INHOMOGENEOUS LATTICE PATHS, GENERALIZED KOSTKA
POLYNOMIALS AND A,_; SUPERNOMIALS
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ABSTRACT. Inhomogeneous lattice paths are introduced as ordered sequences of rectangular
Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and
Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara’s
theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials.
One of these provides a generalization of the Kostka polynomials while the other, which we
name the A,_; supernomial, is a g-deformation of the expansion coefficients of products of
Schur polynomials. Many well-known results for Kostka polynomials are extended leading to
representations of our polynomials in terms of a charge statistic on Littlewood—Richardson
tableaux and in terms of fermionic configuration sums. Several identities for the generalized
Kostka polynomials and the A,,_; supernomials are proven or conjectured. Finally, a connection
between the supernomials and Bailey’s lemma is made.

1. INTRODUCTION

Lattice paths play an important role in combinatorics and exactly solvable lattice models of
statistical mechanics. In particular, the one-dimensional configuration sums necessary for the
calculation of order parameters of lattice models are generating functions of lattice paths (see
for example [4, 12} 16]). A classic example of lattice paths is given by sequences of upward and
downward steps. The number of such paths consisting of \; steps up and Ao steps down is given
by the binomial coefficient ()‘1;{1 ’\2) = (A1 + A2)!/A1!\o! which is the expansion coefficient of
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An important ¢-deformation of the binomial is the g-binomial
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where (z), = (1 — 2)(1 — 2¢)(1 — z¢?)--- (1 — 2¢" ). The g-binomial can be interpreted as
the generating function of all paths with A; steps up and Ao steps down where each path is
weighted as follows. Let p1,...,px,+1, denote the steps of the path where we label a step up by
1 and a step down by 2. Then the weight of the path is given by Zf‘:lf)‘rl ix(pi < pi+1) where
x(true) =1 and x(false) = 0.

Other g-functions have occurred, such as a g-deformation of the trinomial coefficients [2, 3] in
the expansion of (22 +z1224+22)% or, more generally, of the (N +4-1)-nomial coefficients [24] 44} 53]
in the expansion of h% where hy is the complete symmetric polynomial in the variables 1 and

1



2 ANNE SCHILLING AND S. OLE WARNAAR

o of degree N. In a study of Rogers—Ramanujan-type identities the following generalizations
of the multinomial coefficients were introduced [47]

L
(1.2) hfl...h]LVN = Z 1 x)? 1 ,
)\1 - EEN
AL, A2
A+de=LN

where L =N Lie; € Zgo with e; the ith unit vector in Z" and ¢; = Z;VZI min{é, j}L;. Since
Equation (L2]) reduces to the definition of the (i + 1)-nomial coefficient when L = Le; (up to a
shift in the lower index), the expansion coefficient in (IL2) was coined (A1) supernomial. In [47]
it was shown that many Rogers—Ramanujan-type identities admit bounded analogues involving
the following ¢-deformation of the supernomial

(1.3) {L} — Z qZszﬁl(ka—fk—jkﬂ)jk [LN] [LNfl + ]N} . [Ll Ti_jz]
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for L € Z]>VO and a + %EN =0,1,...,¢y. However, the question whether (I3]) or the Rogers—

Ramanujan-type identities involving (I3) can be interpreted as generating functions of weighted

lattice paths remained unanswered. Incidentally, the polynomials in Equation (L3) have oc-
curred in Butler’s study [7, [§, @] of finite abelian groups.

In a seemingly unrelated development, Nakayashiki and Yamada [40] introduced the notion
of “inhomogeneous” lattice paths by considering paths in which each of the elementary steps
p; can be chosen from a different set 3;. The main result of their work is a new combinatorial
representation of the Kostka polynomial as the generating function of inhomogeneous paths
where either all B; are sets of fully symmetric (one-row) Young tableaux or all B; are sets of
fully antisymmetric (one-column) Young tableaux. An equivalent description of the Kostka
polynomials, formulated in terms of the plactic monoid, was found by Lascoux, Leclerc and
Thibon [33].

The purpose of this paper is to elucidate the connection of the work of Nakayashiki and
Yamada and of Lascoux, Leclerc and Thibon on the Kostka polynomials with that of [47] on
supernomials and to extend all of them. In particular, we introduce inhomogeneous lattice
paths based on Young tableaux with mixed symmetries, or more precisely, on Young tableaux
of rectangular shape. Motivated by the theory of crystal bases [19] we assign weights to these
paths and relate their generating functions to g-deformations of the (A,_1) supernomials defined
through products of Schur polynomials, in the spirit of Equation (L2]). By imposing suitable
restrictions on the inhomogeneous lattice paths, we obtain new polynomials that include the
Kostka polynomials as a special case. For these generalized Kostka polynomials we derive
several extensions of classical results such as a Lascoux—Schiitzenberger-type representation [35]
in terms of a charge statistic, and a representation akin to that of Kirillov and Reshetikhin [27]
based on rigged configurations. We furthermore prove and conjecture several identities involving
the A, _1 supernomials and generalized Kostka polynomials and briefly comment on a Bailey-
type lemma [0] for “antisymmetric” supernomials. The A,,_; supernomials include polynomials
previously studied in [7, [8, @, [15].

The rest of this paper is organized as follows. Section[2serves to set the notation used through-
out the paper and to review some basic definitions and properties of Young tableaux, words and
Kostka polynomials. In Section Bl inhomogeneous lattice paths based on rectangular Young
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tableaux are introduced (Definition [3.1]). A statistic on such paths originating from crystal-base
theory is used to define A,,_; supernomials (Definition B.5]) and generalized Kostka polynomi-
als (Definition B.9)) as generating functions of inhomogeneous paths. We furthermore map the
paths underlying the generalized Kostka polynomials onto Littlewood—Richardson (LR) tableaux
(Definition B.6]). In Section [ an initial cyclage and charge statistic on LR tableaux is defined
(Definition [4.3]) which enables us in the subsequent section to prove a Lascoux—Schiitzenberger-
type representation for generalized Kostka polynomials (Corollary [(B.2]). Section [ deals with
more general \-(co)cyclages on LR tableaux, showing that these cyclages impose a ranked poset
structure on the set of LR tableaux (Theorem [6.3]). These results are used in Section [7 to prove
a duality formula for the generalized Kostka polynomials (Theorem [.]]) and recurrence relations
for the A,_; supernomials and the generalized Kostka polynomials (Theorem [(4]). In Section 8
the recurrences are employed to obtain a Kirillov—Reshetikhin-type expression for the general-
ized Kostka polynomials (Theorem [82]). We finally conclude in Section @ with some conjectured
polynomial identities and with a Bailey-like lemma involving the A, 1 supernomials.

2. YOUNG TABLEAUX, WORDS AND KOSTKA POLYNOMIALS

This section reviews some definitions and properties of Young tableaux, words and Kostka
polynomials and sets out the notation and terminology used throughout the paper. For more
details the reader may consult [9] 13| [37].

Throughout, we denote by |A| the cardinality of a set A and we define |u| = ), p; for an
array of numbers p = (u1, to, .. .).

2.1. Young tableaux and words. We begin by recalling some definitions regarding partitions.
A partition A = (A1, A, ...) is a weakly decreasing sequence of non-negative integers such that
only finitely many \; # 0. We write A - n if |A\| = n. Partitions which differ only by a string of
zeros are identified. Each partition can be depicted by a Young diagram, which (adopting the
“French” convention) is a collection of boxes with left-adjusted rows of decreasing length from
bottom to top. If A = (A1, \g,...) is a partition then the corresponding Young diagram has \;
boxes in the ¢th row from the bottom. For example

is the Young diagram corresponding to the partition (4,2, 1). The nonzero elements \; are called
the parts of \. The height of A is the number of parts and its width equals the largest part. At
times it is convenient to denote a partition A with L; parts equal to i by A = (1¥12%2...). The
partition AT is the partition corresponding to the transposed diagram of A obtained by reflecting
along the diagonal, i.e., if A = (1%12F2 ... NI~) then (AT); = L; +--- 4+ L. The addition A+
of the partitions A and p is defined by the addition of their parts (A + p); = A\;j + p;. The
parts of the partition A Ny are given by (A N p); = min{\;, p;}, and A/p denotes the skew
shape obtained by removing the boxes of p from A\. By A > p in dominance order we mean
A+ o+ A > p+ -+ pg for all . The set of “rectangular” partitions (i.e., partitions with
rectangular diagram) is denoted by R.

In this paper we will often encounter arrays of rectangular partitions. For such an array
p o= (u1,...,pr) € RE, define p* = (uf,...,pu)) and |p| = || + -+ + |pr|. When all
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components of p have height 1 ordered according to decreasing width, i.e., u; = (k;) with
ky > --- > kg, one can identify p with the partition (ky,...,kr). Notice, however, that p* # pu'
in this case. There is the following partial order on RY modulo reordering. Define A(@ as the
partition obtained from A € RY by putting the widths of all components of A of height a in
decreasing order. Then A > p for A, u € RE if A@ > 4@ for all a by the dominance order on
partitions.

Next we consider Young tableaux. Let X = {z; < x2 < -+ < z,} be a totally ordered
alphabet of non-commutative indeterminates. A Young tableau over X is a filling of a Young
diagram such that each row is weakly increasing from left to right and each column is strictly
increasing from bottom to top. The Young diagram (or, equivalently, partition) underlying a
Young tableau T is called the shape of T and the height of T is the height of its shape. The
content of a Young tableau T is an array p = (p1, - - ., fin) Where p; is the number of boxes filled
with x;. The set of all Young tableaux of shape A and content p is denoted by Tab(\, u). It is
clear that Tab(\, p) = () unless |A| = |u/.

Young tableaux can also be represented by words over the alphabet X. Let X be the free
monoid generated by X. By the Schensted bumping algorithm [43] one can associate a Young
tableau to each word w € X denoted by [w]. Knuth [30] introduced equivalence relations on
words generated by

2Ty = T2Y z<y<z)),
(2.1) ( )
Yrz = yzx (r<y<z),

for z,y,2z € X and showed that [w] = [w'] if and only if w = w’. The word wp obtained from
a Young tableau 7" by reading its entries successively from left to right down the page is called
a word in row-representation or, for short, a row-word. Since T' = [wy]|, the Schensted and
row-reading algorithms provide an one-to-one correspondence between the plactic monoid X'/ =
and the set of Young tableaux over X. Using the above correspondence, we say that a word has
shape A and content p if the corresponding Young tableau [w] is in Tab(A, p). Furthermore, the
product of two Young tableaux S and T is defined as S - T = [wgwr] where wgwr is the word
formed by juxtaposing the row-words wg and wr.

Finally, the following definitions for words are needed. A word w = wjws - - - wy, with w; € X
is called a Yamanouchi word if, for all 1 < ¢ < k, the sequence wy, - - - w; contains at least as
many i as X2, at least as many xo as xs and so on. We call a word balanced if all of the letters
in X occur an equal number of times. Let w be a word on the two-letter alphabet {z < y} and
recursively connect all pairs yx in w as in the following example:

A pair y- - -z is called an inverted pair. All letters of w which do not belong to an inverted pair

are called non-inverted, and the subword of w containing its non-inverted letters is of the form
x"ys.

2.2. Kostka polynomials. Throughout this paper z* := x%l ...z where 1, ... ,, are com-

mutative variables (not to be confused with the noncommutative letters in the alphabet X) and
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A= (A1,..., ). The Schur polynomial sy in the variables z1,...,z, is defined as
(2.2) a@= S af,
TeTab(A,)
where 2T = geontent(T) - The Kostka polynomials K),(q) arise as the connection coefficients

between the Schur and Hall-Littlewood polynomials [37],

(2.3) sax(z) = Z K@) Pu(z; q)-

BEIA|

Here A and p are partitions and K),(q) # 0 if and only if [A| = |u| and X > p.
A combinatorial interpretation of the Kostka polynomials was obtained by Lascoux and
Schiitzenberger [35], who showed that

(2.4) Kyl)= Y, ¢,

TeTab(\,u)

where ¢(T') is the charge of a Young tableau defined below.

Let T' € Tab(:, 1) be a Young tableau of content pu over X = {x; < 29 < -+ < x,} and
let Timin = Tmin(p) = [z]" ---2h"] be the one-row tableau of content p. When T # Tin
and wr = z;u the initial cyclage C on T is defined as C(T') = [ux;]. The cocharge co(T") of
T € Tab(-, ) is the number of times one has to apply C to obtain Tyyi,. The charge of T' is defined

as ¢(T) = ||u|| — co(T) where ||u|| is the cocharge of the Young tableau Tyax = [h" - - - z}"],

given by [|uf = >, ; min{pi, ps}-
To illustrate the above definitions take, for example, T' = [z3z22222]. Then

C(T) = [xozizoxs),
CH(T) = [alzawys] = [w3atad),
CH(T) = [afadas),
so that co(T) = 3 and ¢(7T") = 1 in this example.
Another combinatorial description of the Kostka polynomials, in terms of rigged configura-

tions, is due to Kirillov and Reshetikhin [27] and provides an explicit formula for calculating the
Kostka polynomials as

Pa) +al — a(a)l
(25) Fonl) = 3@ T [ Z a
o ai>1 O%(a) - az(j-)l
The summation is over sequences o = (a(o),a(l), ...) of partitions such that a® = u' and

’a(a)| = Ag+1 + Ag+2 + - - . Furthermore

(26) PP(0) =Y (o = 20{” + ")
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and

(2.7) Cla) = Z <az(a1)2_ az(a)>7

a,i>1

where (3) = a(a —1)/2 for a € Z. Expressions of the type () are often called fermionic as
they can be interpreted as the partition function for a system of quasi-particles with fractional
statistics obeying Pauli’s exclusion principle [22] 23].

In Section a third combinatorial representation of the Kostka polynomials as the gen-
erating function of paths will be discussed. This representation is due to Lascoux, Leclerc
and Thibon [33] and Nakayashiki and Yamada [40] and is the starting point for our generalized
Kostka polynomials. As we will see in subsequent sections, these generalized Kostka polynomials
also admit representations stemming from Equations (2.4]) and (2.5).

3. A,_{ SUPERNOMIALS AND GENERALIZED KOSTKA POLYNOMIALS

This section deals with paths defined as ordered sequences of rectangular Young tableaux.
Assigning weights to the paths, we consider the generating functions over two different sets of
paths called unrestricted and classically restricted. These are treated in Sections B.1] and [3.2],
respectively. As will be shown in Section [7 the generating functions over the set of unrestricted
paths are A, _; generalizations of the A; supernomials (I.3]). The generating functions over the
set of classically restricted paths lead to generalizations of the Kostka polynomials.

3.1. Unrestricted paths and A,,_; supernomials. Denote by B, the set Tab(J\, ) of Young
tableaux of shape A\ over the alphabet {1,2,--- ,n}. An element of B) is called a step and an
ordered sequence of L steps is a path of length L denoted by pr ® - -+ ® p1. We treat here only
paths with rectangular steps p;, i.e., p; € By, for u; € R. Let us however emphasize that the
steps in a path can have different shapes indicated by the subscript ¢ on p;. Paths with this
property are called inhomogeneous [40].

