
PARTIAL THETA FUNCTIONS
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1. Introduction

The Jacobi theta function

(1.1) θ3(u; q) := 1 + 2

∞∑
n=1

qn
2

cos(2nu) =

∞∑
n=−∞

xnqn
2

(where u, q ∈ C, 0 < |q| < 1 and x := exp(2iu)) and its close cousins θ1, θ2 and θ4 form
an important class of transcendental functions [142]. They are quasi doubly-periodic entire
functions and the key building blocks of elliptic functions. The theta functions satisfy a
large number of identities, chief among them the Jacobi triple product identity [8, 59]

(1.2) θ3(u; q) =

∞∏
k=1

(1 + xq2k−1)(1 + x−1q2k−1)(1− q2k).

Ramanujan contributed extensively to the theory of theta functions, often favouring the
symmetric form obtained by setting q2 = ab and x2 = a/b in (1.1).

In the Lost Notebook Ramanujan stated numerous identities for functions that closely
resemble ordinary theta functions. These functions, which were given the name ‘partial
theta functions’ by Andrews [10], take the form

(1.3) Θp(x; q) :=

∞∑
n=0

xnqn
2

or

(1.4)

n∏
k=1

(1 + xqk)(1 + x−1qk).

In (1.3) the sum over Z defining an ordinary theta function is replaced by a sum over the
‘positive cone’ {n ∈ Z : n > 0}. In (1.4) the infinite product expression for ordinary theta
functions is replaced by a finite product. By the q-binomial theorem [8,59], such a product
can be expanded as

(1.5) (1 + x)

n∏
k=1

(1 + xqk)(1 + x−1qk) =

n+1∑
k=−n

xkq(
k
2)
[
2n+ 1

n+ k

]
,

where, for integers 0 6 k 6 n,
[
n
k

]
:=
∏k
i=1(1− qi+n−k)/(1− qi) is a q-binomial coefficient.

Up to a factor
∏
k>1(1 − qk), in the large-n limit the left-hand side is a theta function in

product form and the right-hand side a theta function in sum form.
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2 S. OLE WARNAAR

Before stating two representative examples of Ramanujan’s identities for partial theta
functions, we introduce some standard q-series notation. Ramanujan himself did not use
this, and would typically just write the first few terms in a sum or a product in explicit
form. Let n be a nonnegative integer. Then the q-shifted factorials (a; q)n and (a; q)∞ are
defined by

(a; q)n =

n∏
k=1

(1− aqk−1) and (a; q)∞ =
∏
k>1

(1− aqk−1).

We also use the condensed notation

(a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n and (a1, . . . , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞,

so that the partial theta function (1.4) can be written as (−xq,−q/x; q)n.
With the above notation we can state the following two examples of identities for partial

theta functions from the Lost Notebook [122, p. 37]:1

∞∑
n=0

qn

(aq, q/a; q)n
= (1− a)

∞∑
n=0

(−1)na3nqn(3n+1)/2(1− a2q2n+1)(1.6)

+
a

(aq, q/a; q)∞

∞∑
n=0

(−1)na2nq(
n+1
2 )

and [122, p. 29]:

∞∑
n=0

(q; q2)nq
2n

(aq2, q2/a; q2)n
= (1− a)

∞∑
n=0

anq(
n+1
2 )(1.7)

+
a(q; q2)∞

(aq2, q2/a; q2)∞

∞∑
n=0

(−1)na3nqn(3n+2)(1 + aq2n+1).

Further identities of this type, as well as some simpler partial theta function identities from
the Lost Notebook, will be discussed in Section 3.

Acknowledgements. Many people have provided invaluable help in the preparation of
this survey, and in particular, I would like to thank Seamus Albion, George Andrews, Tim
Garoni, Kazuhiro Hikami, Jang Soo Kim, Vladimir Kostov, Xinrong Ma, Antun Milas, Eric
Mortenson, Larry Rolen, Anna Vishnyakova, Jin Wang, Ae Ja Yee, Wadim Zudilin and
Sander Zwegers.

2. The early history of partial theta functions

Before presenting a more detailed discussion of Ramanujan’s identities for partial theta
functions, we briefly review some of the early history of these functions.

