
MATH3303: 2016 FINAL EXAM, (EXTENDED) SOLUTIONS

1. State the second isomorphism theorem for groups.

Solution. Let G be a group, N CG and S ≤ G. Then (1) N ∩ S C S and (2) S/(N ∩ S) ∼= NS/N .

2. Give the definition of a solvable group.

Solution. A group G is solvable if there exists a subnormal series

1 = G0 CG1 CG2 C · · ·CGk = G

(for some integer k ≥ 1) such that the quotients Gi+1/Gi are abelian for all 0 ≤ i ≤ k − 1.

3. State Wedderburn’s theorem, and give the definition of all mathematical structures involved.

Solution. Wedderburn’s theorems states that every finite division ring is a field. A division ring is a
(non-zero) ring in which every non-zero element is a unit (a unit being an element with a multiplicative
inverse). A finite division ring is a division ring with a finite number of elements. A field is a commu-
tative division ring.

4. Let R be a ring.
(a) Under what conditions does R have a field of fractions, Frac(R)?
(b) Describe the full construction of Frac(R). You do not need to prove any of the (implicit) claims
that make this construction work.
(c) Show that there is no smaller field in which R can be embedded.

Solution. (a) R must be an integral domain, that is, R must be commutative and, if ab = ac and
a 6= 0, then b = c.
(b) Let T = R × (R\{0}). Two elements (a, b) and (c, d) in T are said to be equivalent if ad = bc.
This defines an equivalence relation on T . The fraction a/b is now defined as the equivalence class of T
containing (a, b). The set of all such fractions can be given the structure of a field, Frac(R), by taking
as addition and multiplication
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(c) First we note that we can embed R in its field of fractions by identifying a/1 with a. The reason not
all IDs are fields is that not all non-zero elements are necessarily units. Under the above identification,
if a ∈ R is a unit then the fraction 1/a ∈ R and, in fact, 1/a = a−1. Indeed, let a−1 be the inverse of
a, then 1/a = a−1/1 since 1× 1 = a× a−1. For the non-zero a ∈ R that are not units, by adjoining R
with the elements 1/a they become units. Hence no elements of

B = {1/a : a ∈ R\{0}}
can be omitted from the field of fractions, either because it is already in R or it is required to turn a
non-zero non-unit into a unit. But since R is closed under multiplication we then also need RB which
is exactly the field of fractions constructed in (b).

5. Give the definition of a unique factorisation domain and explain the meaning of each of the notions used
in the definition.

Solution. A UFD is an integral domain such that every non-zero non-unit can be ‘uniquely’ written as
a product of irreducible elements. An irreducible element r of an ID is a non-zero non-unit such that
r = ab implies that one of a, b is a unit. The adverb ‘uniquely’ is to be understood as being unique
(1) up to permutation of the irreducible factors (since a UFD is commutative it is clear that the order
in which the irreducible elements are written is irrelevant) (2) up to units. That is, if a admits the



factorisation a = r1r2 · · · rk into irreducible elements ri, then we may replace each ri by an equivalent
irreducible element si (the irreducibles r and s are equivalent if r = su with u a unit) as long as the
product of all the units involved in the rewriting is 1. For example 12 = 2 × 2 × 3 = (−2) × 2 × (−3)
since (−1)× (−1) = 1.

6. Let f : G → H be a homomorphism between groups. Prove that kerf C G. (Show both the subgroup
and normality property.)

Solution. Let K := kerf . Then K = {g ∈ G : f(g) = 1} (where 1 = 1H). To prove that K is a
subgroup we need to show that if a, b ∈ K then ab−1 ∈ K. By the properties of homomorphisms,

f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 = 1 · 1 = 1

so that ab−1 = 1 as required. To prove that K is normal it suffices to show that all of the conjugates of
k are in K, i.e., gkg−1 ∈ K for all g ∈ G and k ∈ K. For g ∈ g and k ∈ K we have

f(gkg−1) = f(g)f(k)f(g−1) = f(g)1f(g)−1 = 1

so that gkg−1 ∈ K.

7. Let m,n, l be positive integers. For which values of m,n, l is it true that

(Z/mZ)/(Z/nZ) ∼= Z/lZ

as an isomorphism of groups? Fully justify your answer.

Solution. Since Z/kZ is a group of order k, we obviously must have m/n = l. Is this sufficient? By the
third isomorphism theorem, if N CM CG and N CG, then (1) M/N CG/N and (2) (G/N)/(M/N) ∼=
G/M . Take G = Z, N = mZ and M = lZ. To meet the conditions of the theorem we only need m | l
which is certainly true if m/n = l. Then

(Z/mZ)/(lZ/mZ) ∼= Z/lZ.

But lZ/mZ ∼= Z/nZ (the map f : Z/nZ → lZ/lnZ = lZ/mZ given by f(k + nZ) = lk + lnZ clearly is
an isomorphism) so that the only required condition is m = nl.

8. Show that all finite integral domains are fields.

Solution. Let R be an ID. That is, R is a commutative ring such that ab = ac and a 6= 0 implies
b = c. If R is finite, we may write R = {r1, . . . , rn}. Now pick an arbitrary non-zero ri ∈ R. Then
|riR| = |R| since rirk = rirl for 1 ≤ k ≤ l ≤ n implies that rk = rl by the above property of IDs. Hence
riR contains the identity element of R, so that there is an rj ∈ R such that rirj = 1. In other words,
ri is a unit. Hence R× = R\{0} so that R is a field (commutative ring in which all elements with the
exception of the zero element are units).