The reason for the tensor product notation for paths (treated here as ordered sequences of
steps only) is for notational convenience, but is motivated by the relation to the theory of crystal
bases [19]. In this setting By;a is usually labelled by B;a, where A, are the fundamental weights
of A,,_1. The set B;p, is called a perfect crystal and parametrizes a basis of the irreducible
highest weight module of A,,_; with highest weight iA, [2I]. There exist crystal bases for all
integrable highest weight modules and they are compatible with the tensor product structure.

Definition 3.1 (Unrestricted paths). For fized integers n > 2 and L > 0 let A € Z%, and
= (p1,...,ur) € RE. The set of paths Py is defined as

L
(3.1) Py =1{pL®@---@pi1| pi € By, and Zcontent(pi) = A}
i=1
To each path P € Py, we assign an energy h(P) € Zx¢ as

L-1

(3.2) h(P) = Z ih(piy1 © pi),
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where h(p®p') for the steps p € B, and p’ € B,/ is defined as the number of boxes in the product
p - p’ that lie outside the Young diagram v + v/ or, more formally, as

(3.3) h(p®p') = [v+ V| — [shape(p - p) N (v + V)]
Example 3.1.
E
213 2
€ P2 ®@p1 12®‘1‘2‘ en  p2-p1 11112
and shape(ps - p1) = (3,2,1). Hence h(P) =1(4,2)| - 1(3,2,1) N (4,2)] =6 —5 = 1.

The cardinality Sy, of Py, does not depend on the ordering of y, i.e.,
(3.4) Sau = Sxiis

where [i is a permutation of p. In general the generating function of Py, with paths weighted
by the energy function h does not have this symmetry. To obtain a weight function such
that the resulting generating function does respect this symmetry we introduce an isomorphism
0 : Boa @By — By @ Bg for a, o’ € R between two successive steps. Let p®@p’ € B, ® B,. Then
o(p®yp’) = p' @p, where p and p are the unique Young tableaux of shape o/ and «, respectively,
which satisfy

(3.5) p-p=p-p.

The uniqueness of the Young tableaux p’ and p is ensured since the Littlewood—Richardson
coefficients have the symmetry cg o = cg ., and for rectangular shapes o and o’ obey cg o <L

Notice that o is the identity if p and p’ have the same shape.
Definition 3.2 (Isomorphism). For a path P = pr, ® --- ® p1 € Py, we define the isomorphism
o as
(3.6) 0i(P)=pL® - ®0(pit1 ®p;) @+ @ pr.
The group generated by the isomorphisms o; is the symmetric group, i.e., 012 =1d, ;0i410; =

0i+10;041 and ;05 = oj0; for |i — j| > 2. The proof of the braiding relation is non-trivial
(see [49, [51]).

Definition 3.3 (Orbit). The set Op is the orbit of the path P € Py, under the group generated
by the isomorphisms o;.

The weight of a path P is now given by the mean of the energy function h over the orbit of
P.

Definition 3.4 (Weight). For P € Py, the weight function H : Py, — Z>q is defined as

1 /
(3.7) H(P) = ) P;g h(P").
P
It is not obvious from (B.7) that the weight H(P) of a path P is indeed integer. This will
follow from Theorem [5.Il Before we continue to define the generating functions over the set of
paths P),, some remarks on the relation of our definitions to lattice paths of exactly solvable
lattice models and the theory of crystal bases are in order.
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Remark 3.1. For homogeneous paths, i.e., P € Py, with py = --- = pr, the weight simplifies
to H(P) = h(P) which is the weight function of configuration sums of Agll solvable lattice

models. For example, for p,p’ € By, the energy function h(p ® p') coincides with the one of
[12, [16] (and references therein) given by

N
(3.8) hp@p') = ggﬁ{z X(pi > 1)}
i=1

Here p;,p, € {1,2,...,n} are the letters in p = [p1---py] and p’' = [p}---piy], Sn is the
permutation group on 1,2,..., N, x(true) = 1 and x(false) = 0. An alternative combinatorial
expression of (B8] in terms of so-called nonmovable tableaux is given in [26]. When p,p’ € Bny,

our energy function reduces to h(p @ p') = minTegN{Zi]il x(pi > pl.)} of [41].

Nakayashiki and Yamada [40] defined weight functions on inhomogeneous paths when either
or p* is a partition, i.e., when |p1| > -+ > |z | and either height(p;) = 1 for all ¢ or width(p;) = 1
for all 7. Their isomorphism, defined in terms of graphical rules (Rule 3.10 and 3.11 of [40]), is a
special case of the isomorphism o. The expression for H(P) that they give is quite different to
that of Equation (B.7]) even though it is the same function for the subset of paths they consider.
For example when height(u;) = 1 for all 4, H of [40] is, in our normalization, given by

L i—1

HP) =S hpiepl™),
i=2 j=1
where P = pp ®@ -+ @ p1 € Py, pz(-l)
j<i.

Lascoux, Leclerc and Thibon [33] defined a weight function b(7") for Young tableaux T' as
the mean over certain orbits very similar in spirit to Equation [B.7) (see [33, Theorem 5.1]).
In fact, when height(yu;) = 1 for all i, each path P € P., can be mapped to a Young tableau
T € Tab(-, ) (by the virtue of the map w of Equation ([B.16) below, i.e., T = [w(P)]), and in
this case one finds that H(P) = ||u| — b(T") where we recall that ||ul| = >, ; min{u;, p;}-

= p; and pg-i) = p, with P’ = 0;_1 00490 ---00;(P) for

Remark 3.2. Kashiwara [19] defined raising and lowering operators f; and e; (0 <i <n —1)
acting on elements of a crystal B;x,. Set By = BikAak (k=1,2). Then for p; € By and ps € Bo
the lowering operators act on the tensor product ps ® p; as follows

, if 0o > o
es(po @ py) = {P2EEPL pi(p1) = €i(p2),
eip2 @p1 i pi(p1) < ei(p2),
where ;(b) = max{k|eF(b) # 0} and ¢;(b) = max{k|fF(b) # 0}. The action of f; on a tensor
product is defined in a similar way. (Note that to conform with the rest of this paper the order

of the tensor product is inverted in comparison to the usual definitions). Let e;(p2 ® p1) # 0.
Up to an additive constant the energy function used in crystal theory is recursively defined as

E(po®@p1)+1 ifi=0and po(p1) > eo(p2), po(p2) > o(p1),
(3.9)  Eei(p2@p)) =< E(pa®@p1) —1 ifi =0 and @o(p1) < co(p2), vo(f2) < £0(p1),
E(p2 ® p1) otherwise.
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Here po ® p1 — p1 ® po with p1,p1 € By and po,ps € Bs is an isomorphism obeying certain
conditions [I7, 18, 20]. The isomorphism o defined through (B.5) yields the isomorphism of
crystal theory. Up to a sign the energy h(p2 ® p1) as defined in (B3] provides an explicit
expression for the recursively defined energy of (3.9), i.e., E(p2 ® p1) = —h(p2 ® p1). We do not
prove these statements in this paper.

Let us now define the A,_; supernomial as the generating function of the set of paths Py,
weighted by H of Definition [3.41

Definition 3.5 (Supernomials). Let A € Z%, and p € RY. Then the supernomial Sy, (q) is
defined as a

(3.10) Sul) = 3 4"
PePy,
Since H(P) = H(P') for P’ € Op it is clear that
(3.11) Sal@) = Saa(a),

where [i is a permutation of u.

To conclude this section we comment on the origin of the terminology supernomial as first
introduced in [47]. Recalling Definition [3.1] of the set of paths Py, and Equation (Z2) for the
Schur polynomial, one finds that

(3.12) s (@) s, (@) = D S,
AF|p]
where Sy, := S),(1) = |Pyu|. For homogeneous paths, i.e., 1 = --- = pr, this is the usual

definition for various kinds of multinomial coefficients. The supernomials (or, more precisely,
g-supernomial coefficients) can thus be viewed as g-deformations of generalized multinomial
coefficients.

3.2. Classically restricted paths and generalized Kostka polynomials. Analogous to
the previous section we now introduce classically restricted paths and their generating function.
To describe the set of classically restricted paths we first map paths onto words and then specify
the restriction on these words.

For our purposes it will be most convenient to label the alphabet underlying the words asso-
ciated to paths as
(3.13) Xo={aV <2 < <2l <2l c ol o2V« gy
for some fixed integers 1 < a; < n. As before, X'® denotes the free monoid generated by X¢.
The i-subword of a word w € X is the subword of w consisting of the letters azgj ) (1<j<a)
only. More generally, the (i1, ...,ig)-subword of w is the subword consisting of the letters with
subscripts i1, ..., i, only.

We are interested in the following subset of X'¢

(3.14) W = {w € X“| each i-subword of w is a balanced Yamanouchi word}.

By the Schensted bumping algorithm each word w € W corresponds to a Young tableau [w] over
the alphabet X®. It is an easy matter to show that if w € W is Knuth equivalent to w’ € X,
then w’ € W. Hence it makes sense to consider the set of Young tableaux over X corresponding
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to W/ =. Instead of labelling the content of such a tableau by p = (,u,gl) e u(LaL)) (where p
is the number of mgj)’s), we set = (p1,...,pur) where p; = (uql),...,ugai)) so that u € RF

1

with height(s;) = a;. The set of words w € W with content([w]) = p is denoted W,,.

©)

i

Definition 3.6 (Littlewood—Richardson tableaux). Let L > 0 and n > 2 be integers, A a
partition and p € RY*. Then the set of LR tableauz of shape \ and content u is defined as

(3.15) LRT(\, p) = {T|wr € W, and shape(T) = A}.

The set of LR tableaux LRT(A, 1) reduces to the set Tab(\, p) of Young tableaux over X =
{z1 <---<zp} whena; =az =---=ar =1 in BI3).

We now define a map
(3.16) w: Py — Wy

in the following way. Let P = p;, ® --- ® p1 € Py, and let (j, k) denote the kth row of p;. Set
P’ = P, w to the empty word and carry out the following procedure |u| times:
If (4, k) labels the position of the rightmost, maximal entry in P’, obtain a new

k
§ )
The resulting word w defines w(P). Equivalently, [w(P)] is the column insertion recording
tableaux of col(pr) . ..col(p1) where col(T) is the column word of the tableau T

The word w(P) obtained via the above procedure is indeed in W,,. The Yamanouchi condition
is guaranteed in each intermediate w in the construction thanks to the fact that all steps p; are
Young tableaux. Since all p; have rectangular shape w(P) is a balanced Yamanouchi word. Note
that the integer a; in the alphabet (B.13]) used in Definition ([B.I4) of W is exactly the height of

step p;.

P’ by removing this maximal entry from P’ and append ="~ to w.

Example 3.2. To illustrate the map w take for example

2|3
P=r2 92 ®

Then w(P) = arg?’)w:(f)a;g?)a;él)xgl)xg)xgl)xgl)xgl) and the corresponding LR tableau (identifying

2 with j#) is

1(3) 3(2)
1(2) 3(1) 3(2)

D] 5] (D] a@)
(3.17) 171271271377,

The map w has the following properties which are needed later.
Lemma 3.1. Let P =py ® --- @ p1 € Pyy. Then:
(1) The shape of pi+1 - p; is the same as the shape of the (i,i + 1)-subword of w(P).

(43) Let w = wy ... wy, = w(P) and w' = w) ... w|'u| := w(0;(P)). Then shape(wy...wpy) =
shape(w...wy) for all 1 < € < 0 < |pu|. In particular, w(P) and w(o;(P)) have the
same shape, and if w(P) is in row-representation then so is w(o;(P)).
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Proof. Let L(w, k) be the largest possible sum of the lengths of k disjoint increasing sequences
extracted from the word w. If w has shape v then L(w, k) = v1+- - -+, (see for example Lemma
1 on page 32 of [13]). Since shape(p;41 - p;) = shape(w,,,,wy,)|(7)|is proven if we can show that
L(wp,, ,wp,, k) = L(w(piy1 ® pi), k) for all k. Let sq1,...,s; be disjoint increasing sequences of
Wp, ., Wp, such that the sum of their lengths is L(wp, ,wp,,k). Now w successively maps the

rightmost largest element of P to :rém) if its position is in step ¢ and row m. Interpreting

51,...,5% as decreasing sequences from right to left we see that the image of s; under w is an
increasing sequence from left to right in w(p;+1 ® p;). Conversely, each increasing sequence of
w(pi+1 ®p;) is a decreasing sequence from right to left of w,, , wy,, which proves L(wy,,  wp,, k) =
L(w(pit1 @ pi), k).

Since o; only changes the (i,i 4+ 1)-subword of w(P) it suffices to prove for paths
P = p®yp of length two. Set o/ ® p := o(p ® p’) so that p-p’ = ' - p. In particular p - p’
and p’ - p have the same shape. Hence from [(¢)| we conclude that w(p ® p') and w(o(p ® p'))

have the same shape as well. Denoted by wz(,M )wz(f’[) and wg’e/)wg’el) the words obtained from
wpw,y and wywp after successively removing the £ — 1 rightmost biggest letters and the [p| — ¢

leftmost smallest letters, respectively. Then the arguments of point still go through, that

is, L(wlgg’el)wg’zl),k) = L(wg...wp, k) and L(wg’[)wg’gl),k) = L(w)...w), k) for all k. Since
wg’el)wg’ﬁl) = wﬁff')wg’”), it follows that shape(wy...wp) = shape(wy...w) ). From this one

can immediately deduce that w(P) is in row-representation if and only if w(o;(P)) is in row-
representation. O

Definition 3.7 (Classically restricted paths). Let A be a partition such that height(\) <n and
let 1 € RE. The set of classically restricted paths Py is defined as

(3.18) Py = {P € Pyl shape(w(P)) = A}.

Since each path P € Py, contains \; boxes filled with i, the condition that w(P) has shape A
implies that w(P) is in row representation. Hence P, is isomorphic to LRT(A, p).
Let us now introduce the restricted analogue of the supernomials of Definition

Definition 3.8. For A a partition with height(\) < n and p € R” define

(3.19) Kylg)= Y ¢"™.
Pefw
When p is a partition, i.e., p € RY such that its components y; are one-row partitions of
decreasing size, K au(q) reduces to the cocharge Kostka polynomial. This follows from the work
of Nakayashiki and Yamada [40] and Lascoux, Leclerc and Thibon [33] and the relation between
the weight (B.7) and their statistics as explained in Remark Bl and is our motivation for the
definition of generalized Kostka polynomials for all ;1 € RE.

Definition 3.9 (Generalized Kostka polynomials). For A a partition with height(A\) < n and
p € RE, the generalized Kostka polynomial K),.(q) is defined as

(3.20) Knu(q) = "MKy ,.(1/q),
where [[pll =32, [ 0 pgl-
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Lemma 3Tl ensures that if P’ € Op with P € Py, then shape(w(P’)) = . Therefore P’ € Py
for some permutation fi of i, and hence also K;(q) = Ky,(g) in analogy with Equation (Z.11)).
We also find that

(3.21) Ku(q) = Kxa(a)

since [[p|| = [|2]]-
We remark that the lattice path representation of the Kostka polynomials was used in [31] to

express the Demazure characters as a sum over Kostka polynomials. It also yields expressions

for the A;l_)l /A,—1 branching functions in terms of the Kostka polynomials [26, 40] and has been
1)

employed in [15] to obtain various further A, branching- and string function identities.