The first occurrence of partial theta functions appears to be in two papers by Eisen-
stein [50, 51] published in Crelle in 1844. In these papers Eisenstein gave a continued
fraction expansion for Θp(x; q) from which he deduced the simple fact that Θp(r; 1/k) is
irrational for k ∈ Z \ {−1, 0, 1} and r ∈ Q∗. Two years later Heine [63] recovered Eisen-
stein’s continued fraction as a special case of a more general continued fraction expan-
sion for the 2φ1 basic hypergeometric function. In 1915 Eisenstein’s irrationality result
for Θp was sharpened in a joint paper by Bernstein and Szász [25] and a follow-up work
by Szász [115]. Shortly thereafter Tschakaloff [136, 137] studied the partial theta function

1Ramanujan stated (1.6) and (1.7) with (a, q) replaced by (−a, x).
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n>0 x

nq(
n
2) = Θp(q−1/2x; q1/2) and established not just irrationality but also linear inde-

pendence results. He also noted the functional equation Θp(x; q) − xqΘp(xq2; q) = 1. It
is the 1 on the right, rather than the 0 in the case of ordinary theta functions, that ob-
structs quasi-periodicity along annuli. Since Tschakaloff’s work on the arithmetics of partial
theta functions, in certain parts of the literature partial theta functions are referred to as
‘Tschakaloff functions’ or ‘Tschakaloff series’.

In an unrelated early development, in 1904 Hardy [61] studied the zeros of entire functions
of the form f(x) =

∑∞
n=0 anx

n for positive real an. As one of his key examples he proved that
all of the roots of the partial theta function Θp(x; q) for 1/q2 > 9 are real and negative, with
exactly one root in the interval

(
−(1/q2)n,−(1/q2)n−1

)
. Several years later, and inspired by

Hardy’s paper as well as earlier work of Laguerre [102] on limits of real-rooted polynomials,
Petrovitch [117] was led to consider real-rooted entire functions f all of whose finite sections
a0 +a1x+ · · ·+anx

n are real-rooted. Once again Θp(x; q) served as a key example. In 1923
Hutchinson [68] pushed this line of study further, proving that a2

n/(an−1an+1) > 4 for all
positive integers n if and only if

(i) all zeros of f are real, simple and negative;
(ii) all zeros of amx

m + · · ·+ anx
n are real and negative (with the possible exception of

x = 0) for all pairs of nonnegative integers m < n.2

Since a2
n/(an−1an+1) = 1/q2 for f(x) = Θp(x; q), Hutchinson’s result improved Hardy’s

lower bound on 1/q2 for the roots of the partial theta function to be real and negative
from 9 to 4.3 Hutchinson also remarked that approximately and asymptotically the roots of
Θp(x; q) for |q| < 1 are given by the sequence (−q1−2n)n>1.

Not much other work related to partial theta functions seems to predate that of Ramanu-
jan, although special cases of (1.3) certainly did arise earlier in the q-series literature. For
example, the specialisation x = −q of (1.3) corresponds to Rogers’ false theta series [124]

(2.1)

∞∑
n=0

(−1)nqn
2+n =

( ∑
n>0

−
∑
n<0

)
q2n(2n+1).

For more on such series in the work of Rogers and Ramanujan we refer the interested reader
to [127].

3. Partial theta functions and the Lost Notebook

There are essentially two general approaches for proving partial theta function identities
such as (1.6) and (1.7). Both are reviewed in full detail in Chapter 6 of Part II of the edited
version of the Lost Notebook by Andrews and Berndt [15]. As was characteristic of his style,
there are no hints in the Lost Notebook as to how Ramanujan discovered his identities and
whether or not he had proofs.

The first approach relies upon the following master identity.

2Hutchinson incorrectly stated ‘real, simple and negative’, a condition which either would require that
a2n/(an−1an+1) > 4 [48, p. 215] or n > m+ 2 [148].

3Hutchinson’s theorem applied to Θp(x; q) appears in Pólya and Szegő’s classic text ‘Problems and

Theorems in Analysis II’ [120, Problem 176, p. 66] without reference to Hutchinson.
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Theorem 3.1. For arbitrary a, b, c, d such that |a| < 1, |c/b| < 1 and |q| < 1,

(3.1)

∞∑
n=0

(c, d; q)nq
n

(aq, bq; q)n
= (1− a)

∞∑
n=0

(1/b; q)n+1(cd/ab; q)na
n

(c/b, d/b; q)n+1

+
(c, d; q)∞

b(aq, bq; q)∞

∞∑
n=0

(aq/c; q)n
(d/b; q)n+1

(c
b

)n
.

