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New Construction of Solvable Lattice Models Including an Ising Model in a Field
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In this Letter we report a new construction to obtain restricted solid-on-solid (RSOS) models out
of loop models. The method is a generalization of ideas developed by Owczarek and Baxter, and
by Pasquier. In particular we consider a solvable O(n) model and point out that some of the RSOS
models thus obtained admit an oR'-critical extension. Among these models we find a spin-1 Ising
model, which is solvable not only at the critical point, but also in a fieldlike deviation away from it.
We calculate the critical exponent b = 15 directly from the relation between the free energy and the
field. This is the first determination of this exponent without the use of scaling relations.

PACS numbers: 05.50.+q, 03.70.+k, 05.70.Jk, 64.60.Cn

The understanding of critical phenomena has greatly
increased as a result of the exact solution of various model
systems. In recent years many ways to construct solvable
models have been given. In general these methods are
based on algebraic techniques. Here we present a dia-
grammatic approach to obtain solvable models from
known loop models. The resulting critical models include
both new and known universality classes.

General loop model. —We consider the partition func-
tion defined as the sum over all graphs G consisting of
closed nonintersecting polygons (or loops) on a square
lattice. An edge can either be occupied by a loop seg-
ment or be empty. Each polygon has fugacity n and the
nine possible vertices, shown in Fig. 1(a), have Boltz-
mann weights p~, . . . , p9.

Z=) pi pg rP,

where p is the total number of loops of G and n, the

number of vertices of type i. This model includes the
polygon partition sum considered by [1], where only ver-
tices of type 8 and 9 occur. However, it is in general dis-
tinct from the nonintersecting string models [2], where
the strings or polygons each carry a variable, via which

they interact.
Genera/ RSOS model. —We now define a restricted

solid-on-solid (RSOS) model [3] on the square lattice and
show how it is related to the loop model defined above.

For this purpose we define an arbitrary connected
graph g consisting of L nodes, each node being labeled

by an integer a c (1, . . . , L), the "height" of the node.
To such a graph we assign an adjacency or incidence ma-
trix A, which has the following elements: A b = 1 if the
nodes a and b of Q are adjacent (a b), i.e. , linked by a
bond, and Aa b ——0 otherwise. Let A be the largest eigen-
value of A and S the Perron-Frobenius vector. Then we

define the Boltzmann weight of an elementary face of the
RSOS model as follows:
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where S, is the ith entry of S and a, 6, c, and d can
take any of the L heights of the graph Q. The gener-
alized Kronecker 6 is defined as 8.. . = Q 2 b.. ., .
This equation is a direct generalization of the weights
introduced in [4, 5].

This model can. be mapped onto the loop model if we
identify A = n, We expand th.e partition function of the
RSOS model, given by
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FIG. 1. (a) The nine vertices of the loop model. (b) The

nine possible diagrams in the expansion of (3). (c) The fac-
torization of diagram 9 of (b).
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into a sum of 9~ terms, where N is the number of faces
of the lattice. A given term in the expansion has one
of the nine terms of (2) for each elementary face of the
lattice. These nine possible terms can be represented by
the diagrams shown in Fig. 1(b), in which the lines indi-
cate domain walls separating regions of difFerent height,
adjacent on g. The partition sum now consists of a sum-

mation on the configurations G of domain walls and on
the height variables,

G heights s,b=l
(4)

L.S~ . S,
pa = —A.

a~b a=1
(5)

Repeating this procedure from the inside out we indeed

where mb, is the total power of S,/Sb from vertices of
types 4, 5, and 9. The summation on the heights is sub-
ject to the restriction that sites in the same domain take
the same height, and that heights in neighboring domains
are adjacent.