4. INITIAL CYCLAGE AND COCHARGE FOR LR TABLEAUX

In this section we define the notions of initial cyclage, cocharge and charge for LR tableaux
which “paves the path” for Section Bl where an expression of the Lascoux—Schiitzenberger-
type (24]) for the generalized Kostka polynomials is derived. In the case when LRT(\, u)
coincides with Tab(A, x) our definitions reduce to the usual definitions of the initial cyclage
etc. as mentioned in Section

The definition of the initial cyclage for T € LRT(-, 1) has to be altered when a # (1,...,1)
for the alphabet X as given in (3.I3]). Namely, if T = [a:gai)u} € LRT(-, u) with xgai)u in row-
representation (by the Yamanouchi condition on each of the i-subwords the first letter has to be
%) for some i), then T := [uxgai)] obtained by cycling the first letter is not in LRT(-, u) since

the Yamanouchi condition on the i-subword of uxiai) is violated if a; > 1. To repair this fault

(as)

i

¥

we define the initial cyclage for T' = [w] with w = =
the following chain of transformations

u in row-representation by considering

(4.1) w— w) = @) (D e W,,.

Here w(®) := ua:l(ai) and w") for 1 < j < a; is a word such that (i) the k-subword for each k # i
is a balanced Yamanouchi word, (ii) the i-subword is balanced, (i) the subword consisting of

1)

the letters xgj ) and 27V has one non-inverted xgj ~ "/ and one non-inverted xgj ) and (iv) the

! (k) (k1)
transformation w1 — () is deéned as fozllows. Consider the subword of wUt1) consisting of
the letters xz(j) and xl(-jH)

two non-inverted letters :EZ(-j ) and $l(j +1) (making them an inverted pair). The resulting word is
w). Clearly, this means that w(®) e Wy

Definition 4.1 (Initial cyclage). The initial cyclage C on T € LRT(-, u) is defined as

(4.2) (1) = [wV],

where w) e W,, is the last word in the chain of transformations ({Il).

Example 4.1. If

subword consisting of the letters x;"’ and x with k& # j has no non-inverted letters. The

only. Determine all inverted pairs for this subword and exchange the

2(2) 3(1) 3(1)
T=[1°2%  then C(T)= 1?2?27,
1(1) 2(1) 2(1) 1(1) 2(1) 2(1)
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where the words w(® and w(") in the chain @I]) are given by w(®) = xél)x?)xg)xg )l'g )mg) (2)
and w) = xgl)x§2)xé )a:( )x(l)x(Q)a:( )

For Tab(-, 1) the initial cyclage defines a partial order ranked by the cocharge, that is, co(T') :=
rank(7"). In particular, co(T) = co(T") + 1 if T/ = C(T) and the minimal element in this

poset is Tinin = [@4" -+ 2h"]. For LRT(-, u) we would like to mimic this structure, that is, we
wish to turn LRT(:, ) into a ranked poset with minimal element defined as the LR tableau
Tiin = [.%'Lflxgz- 2], where z/" abbreviates (z Z(-ai)argai_l) . -xl(l))j for p; = (%) € R. Note
that for a # (1,...,1), Tiyin is no longer a one-row tableau but a tableau of shape p1+pus+---+ur,

where the jth row is filled with the letters x( 2 (all possible i) only.
Having fixed Tinin we observe two 1mportant differences between the sets LRT (-, u) (for a #
(1,...,1)) and Tab(-, ).

Remark 4.1.
(1) If for T, Tin € Tab(-, 1), wr and wr,, both start with the same letter then T' = Tiyip.
Generally this is not true for T, Ty, € LRT(-, 1). Indeed, the LR tableau (BI7) of
Example starts with xgg), but is not the minimal LR tableaux, which reads

10
10|30 3@
10[ 0[50 3(1)‘3(1)‘ :

Tmin =

(2) For a = (1,...,1) the initial cyclage C has no fixed points. In other words there is no
T € Tab(-, u) with T # Ty, such that C(T) = T. For LRT(-, i), however, fixed points
may occur. The following LR tableau, for example, is not minimal but obeys C(T) = T

1(2) 3(1) 4(2)
1(1) 2(1) 4(1) '

(4.3) T =

The second remark shows that the initial cyclage C does not induce a ranked poset structure
on LRT(+, ) and hence needs further modification. For this purpose we define the “dropping”
and “insertion” operators D and U, respectively. Let T' € LRT(-, u) with p € RL. If, for some

fixed i € {1,...,L} and all j = 1,..., height(T") the jth row of T" contains x( 2 (there may be

more than one x(] ) in row j), then drop all the boxes containing the letters :10( 7 Repeat this
operation on the reduced tableau until no more letters can be dropped. The ﬁnal tableau defines
D(T). Obviously the condition for dropping occurs if and only if height(T) = a; for some i.
The operator U is somewhat intricate in that we only define U o O o D, where O can be any

content preserving operator acting on LR tableaux. So assume 7" = (O o D)(T). Then U acts

on T" by reinserting all boxes that have been dropped by D, inserting a box with filling :c(j ) in

the jth row such that the conditions for a Young tableau are satisfied (i.e., each row remains
non-decreasing and each column strictly increasing on X®). The insertion operator U is not to
be confused with the insertion of boxes defined by the Schensted algorithm. U never bumps any
boxes.

Remark 4.2. Note that Y oD =1d, but Dold o QoD =DoOoD and not O oD.
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Definition 4.2 (Modified initial cyclage).

The modified initial cyclage C : LRT (-, u) — LRT(-, p) is defined as
(4.4) C=UoCoD.

Note that D(T) = T when height(T) > max{ai,...,ar}, in which case C = C.
Finally we are in the position to define the cocharge and charge of an LR tableau.

Definition 4.3 (Cocharge and charge). Let T € LRT(-, p1).

(i) The cocharge co(T) of T is the number of times one has to apply C to obtain the minimal
LR tableau Ty .

(i4) The charge is c(T) = [|u|| — co(T') where |[pll =32, ; [ N psl-
Example 4.2. For T in (£3]) we have

4(3)
D(T) = 3% CoD)(T) = [p0[30];  C(T)= U oCoD)T) = 14" .
() , €oDNT) = [T ET) = @ocoD)T) = el

Since C(T') = Tin and ||| = 7 we see that co(T) = 1 and ¢(T) = 6.

Further examples of the action of the modified initial cyclage can be found in Appendix [Bl

As will be shown in Section B, the modified initial cyclage C indeed turns LRT(-, i) into a
ranked poset with co := rank. This implies in particular that co(T") is a bounded non-negative
integer. In fact, we will do more and define more general A-cyclages which induce a ranked
poset structure on LRT(-, ). We also show in Section [0 that the charge is non-negative and
that [|p] = co(Tmax) Where Trax = [#4% -+ - 2/"] has maximal cocharge.

For convenience we write co(w) instead of co([w]) for w € W,,.

5. CHARGE STATISTIC REPRESENTATION FOR THE GENERALIZED KOSTKA POLYNOMIALS

There is a relation between the weight-function of Definition [3.4] and the cocharge of Defi-
nition [£3] which is stated in Theorem 5.1l This relation enables us to derive an expression for
the generalized Kostka polynomials stemming from the Lascoux and Schiitzenberger represen-
tation (24]) given in Corollary Section is devoted to the proof of Theorem [B.11

5.1. Relation between cocharge and weight. To state the precise relation between cocharge

and weight, we need to introduce the anti-automorphism €2 on words in W. Recall that for

every alphabet X = {21 < @2 < --- < 2} there exists the dual alphabet X* = {2} <

xy_ < .-+ < 2} Setting (z7)* = x;, (X*)* = X. The letter =7 which is often identi-

fied with xr41_; is called dual to z;. Under 2 a word w = x;, %, ...x;, in the monoid & is
*

mapped to w* = x] a7 ...z; in X7 Obviously, €2 is an involution. For the alphabet X*

of Equation (3I3]) one may identify (xz(-]))* with a:(Laf{i?) so that (X%)* becomes X¢ with
a* = (ar41,...,01). One can easily show that if w € W over X¢, then Q(w) € W* with
W* = {w € X%| each i-subword of w is a balanced Yamanouchi word}. Since Q respects the
Knuth equivalence relations, € is also well-defined on LR tableaux by setting Q(T") = Q(wr).
On paths P =pr, ® --- @ p1 € Py, we define Q,(P) = Q(p1) @ - - @ Q(pr).

Recall the map w : Py, — W, defined in (B.I6) from paths to words. With this we can now
state the following theorem.
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Theorem 5.1 (Weight-cocharge relation). For n > 2 and L > 0 integers let X € Zgo and
e RE. Then for P e Py the weight H(P) is a non-negative integer and

(5.1) H(P) =co(Qow(P)).

In the special case when n = 2 and pu = (11*) a similar relation was noticed in [I1]. The-
orem [0.J] generalizes [33, Theorem 5.1] valid when p is a partition. It also implies that the
generalized Kostka polynomials can be expressed as the generating function of LR tableaux
with the charge statistic. This is summarized in the following corollary.

Corollary 5.2. The generalized Kostka polynomial Ky,(q) can be expressed as

(5.2) Kxu(q) = Z D

TELRT (A1)

Proof. We start by rewriting the generalized cocharge Kostka polynomial K au(q). Recalling
that P, is isomorphic to LRT(A, p1) it follows from (19) and (51)) that

(5.3) Kku(q) = Z gD,
TELRT(A,u)

Since §2 does not change the shape of a tableau (see for example [13]), but changes its content
p= (p1,---,pr) to (pr,...,p1), and since Ky,(q) = Ky;(q) for a permutation fi of p, we
can drop € in (5.3). Recalling Equation [3.20) and ¢(T") = ||u|| — co(T") completes the proof

of (B.2). O

5.2. Proof of Theorem 5.3l The proof of Theorem [B.1] requires several steps. First we use
the fact that all paths with Knuth equivalent words have the same weight.

Lemma 5.3. Let P, P’ € P, such that w(P) = w(P’). Then H(P) = H(P’).

Proof. Since w(P) = w(P') also w(pi+1®@p;) = w(pj,, @p;) (see Lemma 3 on page 33 of [13]). In
particular, they have the same shape and hence, by |(¢)| of Lemma BT} p; 41 - p; and pj_; - p; have
the same shape. This implies h(p;41 ® pi) = h(pj,; ® p;) for all i and therefore h(P) = h(P’).
Since o; only changes steps p; and p;y; and since, by of Lemma Bl w(P) and w(o;(P))
have the same shape, it follows that w(o;(P)) = w(o;(P’)). Hence, repeating the argument,
h(oi(P)) = h(o;(P")). This implies H(P) = H(P"). O

Thanks to the above lemma it suffices to prove (5.]) for just one representative path P for
each T' € LRT(+, 1) such that [w(P)] = T. Let us now find a suitable set of such paths.

Define P, := Py, where A = (1) and |u| = 3, |u| so that for P € P, each letter 1,..., |yl
occurs exactly once. There is a bijection between P, and W,,. The map from P, to W, is just
given by w of Equation (3I6]). The inverse map

(5.4) wWw, =P,

is given as follows. Let w = w,jw, -1 - - - w1 be a word in W,,. Then reading w from left to right,

place 7 in the rightmost empty box in row k of step j if w; = xg.k). Obviously, since w € W, the

steps of the resulting path P are Young tableaux of rectangular shapes p;.
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B alb
- bla ‘ ifo<a ifa<b
b a L
- —
a b b ‘ a
‘ ifb>a p ifa>b
FiGgure 1. Sliding mechanism FIGURE 2. Inverse sliding mechanism

Denote the set of paths P € P, with w(P) in row-representation by P,. Since LRT(-, yt) and
W,/ = are isomorphic, the bijection between P, and W, also implies a bijection between fu
and LRT(-, p) still denoted by w. By Lemma [5.3] we are thus left to prove (5.1)) for all P € P,,.

The bijection between LRT(-, 1) and P, induces a modified initial cyclage C,, : P, — P,
defined as Cp, := w™! o C o w. Before setting out for the proof of (E.1]) let us study some of the
properties of this induced function.

First consider the induced map Cp, := S o w™loCow of the initial cyclage C of Definition E.1l
Here S is a shift operator which decreases the letters in each step of P € P, by one and hence
makes Cp(P) a path over {0,1,...,|u| —1}. The reason for including S in the definition of C,
is merely for convenience so that C, acts only on one step of paths in ﬁu as will be shown in
Lemma 54l One may always undo the effect of S by acting with S™! which adds one to each
entry of a path. To state the precise action of C,, on a path, let us briefly review Schiitzenberger’s
(inverse) sliding mechanism [48]. Suppose there is an empty box with neighbours to the right
and above. Then slide the smaller of the two neighbours in the hole; if both neighbours are
equal choose the one above. Similarly for the inverse sliding mechanism consider an empty box
with neighbours to the left and below. Slide the bigger of the two neighbours in the hole; if both
are equal choose the one below. If there is only one neighbour in either case slide this one into
the empty box. The sliding and inverse sliding mechanisms are illustrated in Figures [I] and 2],
respectively.

Lemma 5.4. Let P =p, @ --- @ p1 € P, be a path over {1,2,...,|u|} and let the letter |p| be
contained in step p;. Then

(i) Cp acts only on step p; of P, i.e., Co(P) =pr®---®@Cp(pi) ®--- @p1, and

(17) Cp(pi) is obtained by first removing |u| from the top-right box of p;, then using the inverse
sliding mechanism to move the empty box to the bottom-left corner and finally inserting
0 into the empty box.

Proof. Since P € P, and since the largest letter |u| occurs in step 4, the word w(P) is in

row-representation and of the form w(P) = xgai)u. Let T'= [w(P)]. In the chain of transforma-
tions (1) with w = w(P) only the i-subword of w gets changed and all letters in w™) not in the
i-subword are shifted one position to the left. Hence S ow™! o C(T) leaves all but the ith step
in P invariant which implies (7). To prove (iz) observe that in row j + 1 the empty box moves
to the left up to the point where the left neighbour is smaller than the neighbour below. Under
the map w these two neighbours correspond to the two non-inverted letters $§] ) and xgj i
wl*) of @) used for the definition of C. 0
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Some properties of the initial cyclage Cp,, the map w, the involution €2, and the isomorphism
o; are summarized in the following lemma. For P € Py, we set h;(P) = h(pit1 ® ps).

Lemma 5.5. For A € Z%, and pi € RE we have on Pru

(5.5) hr—i = h; o Qp,
(5.6) Qpo0; =008,
and on P,

(5.7) Qp=wtoQouw,
(5.8) [03,Cp] = 0,

(5.9) Cp=Qpo0 Cljl o Qp,

where Cp*1 is defined as follows. It acts on the step with the smallest entry in P € P, by
removing the 1, moving the empty boxr by the sliding mechanism to the top right corner and
inserting |p| + 1.

