + qW2 _ 

> IN 
1 _ qW2 

k=I k=l )I 

, (4.11) 

and 

x,,2(~;q) =q-‘/2 2 2 & . . . 2 qh+k++knrnd2 

,,,=, k,=l kz=k,+l k,,=k,,-1 +I 
m odd 

11, odd 

(4.12) 

Taking L + 00 in either (4.11) or (4.12) indeed gives the x1/2(q) character. 

Free boundaries 

Since the eigenvalues of the transfer matrix with free boundaries are those of the ++ 

together with those of the f- case, the operator content of (2.9) immediately follows 

from the previous two cases. 

4.2. Mixed boundary conditions 

In the calculation for mixed boundary conditions we employ the same procedure of 

deriving a finitized partition function. From (3.14) and (4.3) with K = k, we now have 
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This gives rise to 

xI/I,(L;q) = cfi(l - ;(I -pk)(l -9”)) =fi(l +CYjk), 
{P}, k=l !%=I 

and 

LL L L 

X,pe(L;q) =J-x c . . . c qkl+k+-+k,,, 

m=o k,=l kz=kl+l k,,=k,,_., +I 

= ~q”‘(“‘+l)/2 ; , 

nr>o [ 1 

(4.13) 

(4.14) 

(4.15) 

correctly corresponding to finitizations of the ,yl/,e(q) character. 

4.3. Toroidul boundary conditions 

To derive the modular invariant partition function from the eigenvalue expressions 

(3.16) and (3.17), we recall that, due to the factor E, each eigenvaluc occurs with its 

negative. To remove this trivial degeneracy we take 

L L-l 

rI pk=C? forr= 1, rI pk =E for r= -I. (4.16) 
k=L(L+3)/2J k=[(L+2)/2] 

so that all eigenvalues have a non-negative real part. Using (4.16) allows (3.16) to bc 

re-expressed as 

) -L ‘(‘-g’2J (e4,. $_ipktan (T’2,“, I’)) 

X ~ke4if’+icOt(c(2~~ I’)), 

with ,& = pL_k+t. and (3.17) as 

, 

(4.17) 

(4.18) 

with ,& = p&k. we remark that these rewritings of the eigenvaluc expressions are by 

no means unique, and we could have given forms different to those above. However, the 
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forms chosen here give rise to a natural finitization of the modular invariant partition 

function in terms of finitized Virasoro characters. 

Taking the ratio of (4.17) and (4.18) with the largest eigenvalue (given by (4.17) 

with all ,..Lk = i&k = 1)) and using the limits 

Jim, N log 
e4iU - i tan(rK/N) 

e4iU + i tan( n-K/N) > 

= _2riKe-4iU 

Jim, N log 
-e4iU + i cot( z-K/N) 

e4iU + i cot( n-K/N) > 
= 2rriKe4iU, 

and the definition (2.13)) we obtain a 

tion function 

lCL+l J/21 

Z(‘Cq) = c rIi 
{~‘)tcL+I,,*J k=l 

finitized and normalized modular invariant parti- 

[( 
1 + qk-I’*) + /Lk( 1 - qk-I’*)] 

x c jf ; [(l + (ij)k-“2) -I- Pk(l - (4)k-“2)] 
{Pi;,,,*, k=’ 

(4.19) 

(4.20) 

Here the factor 141 1/g arises from the scaling limit of the ratio of the largest eigenvalue 

in (4.18)) which have all pk = ,& = I, to the overall largest eigenvalue. Such a ratio 

can for example be computed using the Euler-Maclaurin formula. 

The sums in (4.20) are precisely those encountered in Eqs. (4.5)) (4.11) and (4.14)) 

so we immediately can write 

~(~;~)=~0(1~/2J~~)~o(~(~+ 1)/2J;q) 

+1~1~1,2c1~/~J~~,~,,,c~c~+ l)PJ;q) 

+lql”*X1,16w- 1)/2];(r)x1/16(lL/21;q), (4.21) 

which at the isotropic point (q = 4) is the finitized modular invariant partition function 

proposed by Melzer [ 151, in agreement with (2.16) in the limit L + cc. 

4.4. Finitized characters 

It is interesting to note that the various truncations of the Ising characters in the 

previous sections coincide with those recently proposed by Melzer [ 151. The power of 

the finitized (polynomial) forms of the characters is that they give rise to non-trivial 
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y-series identities of the Rogers-Ramanujan type, some of which can be found in the 

famous list by Slater [ 261. To see this we follow Melzer and remark that the following 

recurrences hold 

X0(L) = Xo(L - I) fqLX,,2(L - I), 

X1/2(L) = XI/Z(L - 1) +qL-‘Xo(L - I ), 

XI/l,(L) = (1 +4Lw,16(L- 1). (4.22) 

Supplemented with the initial conditions X0(0) = X,/lb(O) = I and Xlj7_(0) = 0, these 

can be solved to yield a third hnitized c = l/2 character representation, namely 

(4.23) 

To verify that these formulae indeed solve (4.22) we note the recurrences 

(4.24) 

By applying thcsc twice the proof of (4.23) readily follows. 

Collecting the three different finitizations for each character and letting the hnitization 

parameter L go off to infinity, we thus obtain the c = l/2 Rogers-Ramanujan identities 

of Eqs. (2.10)-(2.12). 

5. Summary and discussion 

The conformal spectrum of the Ising mode1 with cylindrical and toroidal boundary 

conditions has been derived analytically. By a truncation of the scaling limit, polyno- 

mial finitizations of the Ising characters and modular invariant partition function were 

obtained. These finitizations agree with those proposed previously by Melzer. In the 

thermodynamic limit, in which the truncation reproduces the proper scaling limit, our 

results agree with those of Ferdinand and Fisher, and Bugrij and Shadura. 

In conclusion, it is intriguing to speculate as to the meaning of the finitized modular 

invariant partition function. It is difficult to belicvc that it is no more special than 

any other finitization which can be constructed using the finitized c = l/2 characters. 

However, whether it is possible to define a sensible finitization of modular invariance, 

which has the linitized partition function as an invariant, remains unclear. 
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