9. Let R = Q[x] and I = (x−m)Q[x] for a fixed m ∈ Z. Identify the quotient ring R/I. All your claims
must be fully justified.

Solution. Since in R/I we may identify x with m this suggests that R/I ∼= Q. To prove this is indeed
the case, we define the (ring) homomorphism f : Q[x]→ Q by

f(p(x)) = p(m).

It is clear that f is surjective since the set of constant polynomials (over Q) is a subset of Q[x] isomorphic
to Q, and the map f acts like the identity on this subset. The kernel of f is given by those polynomials
that have a factor x −m, i.e., kerf = 〈x −m〉 = (x −m)Q[x] = I. By the first isomorphism theorem
for rings, R/I ∼= Q.



10. Show that an ideal I of a commutative ring R is prime if and only if R/I is an integral domain.

Solution. The elements of R/I are the cosets r + I and the zero element of R/I is I.
⇐ Let I be prime. This implies that if ab ∈ I for a, b ∈ R then one of a, b is in I. Now assume that the
product of two elements of R/I is zero, i.e.,

(r + I)(s + I) = I.

The left side may be expanded as rs + I so that our assumption implies that rs ∈ I. By the primality
of I this implies that one of r, s is in I, so that one of r + I, s + I is equal to I (read, is zero in R/I).
Hence R/I is an ID.
⇒ Let R/I be an ID. Pick r, s ∈ R such that rs ∈ I. Then

(r + I)(s + I) = rs + I = I.

Since R/I is an ID this implies that one of r + I, s + I is equal to I so that one of r, s ∈ I. Hence I is
a prime ideal.

11. We say that a ring R 6= 0 is local if the set of non-units, J , is an ideal of R.
(a) Let R be a local ring. Show that R/J is a division ring.
(b) Let R be local. Show that if I is an ideal of R contained in J then R/I is local.
(c) Let I be an ideal of R such that all elements of I are nilpotent and such that R/I is a division ring.

Show that R is local.

Solution. (a) Since R is local the set of non-units, J , is an ideal. The elements of the quotient ring
R/J are the cosets r + J , with J the zero element and 1 + J the identity element. If r is a non-unit,
then r ∈ J so that r + J = J . Hence all non-zero elements of R/J are of the form r + J where r is a
unit. We want to show that such elements themselves are units. But this is clear, because r−1 + J is
also a non-zero element of R/I (not necessarily distinct from r + J but that is irrelevant) so that

(r + J)(r−1 + J) = rr−1 + J = 1 + J

and
(r−1 + J)(r + J) = r−1r + J = 1 + J.

We thus conclude that all elements of R/J , except for J , are units so that R/J is a division ring.
(b) We need to show that the set of non-units in R/I, say K, is an ideal of R/I. Since I ⊆ J we know
that J/I = {j + I : j ∈ J} is an ideal of R/I. We claim that the elements of J/I are non-units in
R/I. Indeed, assume by contradiction that j + I is a unit (for j ∈ J). Then there exists an r ∈ R such
that (j + I)(r + I) = 1 + I. But (j + I)(r + I) = jr + I ⊆ J since jr ∈ J (absorbtion property) and
I ⊆ J . This would thus imply that 1 + I ⊆ J and hence that 1 ∈ J , a contradiction. This proves that
the the elements of J/I are non-units in R/I, so that J/I ⊆ K. But it is clear that K ⊆ J/I. Indeed,
if r + I 6∈ J/I = {j + I : j ∈ J} this means that r 6∈ J , i.e., that r is a unit. But if r is a unit then it
has an inverse r−1 and (r + I)(r−1 + I) = 1 + I so that r + I is a unit in R/I and hence not in K. We
conclude that K = J/I. Since J/I, the set of non-units in R/I, is an ideal of R/I, this proves that R/I
is local.
(c) Since R/I is a division ring, for all r ∈ R such that r 6∈ I, r + I is a unit. That is, for all r 6∈ I there
is an s ∈ I such that

(r + I)(s + I) = rs + I = 1 + I and (s + I)(r + I) = sr + I = 1 + I.

The first of these equations implies that rs ∈ 1 + I, i.e, rs = 1 + a with a a nilpotent element. Since
1 + a is a unit (it has inverse 1− a+ a2− · · · ) this implies that rs is a unit. Similarly, sr is a unit. But
if rs and sr are both units then r and s themselves must be units. Indeed, since rs and sr are units
there exists a t and q such that

trs = rst = 1 = qsr = srq.

But this implies that

st = 1(st) = (qsr)(st) = (qs)(rst) = (qs)1 = qs



so that rst = 1 = qsr can be rewritten as r(st) = 1 = (st)r. Hence r is a unit (with inverse st).
Although not needed, we note that in much the same way tr = rq so that s is a unit with inverse tr.
We conclude that any r 6∈ I is a unit so that I contains all of the non-units of R. Hence I = J . Since I
is an ideal this implies that J is an ideal, and hence that R is local.

An often made mistake was to conclude from rs + I = 1 + I that rs = 1, whereas all it says is that
rs−1 ∈ I. For example, if R = Z and I = 2Z then 1 + I is the set of all odd integers and so is 3×5 + I.
But clearly 3× 5 6= 1.