Proof. Let P € Py,. The energy h;(P) is determined by the shape of p; 1 - p;. Hence h;(Q,(P))
is determined by the shape of Q(pr—;) - Upr+1—i) = QUpr+1—i - pr—i). But Q leaves the shape
of a Young tableau invariant (see for example [13]), yielding (B.5).

Since the isomorphism o; acts only locally on p; 1 ®p; and €2}, reverses the order of the steps, it
suffices to prove (5.6]) for a path of length two. Define p1 ®p2 = o(p2 ®p1) so that p1-pe = pa-p1.
Acting on the last equation with Q yields Q(p2) - Q(p1) = Q(p1) - Q(p2). Since Q does not change
the shape of a Young tableau and because of the uniqueness of the decomposition into the
product of two rectangular Young tableaux we conclude that o(2(p1) ® Q(p2)) = Q(p2) @ Q(p1)
which proves (5.6]).

Equation (5.7) follows in a straightforward manner from the definitions of w and w™*

Let P € P, and let the letter || be contained in step p; of P. By of Lemma (5.4, C,
acts only on step pj, and o; acts only on p;11 ® p;. Hence the proof of (5.8]) reduces to showing
that [0, Z,] = 0 on P, ). Here Z, = Sow ™t oZow and Z : W, — W, is defined as
Z(w) = wM where w) as given in (@) (note that w need not be in row-representation).
Let P = p2 ® p1 € Py, o) and set w = wy ... wy, = w(P) and @ = 0y ... 0, = w(o(P)).
The map w : P, — W, is a bijection. Slnce for a given shape A the set LRT(A (ul,ug))

can have at most one element, a word w € W, ., is uniquely spec1ﬁed by shape(wl W)
for all 1 < k < |u|. Hence (5.8) amounts to showing that, for v’ = wj. wl# ( )
and W' = @y... 0|, = Z(D), shape(w)...w}) = shape(d;...w}) for all 1 < k < |u|

construction, shape(w] ...wj,) = shape(ws ... wi41) and shape(w] ...w;) = shape(ws ... wk+1)
for all 1 < k < |p| and by Lemma B1I[(7)] shape(ws . .. w;) = shape(ws ... w;). Hence we are
left to show that shape(w’) = shape(w’). This is can be done explicitly. In particular, one may
use that the shape of the product of two rectangular Young tableaux has the following form

A

(5.10) shape(pz - p1) =

B~
where A and B are partitions and the two overlapping rectangles are the shapes of p; and po;
one may be contained in the other. Note that A is the complement of B, so that knowing
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A (B) fixes the shape. By Lemma B:I] also w(p2 ® p1) has the shape (BI0). Let b =
shape(w; . . . wy,)/shape(wz . .. wy,) and &' = shape(w; .. .w"u‘)/shape(wg...wmo. One may
show that (i) if b € A then v/ € B’, (i) if b € B then v’ € A’ and (iii) if b ¢ AU B then
b ¢ A'U B’. Since b is the same for both w and @ this implies that shape(w’) = shape(w’).
For the proof of (5.9) one can consider a path consisting of just a single step thanks to|(z)| of
Lemma [5.4l Suppose p has M boxes filled with the numbers 1,..., M. From of Lemma [5.4]
we know that Cp, acts by the inverse sliding mechanism and by definition C; L acts by the sliding
mechanism. ) acts on rectangular Young tableaux by rotation of 180° and dualizing all letters.
But since the inverse sliding mechanism is the same as the sliding mechanism after rotation of
180° and dualizing, as is easily seen from Figures [I] and [2 Equation (5.9) follows. O

After these preliminaries we come to the heart of the proof of Theorem B.Il By Lemma [5.3]
we are left to prove Equation (5.1) for all P € P, and by (5.1) this is equivalent to

(5.11) H'(P) := H(p(P)) = co(w(P)).

We will show that C;, = w™! o C o w decreases the weight H' of paths in P, by one, i.e.,

(5.12) H'(P)— H'(Cy(P))=1 for P € P, and P # Py,

where Puin = @™ (Wmin) With Wiin = Wiin(p) = 24* -+ - 27* the word corresponding to the

minimal LR tableau Ty,in. By definition co(Tnin) = 0 and one finds by direct computation that
also H'(Pyin) = 0. (This can be deduced from the fact that in Py, the number i cannot be
contained in a step to the left of the step containing ¢ — 1; this is also true for any P € Op,_,,
as P = w N wmin(f2)) for some permutation fi of p). The equation H'(Puyin) = co(Timm) = 0
together with (5.12]) implies that H'(P) and thus H (P) are integers. By definition H'(P) is finite
and non-negative. Suppose there exists a P € P, such that m—1 < H'(P) < m for some integer
m. Then we conclude from (5.12)) that H’ (@?(P)) < 0 which contradicts the non-negativity of
H'. Since co(T) — co(C(T)) = 1 Equation (5.12)) implies (5.11)) for all P € P,,.
Using (82), 1), (5), (5.6) and Qg = Id one finds that

L—1
(5.13) H(P) = H@(P) = 1 3 (L= k(P
P'eOp i=1

Hence to show (5.12) one needs to relate the energies h;(P) and h;(Cp(P)). Let us first focus
on the relation between the energies of P and C,(P). Following [33] we decompose the orbit
Op of P into chains. Let U,V € Op with largest entries in step ¢ and ¢ — 1, respectively. Then
write U ~ V if 0,1 (U) =V (i =2,3,...,L). Connected components of the resulting graph are
called chains. With this notation we have the following lemma which is proven in Appendix [Al

Lemma 5.6. For P € P, with u € RY define the vector h(P) = (h1(P), ho(P),...,hi—1(P)).
For a chain v = {Py, ~ Pp_1 ~ -+ ~ P} such that oj_1(Py) = Py—1 and Q; = Cp(P;) the
following relations hold,

(5.14) h(Qr) —h(P;) =0 fort <k<m
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and if m=1{,
(5.15) h(Qm) — h(Pp) = emn — em—1.

Here e, (1 <m < L —1) are the canonical basis vectors of ZE=1 and eg = ef, = 0.

Thanks to Equation (B8) {Qm,Qm-1,--.,Q¢} is a subset of O¢ (py. Defining H(Y(P) =
ﬁ > prey S LML —i)hi(P') for a subset v C Op, Lemma 5.6 ensures that

(5.16) H!,(P) — H} () (Co(P)) = 1

for v = {Py, ~ Pp—1 ~ --- ~ Py} as long as { > 1. For the case treated in [33], where
[w(P)] € Tab(-, ) is an ordinary Young tableau, ¢ is always bigger than one when P # Ppin
and hence the proof of Theorem [B.1]is complete in this case. For [w(P)] € LRT(-, 1), however,
¢ can take the value one even if P # Py, due to point [l of Remark Al Hence (5.16]) breaks
down for ¢ = 1, i.e., when there is a P’ € v such that the letter |u| is contained in the first
step. However, in this case we are saved by the following lemma. Therein, the height of a path
P =pr®---®p; is defined as height(P) := max;<;<r{height(p;)}.

Lemma 5.7. Let P € P, over {1,2,...,|u|}. Then there exists a path P' = p}, @---@p} € Op
such that py contains the letter |u| if and only if height(w(P)) = height(P).

Proof. Let us first show that the existence of P’ implies the condition on the height of w(P).

Since p) contains |u| the word w(P’) starts with xgal). By of Lemma [B1] w(P’) is in row-
representation. Hence the height of w(P’) equals the height of p} and the first step is also (one
of) the highest. Again by of Lemma 3.1l w(P) and w(P’) have the same shape so that the
height of w(P) equals the height of P.

To prove the reverse, consider P’ € Op such that the first step is highest. Employing again
of Lemma [3.T] we see that the height of w(P’) equals the height of the first step. Now suppose
(a;)

that p} does not contain |p|. This means that w(P’) = ;"' u for some u € W with ¢ > 1. Since

P’ is in row representation zgai) must be above xgal) in [w(P’)]. This contradicts the fact that
the height of w(P’) is the height of p/. O

The previous lemma shows that there exist chains - such that v = {P,;,, ~ --- ~ P;} (so
that (5.10) is violated) if and only if the modified initial charge C,, differs from S~!oC,. This is
the case because the dropping and insertion operators D), := wloDow and U, = wloldow
in the relation C,, = U, 0 S~ 0 C, 0 D, only act non-trivially when the height of w(P) equals the
height of P, or equivalently by Lemma [5.7], when there exists a chain v = {P,, ~ -+ ~ P;}.
The dropping operator, however, does not change the weight of a path as shown in the following
lemma.

Lemma 5.8. For u € R let P € P, such that height(P) = height(w(P)). Then H'(P) =
H'(Dp(P)).

Lemmas imply (5.I2)) and hence Theorem [E.1] for the following reason. For P € P,
the path D, (P) does not contain any chains v = {P,, ~ - -+ ~ P;} thanks to Lemma[b.7l Hence
H'(P) = H'(Dp(P)) = H'(Cp o Dp(P)) + 1. On the other hand H'(Cp, o Dp(P)) = H'(Cp(P))
since S~ does not change the energy of a path and because of Remark and Lemma

This proves (5.12]).
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Proof of Lemmal[2.8. For a path in Py, we refer to x4 as its content. Now suppose the path P
of Lemma [5.8 has k steps of shape v € R where £ > 1 and height(r) = height(P). Then all
P’ € Op have k steps of shape v and, by of Lemma [3.T] height(w(P’)) = height(r). Define
D, (P’) as the path obtained from P’ by dropping all steps of shape v. Let n be the content of
D, (P). Then for each permutation 7 of ) define the suborbit S5 C Op as

(5.17) S; = {P € Op| content(D,(P)) = 7j}.

Then clearly Op is the disjoint union of Sj; over all permutations 7 of 7, and |S;| = (é)
Let us now show that for any @ € Sj

L1 ) I\ Lokt
(.19 Y X ituP = ()) X i),
PES; i=1 =1
Since Dy, is a composition of D, ’s, Equation (5.18) clearly implies H'(P) = H'(Dy(P)).
To prove (B.I8)) we first study some properties of the energy h;(P) for P € S;. For P =
PrL® - ®@p1 €Sy, let fi = (fi1, ..., fir) be the content of P and define L > my > -+ >my, > 1

such that fi,,, = v. Then P = Om;+1 0 Om,; (P) is also in Sj and, for 1 <14 <k,
(5'19) h‘mz(P) = hmi—l(P) =0,
(5.20) B (P') = By 1 (P).

The proof of (B.19) and (5.20) makes extensive use of Lemma Bl For two steps p € By and
p' € By let us call the shape A + X' minimal because h(p ® p') = 0 if shape(p - p') = X + N.
Equation (5.19)) states that pp,+1-Dm, and pp, - Pm,—1 have minimal shape, or equivalently by
of Lemma B1 that w(Pm,+1 @ Pm,) and w(Pm, @ Pm,—1) have shapes fi,,+1 + v and v + fiym,—1,
respectively. But since the height of w(P) is the height of v, the heights of w (P, +1 @ pm,) and
W(Pm; @ Pm;—1) equal the height of v, and hence their shape has to be minimal.

We now turn to the proof of (5:20). Denote P' =, @ ---@p}. Since P’ = 0y, 110 0m, (P) we
know by of Lemma B.T] that w(pm,+2 ® Pm;+1 @ Pm,) and (P, o @ Pry, 11 @ Pry,) have the
same shape. But since by w(pm,+1 ® Pm;) and w(p},. .o ® Py, 1) have minimal shape by (5.19)
we can conclude that w(pm,+2 ® Pm;+1) and w(p, 11 @ Pp,,) have the same shape. Hence by
of Lemma [3.1] also pim,+2 - Pm,+1 and pi,. . - Py, have the same shape which implies (5.20).

Analogous to the proof of (5.20) we find that for P/ = o, (P) the tableaux py,, 11 - Pm,_1 and
ﬁ;ni -ﬁ;ni_l have the same shape. Setting P to @ in this argument shows that hz_x_;(D,(Q))
is independent of ) € S;. Hence we can restrict our attention to @) € Sz with steps 1 to £ of
shape v in the following.

If k = L or L — 1 the right-hand side of (5.I8)) is zero due to the empty sum. Equation (5.19])
ensures that the left-hand side is zero as well. If 1 < k < L — 2 set X; := hy_,—;(D,(Q)) for
1<i<L—k Definerjasrj=L+1-m;—jforl<j<kandrg=0,rp =L—kfor
a given P where, as above, the m; are the positions of the steps of shape v. Treatlng X; as an
indeterminate we see from (5.19) and (5.20) that the contribution to X; from ZZ Lihg (P is
given by

(t4+j) forr;<i<rjyand0<j <k,
0 fori=r;and 1 <j <k.
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Summing over all P € Sj or, equivalently, over all possible r; we find that

L—-1 L—k—-1 k
DD TNECES S ST D DR
IBESg =1 =1 j=0 ToS"'S’f‘]’<i<7‘]’+1S~"S7‘k+1
L—k—-1 k . . . .
oo i+ —-1\(L—-i—j5—1
-y x (2+])< ! >( L )
i=1 =0 J J

-9 o

=1

where the last step follows from (a special case of) the 9F; Gaufl sum. Recalling that X; =
hi—k—i(D,(Q)) this proves Equation (5.1I8) and hence lemma [5.8 O

6. THE POSET STRUCTURE ON LRT(-, u)

As shown in Theorem 5] the weight and the cocharge are related as H(P) = co(2 o w(P)).
Since H(P) is by its definition B4 finite and for each LR tableau 7' € LRT(-, 1) there exists a
path P € P, such that 7" = [w(P)], Theorem B.Il immediately implies that co(T’) is finite for all
T € LRT(+, ). This means that each T' € LRT(+, u) reaches the minimal LR tableau T, after
a finite number of applications of C. This, in turn, ensures the following corollary.

Corollary 6.1. The modified initial cyclage C induces a ranked poset structure on LRT (-, p1).

The statement of this corollary can be extended to more general cyclages which generalize the
A-cyclages of Lascoux and Schiitzenberger [32, [36] for Young tableaux T" € Tab(-, ). We define
A-cyclages for LR tableaux 7' € LRT(-, u) in Section and prove the analogue of Corollary
in Theorem[6.3 In Section[G.2we deduce several important properties of the charge and cocharge
which are needed in Section to prove recurrences for the A,,_; supernomials and generalized
Kostka polynomials.

6.1. The A-cyclage and A-cocyclage. The A-cyclage is a generalization of the initial cyclage
C. Let us first define the cyclage operator Z on words w = xz(-ai)u eW, as Z(w) = w® where

w) is defined as in (@) by dropping the restriction that w is in row-representation. The only
additional requirement is that all w’ in the orbit of w (i.e., all w’ such that w™(w') € Oy-1(y)

with w™! as defined in (54)) start with a letter different from xgal). If w violates this condition
we set Z(w) = 0.