For each configuration G of domain walls, the depen-
dence of the Boltzmann weight on the heights can be fac-
torized into separate contributions associated with each
domain wall. For that purpose vertex weights of type
9 of Fig. 1(b) are split into two factors as indicated in

Fig. 1(c). We can now start to sum on the heights inside
loops that do not surround other loops. Let a be the
inner and b the outer height of such a loop. Then, since
the contribution to m, b

—mb~ for such a loop is always

find, up to a proportionality constant depending on the
specific choice of boundary conditions, that the summa-
tion over all heights yields a factor n", which proves the
equivalence of (3) with (1).

Special solvable cases .—In general the loop model (1)
is not solvable, but in the following we consider two cases
for which this model satisfies the Yang-Baxter equation

[6]. The generalization of Yang-Baxter equations to loop
variables is treated in [7]. The solvable loop models we
discuss are both critical for n & 2. The graphs g which
have adjacency matrix A with largest eigenvalue A &

2 have been classified by the Dynkin diagrams of the
classical and affine simply-laced Lie algebras, the A D E--
Lie algebras.

The Temperley-Lieb (TL) construction of [4, 5] builds
on the loop model defined by
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(6)

which is related to the six-vertex and self-dual Potts
model [1]. The critical A and D RSOS models obtained
from it can all be extended away from criticality while

retaining their solvability. As these models have been

discussed extensively we refer to the original literature
for further details [3,8, 9].

As the basis of the construction we now consider an-

other solvable loop model [10], related to the Izergin-

Korepin model [11].It is defined by the following weights

and fugacity:
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From a numerical investigation similar to that of Rietman [12], it seems that of the corresponding RSOS models, only
those based on the Dynkin diagrams of the Al, series can be extended away from criticality, in contrast to the TL
case. The orbifold construction of Fendley and Ginsparg [13], which relates the DL,+2 and Azl. +i TL models, may
readily be generalized to these new critical RSOS models. However, the requirement that the weights possess the
same Zz symmetry as the Dynkin diagrams is not satisfied for the AzL, +i models away from criticality. Therefore the
solvability of off-critical Dl, models is not implied.

Ogj'-critical AL, modeL —The Dynkin diagram of Al. has adjacency matrix A with elements A, b = b b i+6~ b+i,
a, b c (1, . . . , L ). The weights of this model, with the usual definition of 6 functions [14], are found to be
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When the nome of the elliptic functions is taken to zero the critical weights (2) are recovered.
There are four different regimes in terms of the spectral and crossing parameters u and A. The central charge is

known from the equivalence with the O(n) model [15, 16],
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Other regimes can be mapped onto these four by the
periodicity of the weights.

As remarked before, for L odd the weights do not sat-
isfy the Zz symmetry of the Dynkin diagram
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tion Fundamenteel Onderzoek der Materie.

The simplest model that exhibits this broken symmetry
is realized when L = 3. This is a three-state model,
with states (+,0, —), of which a + and —spin cannot be
neighbors. For A =

~&der
and 0 ( u ( &&7r, this model has

central charge c =
~ and belongs to the universality class

of the ordinary Ising model. In fact, the nome of the el-

liptic functions in (8) serves as the magnetic field. When
we calculate the free energy from the inversion relation

[17] and extract the leading singularity, we find the mag-
netic exponent 6 = 15. Although this value is universally
accepted, this is the erst time that it has been calculated
directly, rather than from scaling relations with other ex-
ponents.

Similar RSOS models related to the Izergin-Korepin
model have been found by Kuniba [18], via a completely
different, algebraic approach. His weights, however, do
not break the symmetry of the adjacency diagrams. Af-

ter this paper was submitted for publication, we learned
that results equivalent to our Eqs. (2) and (7) have been
obtained by Roche [19].

In this Letter we have described a new method to con-
struct RSOS models out of loop models and have applied
these ideas to the O(n) model. The critical models thus
obtained can be classified by the A-D-E Lie algebras.
Critical properties of these models can be extracted from
known results for the O(n) model. Only the Ar, model
admits an off-critical elliptic extension, which for L odd
turns out to be symmetry breaking. A more detailed
investigation of this model is in progress.
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