Similarly one can define a cocyclage Z~! on a word w = uacgl) € W,,. This time Z~71(w) =0

(1)

if there exists a w’ in the orbit of w ending with z;’. If not, set w®) = w and construct the
chain of transformations

(61) w(l) — w(z) —S . w(ai)’

where wt1) is obtained from w() by exchanging the last letter xgj ) with its inverted partner
:L’Z(]—H) in the subword of w) consisting of the letters %(j) and xl(ﬁl)

(as)

7

only. Then the cocyclage
Z~!(w) is obtained by cycling the last letter ;" in w(®%) to the front of the word. Obviously,

Z~1 is the inverse of Z.
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The cyclage Z and cocyclage Z~! defined on the set of words have analogues on the set of LR
tableaux. A A-cyclage Z) on an LR tableau 7" € LRT(-, i) is defined as Z)(T') = Z(w) where
(ai)

i
is defined as Z,1(T) = 271 (w) if w = u:nl(-l) is a word such that 7' = [w] and shape(u) = \. In
both cases if no such w exists we set Z)(T) = 0 and Z; *(T) = 0, respectively. The \-cyclage
and A-cocyclage obey

w = x;"’u € W, is a word such that T' = [w] and shape(u) = . Similarly, a \-cocyclage Z;*

2y o Z N T) =T  if Z;HT) #0,

(6.2) 210z (T — .
Lo Z\(T) =T it Z\(T) #0.

In analogy with (£4]) we also define the modified A-cyclage as
(63) ?)\:Z/{OZ)\O'D
where D(T) was defined in Section €l by successively dropping all xgj ) (1 <j<a;) fromT if
height(T") = height(u;) (recall that height(p;) = a;) and U was defined by reinserting all xgj )
dropped by D in row j such that the Young tableau conditions are satisfied. Similarly we set

(6.4) Z\=U'oZ oD,

where D'(T) is the tableau obtained by dropping all xgj ) (1 <j < a) if width(T') = width(u;)
and U’ reinserts all boxes dropped by D’ such that there is one ar,g] ) in each column and the
resulting object is again in LRT(+, u).

The initial cyclage C is a special A-cyclage since for each T' € LRT(+, 1) there always exists a
partition A such that C(T') = Z\(T). Hence also C(T) = Z(T) for this .

For ordinary Young tableaux 7' € Tab(-, 1), the cyclages Z) and Z; ! have been considered
in [32,36). It was shown in [36] that the A-cyclages induce a ranked poset structure on Tab(-, )
with the cocharge of a Young tableau being its rank and the minimal element being T, =

[z -+ -2h*]. Thanks to Z\(T) = Z5(T) for T € Tab(-,u) also Z, induces a ranked poset
structure on Tab(-, u). Note, however, that 2//\ # Z, ' even on Tab(-, u) since for example
Z7HT) =0, but Z)\(T) = [3211] for T = [2311] and A = (1).

From Z and zl)\ we may now define a cyclage- and cocyclage-graph.

Definition 6.1 (Cyclage- and cocyclage-graph). For u € RE, the cyclage-graph T (1) is defined
by connecting all T,U € LRT(-, ) as T — U if there exists a partition X such that U = Z(T).
Similarly, the cocyclage-graph T'(u) is obtained by connecting T — U if there exists a A such
that U = Z(T).

An example of a cyclage-graph is given in Appendix [Bl The cyclage- and cocyclage-graphs
are related by an involution
A : LRT(\, p) — LRT(AT, p*)
defined as follows. Let T = [wy---wy] € LRT(A, ) with w; € X Then A(T) = [w)---w]

where w], = xl(k) if wy, = azgj ) is the kth :Ugj ) in T from the left. One may easily check that A
respects the Knuth equivalence relations (2.1]) and is therefore indeed a function on LR tableaux.
The ith row of T gets mapped to the ith column in A(T") and hence the shape of A(T") is indeed

AT
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For example

2@[ 30 ﬁ
T — [10]2® A Holse]
105 2(1)‘ 1010 o0

Lemma 6.2. For u € R, T(p) = AT (u*) or, equivalently, T'(u) = AT (u*).
Proof. Observe that D' = AoDoA, U = Aol oA and Zy, =Ao Z;Tl o A. This implies

(6.5) Zy=AoZyroA.
Hence, for T, T’ € LRT(-, ) such that T’ = Z,(T) one finds A(T") = Zyr o A(T) which proves
the lemma. O

We now wish to show that both 7 (x) and 7'(u) induce a ranked poset structure on the set
of LR tableaux LRT(+, u). To prove this we extend the standardization embedding

(6.6) 0T () — T (1)),

of Lascoux and Schiitzenberger [32] 36] (see also [9, Chapter 2.6]) when pu is a partition to the
case when p € RE. Define the map ¢ on LR tableaux as follows:
change the rightmost :ng) to acgj) forall 1 <j <ay.

If height(p1) = height(p2) and width(u;) > width(usz) or pe = 0 then ¢(T') is an LR tableau
of the same shape as T and of content p/ = (pu; — (1%), pg + (1%1), s, ..., pur). Denote by ¢’
the map ¢ restricted to the case when us = 0. One can show that Z) o ¢/(T) = 0 if and only
if Z,(T) = 0, and furthermore [¢/, Z,] = 0. (These statements can, for example, be proven by
going over to paths using the map w and noting that w™' o ¢/ o w only acts on steps one and
two —which is empty— and S ow™! 0 Z) ow only acts on the step containing the biggest entry in
analogy to Lemma [5.4l For the first statement it is sufficient to consider a path of length three
for which it can be explicitly varified. Assuming Z,(T) # 0 the second statement then follows
trivially since the two operators act on different steps in the path).

Denote by G the group spanned by wo g; ow™!, where ¢; is the isomorphism of Definition
and w and w™! are defined in (B.16) and (5.4]), respectively. Then, in analogy to (6.6]), there
exists an embedding

(6.7) 0:T(pn) — T(v) v* a partition.

for ;1 € RY by combining ¢’ with the action of G. Since both 7 € G and ¢’ are compatible with
the cyclages (the proof of the first statement is analogous to the proof of (5.8])), we find that

(6.8) [0, Z,] = 0.
Example 6.1. If T is the LR tableau of Equation (3I7) then under 6 its content

“:(@751’55) will be changed to V:(@’H’H’D’D)'

The standardization 6(T) can be determined from

30 4@ 30 4@ 49|5® 49 5@ 19]5®
T Ty [32[40]40 g 30| 40| 4@ T2, [10[10|5@ ‘i 12| 2@|5@ T3, [1@]20[30 _ Q(T),
10[ 10|30 4(1)‘ 10[ @] 3@ 4(1)‘ 10[ 10|30 5(1>‘ 10[ 20| 30]50 10] 0| 30 4(1>‘
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where 7] = wooy00300 0w}, Ty = WorR0030040010090030w ! and T3 = woryoTz00 00w .

Theorem 6.3. Let u € RE. Then the cyclage-graph T (i) imposes a ranked poset structure on

LRT(:, p) with minimal element Tyin = |2} -+ - 2*]. Similarly, T'(p) imposes a ranked poset
structure on LRT (-, p) with minimal element Trax = [z - - - zi].

Proof. Let us first consider p to be a partition and show that in this case 7’(u) is a ranked
poset. For every T € Tab(-, u) with T' # Tax there exists at least one partition A such that

?& (T') # 0 and one can show that
(6.9) «(Z\(T)) = o(T) — 1.

Namely, if D'(T) = T, ie., Zy(T) = Z;(T) then ¢(Z;1(T)) = ||ull — co(Z5HT)) = |ull —
co(T) — 1 =¢(T) — 1 by Equation (6.2) and the fact that the cocharge is the rank of 7 (u) for
a partition p as shown by Lascoux and Schiitzenberger [36]. From the explicit prescription for
calculating the charge of a Young tableau T' € Tab(-, 1) via indices (see for example [37, page
242] [9, page 111]) one may easily check that ¢(T') = ¢(D’'(T)) which proves ([69). This shows
that for a partition p, 7'(u) is a poset ranked by the charge with minimal element Tjax.

From Lemma [6.2] and Equations (6.7) and (6.8) we deduce that also 7 (u) with u € RY is a

[y i
ranked poset. Since for Ti,.x = [xLL REF ] with 4 € RF
(6.10) A(Twax) = Tmin = [2" -+ - 2h*],

the minimal element of 7 (u) is Tinin. According to Lemma [6.2] also 7'(u) is a ranked poset for
all p € RL with minimal element equal to Tinax. O

The standardization embedding (6.7]) can be refined by combining ¢ with the action of G to
obtain

(6.11) Yo TW) = T(w),  v>p
for u,v € R* with the ordering v > i as defined in Section Bl Similar to (6.8)

(6.12) (Yo, 2] = 0.

Certainly, [1,,,C] = 0 thanks to (5.8) and [¢,C] = 0 which can be varified explicitly. To
establish (G.12) for general Z, we are left to show [¢, Z,] = 0. Let us briefly sketch the proof
here. Firstly, ¢,,, only depends on v and p, but not on its explicit composition in terms of ¢ and
0;’s. This can be shown by induction on the cocharge using [¢/,,,C] = 0. Secondly, Z(T) = 0
if and only if Z) o ¢(T) = 0. This can be seen as follows. For every LR tableaux there exists
a standardization composed only of ¢’ and o;’s. Denote by 6; and 5 such standardizations for

T and ¢(T), respectively. Since the standardization is independent of the composition of ¢ and
o;’s we conclude 01(T') = 03 o ¢(T'). Thanks to (G.8) this means that

010 2\(T) =25 001(T) = Zx0020¢(T) =020 25 0 ¢(T)

which proves the assertion. When Z,(T) # 0 the commutation relation [Z),¢] = 0 can again

be explicitly shown on paths using the maps w and w™!.
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6.2. Properties of charge and cocharge. In this section we establish some properties of
the charge and cocharge for LR tableaux. The cocharge of an LR tableau T is its rank in the
poset induced by the modified initial cyclage C. Since the initial cyclage is a special A-cyclage
the cocharge is also the rank of the poset 7 (x). In Definition the charge was defined as

o(T) = [|pll = co(T') where ||l = >, |1i M pj|. We show now that ||u| is in fact the cocharge
KL

of Thax = [JZL
T (1)-
Lemma 6.4. For L € Z>o and u € RE, ||pl| = co(Tmax)-

Proof. Set Ppax = w Y (wWrmax) with w™! as defined in (54)). Using Theorem Bl |ju|| =

co(Tmax) is equivalent to ||p|| = H'(Pnax) with H' as in (5.13). Defining Lz(a) as the number of

-y 1] and that the charge of an LR tableau is equal to its rank in the poset

components of u equal to (i*) and setting X,f‘jb = [(i%) N (5°)|, we may rewrite ||u|| as
1 b
(6.13) =5 > LOC - 60u)X3,
1<ij<N
1<a,b<n

where 6;; = 1 if i = j and zero otherwise.
Let P € Op,,,.. Then P € P,; where [i is a permutation of x. One may easily show that
h(pr+1 @ pr) = |fu: N figg41]| for all P € Op, . . Hence

L—1
1 - -
H,(Pmax> = W Z Z(L - k)’:uk N Mk+l|7

where the first sum is over all permutations of . Notice that |fig N k11| = Xf‘jb if i, = (%) and
firs1 = (7). We now wish to determine the coefficient of ijb in H'(Ppax). Since

|Op,....| = number of permutations of y = L,
e ¢
the contribution to ijb in H'(Ppax) is
1 (L —2)! L, 1 (@, 0
(Opl Hc,k21(L1(gC) — bacOik — Opedj)! 1;@ b= iLE )(L§ - i)
Summing over all 4, j, a, b yields ([6.I3]) which completes the proof. O
The charge and cocharge are dual in the following sense.
Lemma 6.5. For T € LRT(-, u), ¢(T) = co(A(T)).
Proof. Since ¢(T) = ||| — co(T"), the lemma is equivalent to
(6.14) co(A(T")) + co(T') = ||pll-
For Toyin = [a:‘flw‘LLL} we have A(Twin) = Tmax = [m’zz x’flT] Since co(Tmin) = 0 and

co(Tmax) = ||*|| = |||l by Lemma [6.4, Equation (6.14]) holds for T' = Tyin and T' = Tiax.

Now assume that (6.I4) holds for some T € LRT(:,u) so that D(T) = T. Then (6.14)
also holds for Z\(T) = Z,(T) if we can show that co(A(T)) = co(A o Z\(T)) — 1 because
co(T') = co(Z,(T)) + 1. Since Ao Z) = Z;Tl oAand Do Z;Tl = Z;Tl this is fulfilled.
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If on the other hand D'(T) = T or equivalently D o A(T) = A(T') then (G.I4]) also holds for
?//\(T) = 2, 1(T) because co(T) = co(Z; (T)) — 1 and co(A(T)) = co(A o Z; 1(T)) + 1 thanks
to Ao Z, 1 = Z,7 oA

Since D(T) = T if D'(T) # T and vice versa, unless T is equal to both Ty, and Tiax, this
proves (6.14) for all T' € LRT(-, u). O

As argued before the cocharge is the rank of the poset T (u) since the initial cyclage is a
special A-cyclage. Lemmas[6.5] and [6.21show that the charge is the rank of the poset 7'(u). This
is summarized in the following corollary.

Corollary 6.6. For 1 € RY, the cocharge is the rank of the poset T () and the charge is the
rank of the poset T'(u). In addition

0 < co(T) < llull and 0 < e(T) < |l
with co(Tmin) = ¢(Tmax) = 0 and co(Tmax) = ¢(Tmin) = |||

7. PROPERTIES OF THE SUPERNOMIALS AND GENERALIZED KOSTKA POLYNOMIALS

Several interesting properties of the supernomials ([3.10) and generalized Kostka polynomi-
als (3:20) are stated. In Section [l a duality formula for the generalized Kostka polynomials as
well as relations between the supernomials and the generalized (cocharge) Kostka polynomial
are given. Recurrences for the A, _; supernomials and the generalized Kostka polynomials are
established in Section These will be used in Section 8 to obtain a representation of the gen-
eralized Kostka polynomials of the Kirillov—Reshetikhin-type (2.35)). In Section [7.3] we treat the
A supernomials in more detail and sketch an elementary proof of the Rogers—Ramanujan-type
identities of [47].

7.1. General properties. The results of the previous section imply the following duality for-
mula for the generalized Kostka polynomials.

Theorem 7.1. For \ a partition and u € R,

(7.1) Kau(q) = @WK~ (1/).
Proof. This follows from the charge representation of the generalized Kostka polynomials of
Corollary 5.2, Lemma [6.5 and ¢(T) = ||u|| — co(T). O

The supernomial Sy, (¢) and the generalized cocharge Kostka polynomial K, (q) satisfy linear
relations as follows.

Theorem 7.2. For A € 3, and p € RE,
(7.2) Sula) = Y KipKu(g)
[ Al
where Ky = Ky\(1) is the Kostka number.
Proof. By definition the supernomial Sy, (q) is the generating function over all paths P € P,

weighted by H(P) and by (53) K,,.(q) is the generating function over all LR tableaux T €
LRT(n, u) with cocharge statistic. Hence, since [w(P)] € LRT(-, ) and H(P) = co(Q2 o w(P))
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by Theorem 5.l for P € Py, Equation ([Z.2)) is proven if we can show that for all partitions 7 of
|A| and 7' € LRT(n, 1) there are K,y paths such that [w(P)] =T.

To this end let us show that for all partitions n of |A| with n > X a pair (T,t) with T' €
LRT(n, p) and t € Tab(n, A) uniquely specifies a path P = py ® - -- @ p1 € Py, by requiring that
pr ... p1 =t and [w(P)] = T. Firstly, by point |(¢)| of Lemma Bl indeed shape(pr, - ... p1) =
shape([w(P)]). Let us now construct P € Py, from a given pair (T',t). Set a; = height(y;) and

define p(k) and tgk) (1 <i<L;1<k<a;) recursively as follows. Set t%}rl =t and decompose

for 1<i<L
(7.3) D = pled e ang B = pB) B < k< ay)

i+1 = Pi i i i
such that Shape(pgk)) = (width(y;)) and shape(tgk)) = shape(Ti(k)), where Ti(k) is obtained from
T by dropping all letters x > xl(k) . The decompositions in (7.3]) are unique by the Pieri formula.
The desired path is P = pr, ® - -- ® p; where p; := p(ai) C -pl(-l) (1 < i < L) because p; has

i
shape p; since T' € LRT(n, 1), pr - ... p1 =t and [w(P)] =T by construction. O
From Equation (Z.2]) one can infer that the special cases of the supernomials for which p or p*
is a partition have previously occurred in the literature. In the study of finite abelian subgroups,
Butler [7, 8, 9] defines polynomials a,(S;q), where p is a partition and S = {a1 < -+ < ap—1}
an ordered set of n — 1 integers such that a,—; < |p|, and shows that they satisfy

(7'4> hal (x)haz—m (1‘) o hm—an71(x) = Z O‘,u(S§ q*1>q||#||Pu(x; Q)'
ukFm

Here hj(x) is the kth homogeneous symmetric function and P,(z;¢q) is the Hall-Littlewood
polynomial. Using hy, (z) - -~ hy, (z) = 3, Kyrsy(z) and Equations (2.3) and (T.2) immediately
yields that a,,(S;q) = Sx.(q) where A = (a1, a2 — a1, ..., |p| —an—1). When p* is a partition the
supernomial has been studied by Hatayama et al. [15].

An immediate consequence of Theorem is the inverse of relation (7.2)).

Corollary 7.3. For \ a partition with height(\) < n and p € R”

(75) K)\,M(Q) = Z G(T)S()\1+T171,...,)\n+Tn77L),LL(Q)7
TGS’n
where Sy, is the permutation group on 1,2,...,n and €(7) is the sign of T.

Proof. Substitute (.2]) into the right-hand side of (7.5) and use (see [13], page76])

Z E(T)Kn(/\1+‘r171,...,)\n+7'nfn) = 57]/\- g
TGSn

7.2. Recurrences of the A, _; supernomials and generalized Kostka polynomials. We
have seen in Equations (3.I1]) and (3:21]) that the supernomials and generalized Kostka poly-
nomials are independent of the ordering of u. We may therefore label the supernomials and

)

generalized Kostka polynomials by a matrix L with component LZ(-a in row a and column 4

where

(7.6) Ll = Lga) (1) := number of components of p equal to (i%).

1
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If N := max{width(u)} then L is an nx N matrix. We denote the supernomials and generalized
Kostka polynomials with the label L by S(L, \) and K (L, \), respectively, and from now on we
identify S(L, ) and Sy,(q) (similarly K(L,\) and K, (q)) if p and L are related as in (Z.G).

Define ega) as the n x N matrix with the only non-zero element in row a and column 7 equal to
1 and furthermore set L = SN S LZ(-a),

N n
(7.7) gz(,“) = Z min{i,j}L§a) and ZE“) = Z min{a, b}LEb).
j=1 b=1

With this notation we can state the following recurrence relations.

Theorem 7.4 (Recurrences). Let i,a, N,n € Z>q such that 1 <i < N and 1 < a <n. Let L

be an n x N matriz with non-negative integer components such that Lga) > 2. Then for A € Z%,

.8 JA) = +e —2e +e ), —i—qid_i +e" 7 —2e" +e; ,
7.8)  S(LA) = S(L+ el —2el 4 el \) + ¢4 TIS(L + eV — 26l + el )

and for A a partition

—(a) — a a
(7.9)  K(L,\) =¢"% K(L+el” —2e +el 3+ K(L+e™ —2el” + el y).

Proof. First we prove (Z8). Take u € R% corresponding to L such that puy 1 = pr = (i%
(which is possible since L\ > 2). Define p/ and p” by pf = (1 +1)%), pfp_; = (1 —1)%),

(2
o= (@), W} o = (i*7t) and py = pj = pj for 1 < j < L —2. Recalling Definition
of the supernomials, it is obvious that P, and P, are the sets of paths underlying the two
terms on the right-hand side of (Z8). Furthermore Py, and Py, are disjoint. We now wish to
establish a bijection between Py, and Py, UPy,». To this end define 7(pr, @ pr.—1) = pr @ DPr—1

for pr,—1,pr, € B, such that

(7.10) PrL - PL—1 = PL " PL—1

and either (a) PL—1 € B'U‘IL—N pr € BM'L ifVﬁ((i+1)a) = ((i+1)a) or (b) Pr—1 € B/‘/Llfl’ PL € B“Z
if vN(i9T1) = (#%*!) where v = shape(pr,-pr_1). Indeed these conditions are mutually excluding

and determine p;,_q1 and p;, uniquely, i.e., the Littlewood-Richardson coefficient CZ P = 1if
L—-1FL

and only if ¢/, , = 0 and vice versa. Conversely, if pr—1 € B, , pr € B,y (or pp—1 €
Hp—1HL Ky 1 K,

By . pL € BMZ) one can find unique pr, ® pr—1 = 71 (pr @ pr—1) with pr_1,pr € By, by
requiring (ZI0). Hence 7 : Py, — P U Py with 7(P) := 7(pr @ pr—1) @ pr—2 ® - - - @ py for
each path P =pr ® --- ® p1 € Py, is the desired bijection. This proves (Z8) at ¢ = 1.

To prove (L8) at arbitrary base ¢ notice that if 7(P) € Py, then the LR tableaux T' =
[Qow(P)] and T" = [Q o w o 7(P)] are related as

T'= (CP (T),

with ), defined in (6.II). Because of (6.I2) we have co(T) = co(T"). Hence Theorem [b.1]
implies that also H(P) = H(r(P)) for all P such that 7(P) € Pyy. Therefore, the term

S(L + egg)l — 265(1) + egi)l, A) in (Z.8)) comes without a power of q.
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Similarly, if 7(P) € Py~ then the LR tableaux T = [ o w(P)] and T" = [ o w o 7(P)] are
related as A(T") = 1,7 o A(T) which implies

(7.11) co(A(T)) = co(A(T")).
Therefore, pulling all strings in our register, we derive
H(P)— H(7(P)) = co(T) — co(T") by Theorem [5.1]
— lall = co(A(T)) = 1]l + co(A(T")) by Lemma G
= [lpell = [12"] by Equation (ZIT)
=0V recalling ||l = > |; 0 pue]
j<k

which is the power of ¢ in front of the second term in ([Z.8]). This concludes the proof of (7.8)).
To prove ([.9)), recall Definition 3.9] of the generalized Kostka polynomials. The generalized

cocharge Kostka polynomials (8:19]) obey the same recurrences (7.8]) as the supernomials. This

follows from the fact that f,\# C Py, and that 7(P) is in f,\p/ or ﬁ)\“u if Pe ﬁ)\# by the same

arguments as in the proof of point of Lemma Bl Using B20), ||u|| — ||| = Z@(a) — 4 and
] = 1] = €49 — i yields (79). -

Rectangular Young tableaux over the alphabet {1,2,...,n} of height n are often identified
with the empty tableau. When this identification is made for the steps of the paths in the
generating functions defining the supernomials and generalized Kostka polynomials one obtains
the following properties.

Lemma 7.5. Letn > 2, N,i > 1 be integers and L an n X N matriz with non-negative entries.
Then for A € Z%,

(7.12) S(L + €™ A+ (i) = S(L, N),
and for A a partition with at most n parts
(7.13) K(L+ e A+ (i) = ¢Ze 94" K (L, \).

Proof. Writing S(L+ egn), A+ (")) as a generating function over paths as in (8.10)), each path P
in the sum has at least one step of height n. Hence height(w(P)) = n by Lemma Bl Denoting
by P’ the path obtained from P by dropping the step pjy of shape (i), we find from Lemma 5.8
and Q(pg) = px that H(P) = H(P'). This proves (T.12]).

The generalized cocharge Kostka polynomials K obey the same relation ([T12]) as S. Let pand

i/ be any of the arrays of rectangular partitions corresponding to L + ein) and L, respectively,

by (ZG). Then using ||ul| — |1 =D, aﬁl@ and recalling ([3.20)) one finds (ZI3). O

7.3. The A; supernomials. The A; supernomials are given by specializing Definition to
n =2, ie, A = (A, \2) € Z2,. By Lemma it is sufficient to label all A; supernomials

by a vector L € Z]>V0 instead of a two-row matrix. Recall that the supernomials vanish unless
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AL+ A2 = |p| = €N where ¢; = Z;V:1 min{i, j} L;. We therefore set
(714) Sl(L,CL) = S)\,u(Q) = Z qH(P)
PePy,
where L € Z]ZVO, a+ %KN =0,1,...,¢y and
p= (1brale . NEY),
A= (%EN + a, %EN —a).
For Si(L,a) the recurrences (.8)) read
(7.16) Si(L,a) = S1(L+e;_1 —2e;+ eiy1,a) + ¢S (L — 2e;, a),

for 1 <i < N. The e; are the canonical basis vectors of Z~ and ey = 0. The above equation is
in fact part of a larger family of recursion relations.

(7.15)

Lemma 7.6. Let A, B, N be integers such that 1 < A < B < N and let L € ZJZVO such that
Li=-=Lp1=0if A<B. Then fora+ 3{n =0,1,...,ly

(7.17) Si(L+eys+ep,a)=5(L+es1+epi1,a)+ qéAJrASl(L +ep_a4,a).

Proof. When A = B Equation (T.I7) reduces to (716 with L replaced by L + 2e;. For A < B
Equation (7.I7) follows from the recurrences

(1)
(718)  S(Ltel) +el ) = SE el el A+ g ST el el )

where n = 2 and L is a 2 x N matrix such that Lgl) =...= Lg)_l = 0. This can be seen by
dropping all entries of the matrix in the second row using Lemma and then replacing the
matrix L by a vector L.

Equation (7Z.I8) can be proven in complete analogy to the proof of Theorem [T.4] as follows.
Take p corresponding to L + e(Al) + eg), replace the components pr_1,..., 4] in the proof of
Theorem [CA by pr—1 = (B),pur = (A), ;1 = (B+1),p, =A-1),u] ;=(B—-A),u] =
(A, A) and set 7(pr ® pr—1) = pr ® Ppr—1 where again pr, - pr—1 = pr - pr—1 and now (a)
pr € By, pr—1 € By, if shape(pr - pr—1) # (B,A) and (b) pr € By, pr—1 € By if
shape(pr -pr—1) = (B, A). Note that we have used here that n = 2 which ensures that the shape
of the product of two steps has at most height 2. One may explicitly check that co(T") = co(71")

and co(T) = co(T") + E(Al) + A with T, 7", T" as defined in the proof of Theorem [(.4] which
proves ((T.I8). O

Using S),(q) = «,(S;q) for p a partition (see the discussion after Theorem [L2)) and the
explicit representations for a,(S;q) in [7, 8, 9], one finds that

L
(7.19) Si(L,a) = [ }
a

with [5] given in Equation (L3]).
We now recall some identities of [47] involving the A; supernomial and show how the re-
currences of Lemma yield an elementary proof. The identities unify and extend many of
the known Bose-Fermi or Rogers—Ramanujan-type identities for one-dimensional configuration
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sums of solvable lattice models. Below we only quote the result of [47] corresponding to the
Andrews—Baxter—Forrester model and its fusion hierarchy. Set

a2
(7.20) TI(L,a)_in%Li&—N[L} _
@l1/q

Theorem 7.7. Let a,b,p, N be integers such that N <p—2,1<a<p—-1landl <b<p—-N-1
and let L € ZJZVD. Then

(7.21) Z {q%(JD(p—N)jerb—(p—N)a)T1 (L, b*Ta +pj) — q%(ijra)((p—N)jer)Tl (L, HTQ +pj)}

j=—o0

p—3
= qﬁ(b—a)(a—b—]\f) Z q%mCm—%ma—l H |:m] i nj:| )

; m;
mezly? j=1 !
m=Q,;, (mod 2)

where C is the Cartan matriz of Ap_3 and Qg = QWY + Q=1 1 Q=2 4 Zf\iz LiQW
with Q(i) =e;_1+ei_3+---. The expression m = Q (mod2) stands for m; = Q; (mod2) and

7;,]_-21 Cijmim;j. The variable mg = 0 and n is determined by

mCm =
1 N
n = Q(eail +ep—p-1+ z; L;e; — Cm)
1=
For L = Leyn/, 1 < N’ < N, in the limit L — oo the identity (Z.21]) yields an identity for
branching functions of Agl) cosets.
If we can show that the (suitably normalized) ¢ — 1/q forms of both sides of (Z2I]) satisfy
the recurrence

(7.22) X(L+es+ep)=X(L+es1+epi1)+ ¢t X(L+ep_y)

then the identity is proven if it holds for the trivial initial conditions L = e; (i = 0,1,..., N).
The ¢ — 1/q version of the left-hand side of (T.21)) satisfies (.22 by Lemma For the
right-hand side of (T.2I]) with ¢ — 1/¢ it is readily shown [47] that (Z.22)) holds for A = B and
all L € ZV by using modified ¢-binomials obtained by extending the range of Ao in the top line
of (LI) to A2 € Z. This implies (T.22]) thanks to the following lemma.

Lemma 7.8. Let X be a function of L € ZN satisfying the recurrences

(7.23) X(L+2es)=X(L+es1+ear)+q 2 X(L)

forall A=1,2,...,N =1 and L € Z. Then X fulfills the more general recurrences
(7.24) X(L+es+ep)=X(L+es1+epi1)+ ¢ X(L+ep_y)
foralll1 < A<B<N and L € ZV such that Ly =---=Lp_1 =0 if A< B.

Proof. Assume that (7.24) is proven for all 1 < A’ < B’ < B. This is certainly true for A’ =
B’ =1 thanks to (.23)). Using (.23]) successively (with A replaced by i) fori = B,B—1,..., A
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yields
B
(7.25) X(L+ea+ep)=X(L+ea1+epp1)+» ¢ X(L+es—ei—eir1+epi)
i=A

Applying (23] with A replaced by B to the second term on the right-hand side in (725 one
obtains

(7.26)
B-1 ‘
Z qZ”A{X(L +es—e —eiy1—ep_1+2ep)— qZB*MAX(L +es—e —e€jy1 — 6371)}
i=A
+¢PMX(L + es —ep).

Telescoping the last term with the negative terms in the sum at i = B—1, B—2,..., A using (T.23))
with A — i — 1 yields ¢"#*AX(L + e4_1 — ep_1). The positive terms in the sum in (Z26) can
be simplified to qEAJFAX(L +ep_4-1 —ep_1+ ep) by combining successively the term i = A
withi=A+1,...,B —1 using ((.24) with A — i — A and B — 4. Therefore (.25) becomes

X(L+es+eg)=X(L+es1+epi1)
+ ¢ MMX(L+ep_a_1—ep_1+ep)+¢ B X(L+es —ep_1).

The last two terms can be combined to ¢*AT4 X (L + ep_4) employing (724) with A — B — A
and B — B — 1 and using that L; =--- = Lg_1 = 0. This yields (7.24). O

Let us make some comments about the above outlined proof of Theorem [.7l First, Lemma [7.0]
requires N > 1. However, thanks to T; ((Ll, ..., Ln,0,... ,O),a) = q%‘ﬁﬂ ((Ll, .. .,LN),a),
where the dimension of the vector on the left-hand side is M, one can derive the identities (7.21])
for all N > 1 except when p = 4. Second, we note that for L € Z]>V0 the polynomials on the
right-hand side of (Z.21]) indeed remain unchanged by replacing the g-binomial with the modified
g-binomial. Finally, the proof given in [47] used the identities at L = Le; as initial conditions.
The knowledge of these non-trivial identities is not necessary in the above proof.

In the discussion section we will conjecture higher-rank analogues of (Z.21]).

8. FERMIONIC REPRESENTATION OF THE GENERALIZED KOSTKA POLYNOMIALS

In this section we give a fermionic representation of the generalized Kostka polynomials gen-
eralizing the Kirillov-Reshetikhin expression (2.5)). Recalling the Definitions (7.7)) we introduce
the following function.

Definition 8.1. Let n > 2 and N > 1 be integers, A a partition with height(\) < n and L
)

an n X N matriz with entry Ll(a) € Z>o in row a and column i. Then set F(L,\) = 0 if

|A| # Za,izl aiLl(»a) and otherwise

i+1
z(a) - az(i)l

(8.1) P(LX) =) ¢““ ]

« a,i>1

[Pi(w +a@ — o

a
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)

where the sum is over sequences o = (o), a®) . ..) of partitions such that |a(®)| = doi>1 jZ§“ -
(A + -+ Aa). Furthermore, with the convention that ago) =0,

7

(8.2) P9 =3l 20l + oY) 4 6,
k=1
Az(a) + aga—l) . O[’Ea) . )
(8.3) Cla)=Y" ( ) ) AV =31
ai>1 k>i
b>a

Recalling that K, (¢) = 0 unless [A| = |u| = 3,5, aiLl” we find that F(L,\) = K(L,\)

if Lga) = 0 for a > 1 by comparing (81)) with (21). We wish to show that F(L, \) equals the
generalized Kostka polynomial K (L, \) for more general L. We begin by showing that F' obeys
the same recurrence relation as K.

Lemma 8.1. Let i,a, N,n € Z>q such that 1 <i < N and 1 < a <n and let X\ be a partition
with height(\) < n. Let L be an n x N matriz with non-negative integer entries such that

Lga) > 2. Then

~(a) — a a
(84)  F(LA) =q" “F(L+e" —2e + e N+ F(L+el" " —2el 4 el \).
Proof. Under the substitution L — L + e@l — 2e§a) + egi)l the variable Pj(b) and the function
C(a) transform as

(b) (0)
(.5) Py = P = b0,
' —(a) a a
Cla) = Ca) — ¢ +a+al? —az(-+)1.

% )

(a—1)

On the other hand, replacing L — L + e; — 2e§a) + egaﬂ) induces the changes

P — PO min{i, 5} (8a14 — 20ab + dar1s),

(8.6) @ . -
Cla) = Cla) —m; ’ +i.

Now apply the g-binomial recurrence

e

to the (a,i)th term in the product in (8J]) (this term cannot be [8] because of the condition

Lga) > 2). Thanks to (83) one can immediately recognize the first term of the resulting ex-

Ei)l - 261@ + ez(i)la A)

change ag-b) — agb) + x(j < i)dap where recall that x(true) = 1 and x(false) = 0. Since this

leads to exactly the same change in Pj(b) and C(«) as in (R, the second term indeed yields
F(L+el" " —2e 4 el™™ \). m

)

Z(a)
pression as ¢ *F(L + e . In the second term we perform the variable
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Theorem 8.2. Let N > 1,n > 2 be integers, A a partition with height(\) < n and L an n x N
matriz with components LZ(-G) € Z>p tn row a and column i. If either Lga) > L§a+2) for all
1<a<n—2andl SiSNorLl(a) ZLEi)Qforalllgagnandl 1 < N — 2, then
F(L,\) = K(L,\).

Proof. We use F(L,\) = K(L,\) for L such that Lga) = 0 when a > 1 as initial condition.
Since K and F both satisfy the recurrences

_ Z(a)
(8.8) X(L+eT) = X(L—el" " +2e) — "1 X (L — el + el +el?)

(compare with (7.9) and (84), respectively) the theorem follows immediately for the first set of
restrictions on L. The second set of restrictions comes about by using the symmetry (1) of
the generalized Kostka polynomials. ([

The recurrences (B8] are not sufficient to prove Theorem for L with arbitrary entries

Lga) € Z>o. However, we nevertheless believe the theorem to be true for this case as well.

Conjecture 8.3. Let N > 1,n > 2 be integers, A a partition with height(\) < n and L an
n X N matriz with nonnegative integer entries. Then F(L,\) = K (L, \).

9. DISCUSSION

We believe that there exist many further results for the generalized Kostka polynomials and
supernomials. For example, (Z.2I]) admits higher-rank analogues in terms of

(9.1) T(L, \) = ¢ T Tiela LV 60 =gy S =2 g Mg

where C~1! is the inverse of the Cartan matrix of A,_;. For integers n > 2, N,p > 1 such that
N < p—n and any nx N matrix L with non-negative integer entries such that 22;11 C'&)l Lgb) S/
for all 4 and a, we conjecture
(9.2)
S Y ()l ke BRI Ak, 7)) = 3 g3m(© EOm [m T:: "} ’
ki+-+kn=07TES, m

where the following notation has been used. On the left-hand side the components of A(k,7)
are given by A;(k, 7-) = }l Zm>1 aiLZ(.a) + pk; + 7; — j. On the right-hand side the sum runs
over allm =>""" Zp =l (@ (eq ® €;) with mga) € Z>g such that Y )~ C'ab1 ®) ¢ 7 for all

7

azl,...,n—landz—l ..,p—n — 1. The variable n is fixed by

n—1 N
(9.3) (CoNn+I®C)m= ZZL (eq @ €)

a=1 i=1

where [ is the identity matrix and C' is the Cartan matrix of an A-type Lie algebra. The
dimension of the first space in the tensor product is n — 1 and that of the second space is
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p —n — 1. Finally we used the notation

n—1 p—n—1

(A & B)m = Z Z AabBijmg-b)(ea & ei),
ap=1 ij=1
n—1 p—n—1
n(A®B)m = Z Z AabBijnz(a)mgb)
a,b=1 i,5=1

and

man] P m>+n<a>
I

The identities (@.2) are polynomial analogues of branchmg function identities of the Rogers—
Ramanujan type for Agllll cosets. For n = 2 they follow from Theorem [T.7] with @ = b = 1 and
for L = L(e; ® e1) they were claimed in [10] []. Unfortunately, the recurrences of Theorem [74]
are not sufficient to prove (0.2)) for general n and L. A proof would require a more complete set
of recurrences for the A,,_; supernomials analogous to those stated in Lemma for n = 2.

The left-hand side of Equation (0.2)) can be interpreted in terms of paths of a level-(p — n)
A( ) , lattice model. Denote by Ay, (0 < k < n—1) the dominant integral weights of A( )1 Then
the states a of the lattice model underlying (9.2)) are given by the level-(p —n) dommant integral
weights, i.e., a = ZZ;(I) ap Ay such that ZZ;(I) arp = p — n. Define the adjacency matrices A
labelled by two states a,b and a Young tableau as Ag » = X(a=0b), Ag]b =x(b=a+A;—A;i—1)
(i=1,...,n; Ay = Ag) and recursively ), AaTbAM = AL M . Callapath P =pr®---®@p1 € Py,
admissible with initial state a(!) if HZ‘L:1 Aﬁ”,a(“l) 1 Where alith) = ¢ 4300 Ak()\( D )\,(gl)

for i = 1,...,L and \)/, = content(p;). Then, up to an overall factor, (0.2 is an identity for
the generating function of admissible paths P € P,, starting at aV) = (p —n)Ay with g and L

related as in ([7.6) and \ = (|“| . |“|) The weights of the paths are given by —H (P) with H
as defined in (B.7).

Our initial motivation for studying the A, _; supernomials is their apparent relevance to a
higher-rank generalization of Bailey’s Lemma [6]. Indeed, a Bailey-type lemma involving the
supernomials Sy, (q) such that ;* (or any permutation thereof) is a partition can be formulated.
Here we briefly sketch some of our findings. Further details about a Bailey lemma and Bailey
chain for Ay supernomials are given in [5], whereas we hope the report more on the general A,,_
case in a future publication.

Set

(9-4) FL,A) = Sxu(a)/ (9L

for L € 72" and \ € Z%, and zero otherwise where (¢)r = (¢)r, - (¢)r,, and p =

(
((1m=HEn=1 . (1)F1). Here (19)% denotes L; components (1?). Note that u* = (171252 ... (n—
1)Fn-1) is indeed a partition.

IThe proof in [10] seems to be incomplete.
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Let L = (Ly,...,Ly—1) and k = (k1,...,ky) such that ky + --- + k, = 0 denote arrays of

integers and let o = {og iy > >knr ¥ = {Vk k1> >k, B = {Br} and § = {dr} be sequences.
Then (o, 3) and (7, d) such that

(9.5) BL= > okf(CL+ley, Ly 1p—k+Lle,),
k12>->kn
and
(9.6) W= Y OLf(CL+ler, Ly 1p—Fk+ley)
LEZ"’71

are called an A,,_; Bailey pair relative to ¢ and an A,_; conjugate Bailey pair relative to ¢,
respectively. Here ¢ € Z>o, C' is the Cartan matrix of A,,—; and p is the n-dimensional Weyl
vector p=e1 +---+e,.

When n =2, f(L,\) =1/(¢)r,(q)x, for L = A1 + A2 and zero otherwise, and (9.5)) and (@.6])
reduce (up to factors of (¢)¢) to the usual definition [6] of a Bailey pair and conjugate Bailey
pair (after identifying k = (k1, k2) = (k, —k)),

o0

and szz( o

Lkt = (Dok(@ ke

L
Qf
BL =
kzo (@)z-1(q)
Analogous to the A; case the A, _1 Bailey pair and conjugate Bailey pair satisfy

(9.7) > akm= Y, Buir.

ki+-+4kn,=0 Lezn—1
k12>>kn

For n > 2, N > 1 we now claim the following A,_; conjugate Bailey pair relative to ¢¢. Choose

integers )\5. >0 (a=1,...,n—1, j=1,...N — 1) and o such that
n—1N—1

(9.8) (— Z Z ai)\ga) +oN =0 (mod n).
a=1 i=1

Setting A= Z ZN ! )\(a (ea X 8@) and k = kZ(L), such that k‘Z(L) = L,L — Li+1 (Ln = 0,
Lyt1 =14, s0 that lel k; = 0) the (v, ) pair

qLN(LCLJr%Ll) q2n(C®C Dn—n(IeC~1)X
v = o
k(L) (Q)oo ! . (q)n
(9.9)
1 _ 1y M+ N
Sy = (LCL+2¢Ly) 5n(CRC™Hn—n(IC~ 1A
L =(q2N Zq n

satisfies ([@.6). The summations in (.9) run over all n = Y "~ SV (-a)(ea ® e;) such that

n;
N-1

Lo+ (C =St SNt eI\ 1 ao
a = a C: Z+ — =1,....,n—1.
Z 1,10 € + " a n

(9.10) ~
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In the expression for dz, the variable m is related to n by
(9.11) (CoIn+(IxC)m = (CL+/le1)®en—_1+ A\

Inserting (@.9) into (@.7)) yields a rank n — 1 and level N version of Bailey’s lemma. Indeed,
when A = e, ® e;, V& is proportional to the level-IV Ag_)l string function in the representation
given by Georgiev [14]. When n = 2 the pair (v, ) of Equation (@.9) reduces to the conjugate
Bailey pair of [45] 46]. The identities in (@.2]) provide A, _; Bailey pairs relative to 1. We
remark that Milne and Lilly [38, 39] also considered higher-rank generalizations of Bailey’s
lemma. However, their definition of an A,_1 Bailey is different from the one above, and in

particular we note that the function f is not g-hypergeometric for n > 2.
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NOTE ADDED

After submission, several papers [25, 29] [49]-[52] with considerable overlap with this work
have appeared. The generalized Kostka polynomials studied in this paper were also introduced
in [52] as special types of Poincaré polynomials and further studied in [49, 50} 5I]. In [25] 29]
it was conjectured that the generalized Kostka polyonomials coincide with special cases of spin
generating functions of ribbon tableaux [34] and that the fermionic representation (8II) of the
generalized Kostka polynomials is the generating function of rigged configurations. This last
conjecture has now been established in [28§].

We are indebted to Mark Shimozono for his questions and comments which led to several re-
finements of the paper. We also thank him for pointing out that the analogues of the recurrences
of Lemma [T.6 for the (cocharge) Kostka polynomials have occurred in [42].

APPENDIX
APPENDIX A. PROOF OF LEMMA

Obviously, the following lemma implies Lemma [5.6]

Lemma A.1. Let P € P, be a path over {1,2,..., M} where M = |u| and set Q = Cp(P).
Suppose M is contained in step p; of P =pr ® -+ Q p1.

(¢) If M is contained in the (i — 1)th step of o;—1(P) then hi—1(Q) — hi—1(P) = 0.
(i) If M is contained in the ith step of o;—1(P) then hi—1(Q) — hi—1(P) = —1.
(¢91) If M is contained in the (i + 1)th step of o;(P) then hi(Q) — h;(P) = 0.
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(iv) If M is contained in the ith step of o;(P) then h;(Q) — h;(P) = 1.

This lemma, in turn, follows from the next lemma. The height of an entry M in a Young
tableau is defined to be ¢ if M is in the ¢th row from the bottom.

Lemma A.2. For u,i/ € R, let p € B, and p' € By such that each entry in p - p' occurs at
most once and p contains the largest entry M. Then

(i) shape(Cp(p) - p') # shape(p - p') if and only if the height of M in p - p’ is bigger than
height(p), and

(it) 0 < h(p@p') = h(Cp(p) ®@p') < 1.

Before we prove Lemma, let us first show that it indeed implies Lemma [A ]
Proof of Lemma [A 1.

(1) Let p;®@pi—1 := o(pi®@pi—1). The steps p; and p;_1 have the same shape and by assumption
they both contain M. Since p; - p;—1 = p; - pi—1 we conclude that the height of M in p; - p;—1
has to be height(p;). By (i) of Lemma it follows that shape(Cp(p;) - pi—1) = shape(p; - pi—1)
which proves h;—1(Q) — hi—1(P) = 0.

(77) Again we denote p; ® p;—1 := o(p; ® p;—1). By assumption p; and p; contain M. Equation
i+ Pi—1 = Pi - Pi—1 can only hold if the box with entry M has been bumped at least once. But
this implies that the height of M in p; - p;—1 is bigger than height(p;). By (i) of Lemma this
means that h;_1(Q) # h;—1(P), and by (ii) of Lemma the difference has to be —1.

(73) This point can be proven analogous to ().

(iv) Let us show that this case follows from (ii) by considering P’ = C; ! o Q,(P). The path
P’ satisfies the conditions of case (ii) with i — L+1—1i since o; commutes with Cy’ ! due to (5.8)
and (5.9) and since (5.6) holds. Hence hp_;(Cp(P’)) — hr—i(P’) = —1 which is equivalent to
hi—i(Qp(P)) — h—i(Qp 0 Cp(P)) = —1 by inserting the definition of P’ and using (5.9) and
912) = Id. Finally employing (5.5 proves (iv). O

Proof of LemmalA. 4 Let p’ = [w] with w = wy ---w; in row-representation. Define pO) =p
and pU*D = p@ . [wy_;] for i = 0,1,...,N — 1. Then obviously p") =p . p/.

We will show inductively that either M got bumped in p® (which implies that the height of
M is bigger than height(p)) or the action of C, on p@ is still described by the inverse sliding
mechanism starting at the largest element M and ending in the bottom left corner.

We prove this claim by induction on i. The initial condition is satisfied since C, acts on
pO =p by the inverse sliding mechanism by definition. To prove the induction step suppose
that M did not yet get bumped in p(®) (if it has been bumped in p(@ then this is also true for
p*) with i < k < N and we are finished). By the induction hypothesis the action of C;, on p®
is still given by the inverse sliding mechanism. It is useful to denote the boxes in p( affected
by the inverse sliding pictorially by drawing EH and EE for a > b and a < b, respectively, if

the corresponding boxes of p(*) are . For example

‘ r*
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in p(z) in p(i+1) in p(z) in p(i-i-l)

FIGURE 3. Change of inverse sliding route from p(® to p(it1)

The dot indicates the position of M in p(®. Comparing with Figure 2] we see that the line traces
exactly the movement of an empty box under the inverse sliding mechanism. We now wish to
insert [wy_;] by the Schensted bumping algorithm to obtain p(*1) i.e., [wy_;] gets inserted in
the first row of p(¥ and possibly bumps another box to the second row and so on. Let us label
the boxes of p(@ which get bumped when inserting [wn—i] by a cross. Two things may happen:

(1) None of the boxes ) and d] contain a cross. (We include [1] in the set of boxes
depicted by d] ).
(2) There are boxes 7@ or [I] which contain a cross.

If (1) occurs there can be at most one box containing both a line and a cross. One may easily see
that the line of p¥ also describes the route of the inverse sliding mechanism in pt1) and that
M does not get bumped. Hence we are finished in this case. If (2) occurs all boxes vertically

above ] or [I] up to and including either (a) [F- or (b) [1] must also contain a cross. In case
(a) the line indicating the inverse sliding changes from p@ to plit1) as illustrated in FigureBl In
case (b) @ contains a cross and hence M got bumped. This concludes the proof of the claim.

Observe that, as long as cases (1) or (2a) occur, M does not get bumped and shape(p(t1)) =
Shape(Cp(p(iH)) since Cp is still described by the inverse sliding mechanism. If, however,
case (2b) occurs for p@ which implies that M got bumped in pl*Y then shape(p(”l)) and
shape(Cp(p(t1))) differ. This is so since p{) must contain

» ¢

or —

where the dashed lines indicate possible other boxes and the number of the vertically aligned
crossed boxes may of course vary (but at least the box containing the dot must also contain a
cross). Suppose the lowest crossed box in the vertical line below @ is in row k. In comparison

with p(®), the shape of p(**1) has one more box above the height(p). In the shape of C,(p(it1)) =
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Cp(p™) - [wn_4], this box has been moved to row k. One may also easily see that shape(p\?))
and shape(Cp(p(j ))) for j > i differ by moving exactly one box from above height(p) to the kth
row. This proves Lemma [A2] O

APPENDIX B. EXAMPLE OF A CYCLAGE-GRAPH

Figure d shows the poset structure of LRT(-, ) for p = ((2), (2), (12)). A black arrow from
LR tableau T' to LR tableau 7" means 7" = C(T'). A white arrow indicates that 7" and T are
related by a modified A-cyclage (as defined in Section [@]) other than the modified initial cyclage,

i.e. T = Z\(T) for some shape X\ but T" # C(T).

?
@
2(1) 2(1)
1(1) 1(1)
E E
P F
101 @ 3<1)‘ 1O 1(1)‘2(1)‘
? ?
2] 3 20[ 5] 3@ F
101 @ 2(1)‘ 101030 1@ 1(1)‘2(1)‘3&)‘
E 2] 30
1@ 1(1)‘2(1)‘2(1)‘ 101 @ 2(1)‘3(1)‘

1@ 1(1)‘ 2(1)‘ 2(1)‘ 3<1)‘

FIGURE 4. The cyclage-graph T (u) for u = ((2), (2), (1%))



INHOMOGENEOUS LATTICE PATHS, GENERALIZED KOSTKA POLYNOMIALS AND A, _; SUPERNOMIAL#$L

(1]
2]

3]

[10]
1]
12)
13)
[14]
[15]
[16]
17)
18]
[19]
120]
21]
[22]
23)

[24]
[25]

[26]

[27]

REFERENCES

G. E. Andrews, Multiple series Rogers—Ramanugjan type identities, Pacific J. Math. 114 (1984), 267-283.

G. E. Andrews, Schur’s theorem, Capparelli’s conjecture and q-trinomial coefficients, Contemp. Math. 166
(1994), 141-154. 0

G. E. Andrews and R. J. Baxter, Lattice gas generalization of the hard hexagon model. III. g-trinomial
coefficients, J. Stat. Phys. 47 (1987), 297-330. [

G. E. Andrews, R. J. Baxter and P. J. Forrester, Eight-vertex SOS model and generalized Rogers—Ramanujan—
type identities, J. Stat. Phys. 35 (1984), 193-266. [l

G. E. Andrews, A. Schilling and S. O. Warnaar, An A2 Bailey lemma and Rogers—Ramanujan-type identities,
J. Amer. Math. Soc. 12 (1999), 677-702.

W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1-10.[0 @]
L. M. Butler, A unimodality result in the enumeration of subgroups of a finite abelian group, Proc. Amer.
Math. Soc. 101 (1987), 771-775. [ [T}, [C3]

L. M. Butler, Generalized flags in finite abelian p-groups, Discrete Appl. Math. 34 (1991), 67-81. [I] [}
L. M. Butler, Subgroup lattices and symmetric functions, Memoirs of the Amer. Math. Soc., no. 539, vol. 112
(1994). [ 2 6.1} 6.11 [T} [7.3]

S. Dasmahapatra, On the combinatorics of row and corner transfer matrices of the A(nlll restricted face
models, Int. J. Mod. Phys. A 12 (1997), 3551-3586. [0 [

S. Dasmahapatra and O. Foda, Strings, paths, and standard tableauz, Int. J. Mod. Phys. A 13 (1998),
501-522. 511 R

E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Paths, Maya diagrams and representations of sl(r,C),
Adv. Stud. Pure Math. 19 (1989), 149-191. [ B

W. Fulton, Young tableauz: with applications to representation theory and geometry, London Math. Soc.
student texts 35, Cambridge University Press (1997). 2 B2 EJ1 B2 B2 [Tl

G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, II. Parafermionic
space, g-alg/9504024.

G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of
sln-modules and inhomogeneous paths, Nucl. Phys. B 536 [PM] (1998), 575-616. [I, B2 1]

M. Jimbo, T. Miwa and M. Okado, Local state probabilities of solvable lattice models: An A,(llll family, Nucl.
Phys. B 300 [F'S22] (1988), 74-108. [l [3:1]

S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex
models, Int. J. Mod. Phys. A Suppl. 1A (1992), 449-484.

S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Perfect crystals of quantum
affine Lie algebras, Duke Math. J. 68 (1992), 499-607.

M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991),
465-516. [ B1]

M. Kashiwara, Crystal bases of modified quantized enveloping algebras, Duke Math. J. 73 (1994), 383-413.
M. Kashiwara and T. Nakashima, Crystal graph for representations of the q-analogue of classical Lie algebras,
J. Alg. 165 (1994), 295-345. 311

R. Kedem, T. R. Klassen, B. M. McCoy and E. Melzer, Fermionic quasi-particle representations for characters
of (GM)1 x (GM); /(G™M)y, Phys. Lett. B 304 (1993), 263-270.

R. Kedem, T. R. Klassen, B. M. McCoy and E. Melzer, Fermionic sum representations for conformal field
theory characters, Phys. Lett. B 307 (1993), 68-76.

A. N. Kirillov, Dilogarithm identities, Prog. Theor. Phys. Suppl. 118 (1995), 61-142. 1

A. N. Kirillov, New combinatorial formula for modified Hall-Littlewood polynomials, Contemp. Math. 254,
(2000), 283-333.

A. N. Kirillov, A. Kuniba and T. Nakanishi, Skew Young diagram method in spectral decomposition of inte-
grable lattice models II: Higher levels, Nuclear Phys. B 529 (1998), 611-638. 3]

A. N. Kirillov and N. Yu. Reshetikhin, The Bethe Ansatz and the combinatorics of Young tableaux, J. Soviet
Math. 41 (1988), 925-955. ]



42

28]
[29]
30
31)
[32)
33
34
35)
[36]
37)
38]
[39]
[40]

[41]
[42]

[43]
[44]

[45]
[46]

[47]
[48]
[49]
[50]
[51]
[52]

[53]

ANNE SCHILLING AND S. OLE WARNAAR

A. N. Kirillov, A. Schilling and M. Shimozono, A bijection between Littlewood—Richardson tableauz and rigged
configurations, Selecta Math. (N.S.) 8 (2002), 67-135.

A. N. Kirillov and M. Shimozono, A generalization of the Kostka—Foulkes polynomials, J. Algebraic Combin.
15 (2002), 27-69.

D. E. Knuth, Permutations, matrices and generalized Young tableauz, Pacific J. Math. 34 (1970), 709-727.
21

A. Kuniba, K. C. Misra, M. Okado, T. Takagi and J. Uchiyama, Paths, Demazure crystals, and symmetric
functions, J. Math. Phys. 41 (2000), 6477-6486.

A. Lascoux, Cyclic permutations on words, tableauxr and harmonic polynomials, Proc. Hyderabad Conference
on Algebraic Groups 1989, Manoj Prakashan, Madras (1991), 323-347. [6 [61]

A. Lascoux, B. Leclerc and J.-Y. Thibon, Crystal graphs and g-analogues of weight multiplicities for the root
system A, Lett. Math. Phys. 35 (1995), 359-374. [ 2221 BT B2 51 62

A. Lascoux, B. Leclerc and J.-Y. Thibon, Ribbon tableauz, Hall-Littlewood functions, quantum affine algebras,
and unipotent varieties, J. Math. Phys. 38 (1997), 1041-1068.

A. Lascoux and M. P. Schiitzenberger, Sur une conjecture de H.O. Foulkes, CR Acad. Sci. Paris 286 A (1978),
323-324. [0

A. Lascoux and M. P. Schiitzenberger, Le monoid plazique, Quaderni della Ricerca scientifica 109 (1981),
129-156. [0l 6.1 611 6.11

I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, second edition (1995).
2 22

S. C. Milne and G. M. Lilly, The A; and C¢ Bailey transform and lemma, Bull. Amer. Math. Soc. (N.S.) 26
(1992), 258-263.

S. C. Milne and G. M. Lilly, Consequences of the A; and Cy Bailey transform and Bailey lemma, Discrete
Math. 139 (1995), 319-346.

A. Nakayashiki and Y. Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta
Math. (N.S.) 3 (1997), 547-599. 0 22 311 311 32 B.2]

M. Okado, private communication. [3.1]

F. Regonati, Sui numeri dei sottogruppi di dato ordine dei p-gruppi abeliani finiti, Istit. Lombardo (Rend.
Sc.) A 122 (1988), 369-380.

C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191. 1]

A. Schilling, Multinomials and polynomial bosonic forms for the branching functions of the su(2)m X
su(2)n/5u(2) n+m conformal coset models, Nucl. Phys. B 467 (1996), 247-271.

A. Schilling and S. O. Warnaar, A higher-level Bailey lemma, Int. J. Mod. Phys. B 11 (1997), 189-195.
A. Schilling and S. O. Warnaar, A higher-level Bailey lemma: proof and application, The Ramanujan Journal
2 (1998), 327-349.

A. Schilling and S. O. Warnaar, Supernomial coefficients, polynomial identities and q-series, The Ramanujan
Journal 2 (1998), 459-494. [0l 0 [0 B11 [ (73] T3] [C3]

M. P. Schiitzenberger, Quelques remarques sur une construction de Schensted, Math. Scand. 12 (1963),
117-128.

M. Shimozono, A cyclage poset structure for Littlewood—Richardson tableauz, European J. Combin. 22 (2001),
365-393. B.11

M. Shimozono, Multi-atoms and monotonicity of generalized Kostka polynomials, European J. Combin. 22
(2001), 395-414.

M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and
nilpotent varieties, J. Algebraic Combin. 15 (2002), 151-187. 31

M. Shimozono and J. Weyman, Graded characters of modules supported in the closure of a nilpotent conjugacy
class, European J. Combin. 21 (2000), 257-288.

S. O. Warnaar, The Andrews—Gordon identities and q-multinomial coefficients, Commun. Math. Phys. 184
(1997), 203-232.

INSTITUUT VOOR THEORETISCHE FYSICA, UNIVERSITEIT VAN AMSTERDAM, VALCKENIERSTRAAT 65, 1018 XE
AMSTERDAM, THE NETHERLANDS



	1. Introduction
	2. Young tableaux, words and Kostka polynomials
	2.1. Young tableaux and words
	2.2. Kostka polynomials

	3. An-1 supernomials and generalized Kostka polynomials
	3.1. Unrestricted paths and An-1 supernomials
	3.2. Classically restricted paths and generalized Kostka polynomials

	4. Initial cyclage and cocharge for LR tableaux
	5. Charge statistic representation for the generalized Kostka polynomials
	5.1. Relation between cocharge and weight
	5.2. Proof of Theorem ??

	6. The poset structure on LRT(,)
	6.1. The -cyclage and -cocyclage
	6.2. Properties of charge and cocharge

	7. Properties of the supernomials and generalized Kostka polynomials
	7.1. General properties
	7.2. Recurrences of the An-1 supernomials and generalized Kostka polynomials
	7.3. The A1 supernomials

	8. Fermionic representation of the generalized Kostka polynomials
	9. Discussion
	Acknowledgements
	Note added
	Appendix
	Appendix A. Proof of Lemma ??
	Appendix B. Example of a cyclage-graph
	References