This theorem was first obtained by Andrews [10] using a range of summation and trans-
formation formulas for basic hypergeometric series, including the q-binomial theorem, one
of Heine’s transformations for 2φ1 series and Sears’ transformation for 4φ3 series.4 Several
years later Agarwal [1] (see also [2]) observed that, up to a Heine transformation of one of
the terms, (3.1) is a specialisation of a three-term relation for 3φ2 series due to Sears, see
e.g., [59, Exercise 3.6]. It is not inconceivable that Ramanujan knew (3.1) or one of the
closely related identities obtained by transforming one or more of the infinite series. Modulo
Heine’s transformation [59, Eq. (III.2)] Ramanujan did record the c = d = 0 case of (3.1) in
the Lost Notebook [122, p. 40] (see also [9, p. 98]):

(3.2)

∞∑
n=0

qn

(aq, bq; q)n
= (1− b−1)

∞∑
n=0

(−1)nq(
n+1
2 )

(aq; q)n

(a
b

)n
+

1

b(aq, bq; q)∞

∞∑
n=0

(−1)nq(
n+1
2 )
(a
b

)n
,

a result proved combinatorially by Kim [75] and Levande [104]. Equation (1.6) from the
introduction follows from (3.2) by specialising b = 1/a and then transforming the first
term on the right using the Rogers–Fine identity [52, 124]. Ramanujan certainly knew of
the latter; the Third Notebook [21, Chapter 16, Entry 7] contains an identity from which
the Rogers–Fine identity easily follows, and by the time he returned to India he was of
course well familiar with the work of Rogers. The second example from the introduction
follows in a similar fashion from (3.1). This time one must replace q 7→ q2 followed by
(b, c, d) 7→ (1/a, q, 0). Transforming both series on the right using the Rogers–Fine identity
then yields (1.7).

Almost all other partial theta function identities of the type (1.6) found in Lost Notebook
can be obtained from (3.1). For some, such as [122, p. 4]

(3.3)

∞∑
n=0

(q; q2)nq
n

(aq, q/a; q)n
= (1− a)

∞∑
n=0

anq(
n+1
2 ) +

a(q; q2)∞
(aq, q/a; q)∞

∞∑
n=0

(−1)na2nqn
2+n,

the Rogers–Fine identity alone does not suffice for writing the two series on the right in
desired form, and further results from the theory of basic hypergeometric functions are
required, see [10,15]. The exception is Ramanujan’s [122, p. 12]

(3.4)

∞∑
n=0

(qn+1; q)nq
n

(aq, q/a; q)n
= (1− a)

∞∑
n=0

anqn
2+n +

a

(aq, q/a; q)∞

∞∑
n=0

a3nqn(3n+2)(1− aq2n+1),

which does not follow from (3.1). This is where the second general method, based on Bailey
pairs, comes to the rescue.

4For a proof of the c = 0 case of (3.1) which does not require the Sears transformation, see [130].
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Two sequences α = (αn)n>0 and β = (βn)n>0 are said to form a Bailey pair relative to a
if [12, 19,139]

(3.5) βn =

n∑
r=0

αr
(q; q)n−r(aq; q)n+r

.

Bailey pairs are related to partial theta functions by the following result [140].5

Theorem 3.2. Let (α, β) be a Bailey pair relative to q, and extend the α-sequence to all
integers n by α−n−1 := αn for n > 0. Then

(3.6)

∞∑
n=0

βn(q; q)2nq
n

(aq, q/a; q)n
= (1− a)

∞∑
n=0

αn(−1)nanq−(n2) 1− q
1− q2n+1

+
1

(q, aq, q/a; q)∞

∞∑
r=1

(−1)r+1arq(
r
2)
( ∞∑

n=−∞
αnq

(1−r)n 1− q
1− q2n+1

)
,

provided a 6= 0 and all series converge.

A Bailey pair which readily implies the second Rogers–Ramanujan identity [124] is

B(3) : αn = (−1)nqn(n+1)+(n2) 1− q2n+1

1− q
, βn =

1

(q; q)n
,

where B(3) refers to the Rogers–Slater labelling. It is easy to check that the expression for
αn is invariant under the substitution n 7→ −n− 1 so that the above α-sequence applies to
all integers n. Substituting B(3) into (3.6) and using the Jacobi triple product identity to
simplify the second sum over αn to (q; q)∞(−1)br/3cq−(r−1)(r−2)/6 for r 6≡ 0 (mod 3) and
zero otherwise, (3.4) follows. The earlier examples also follow from (3.6). In the case of
(3.3) the required Bailey pair is E(3) [128], and in the case of (1.6) and (1.7) two Bailey
pairs not part of Slater’s original list are needed, see [140] for details.

One advantage of using Bailey pairs to prove Ramanujan’s identities for partial theta
functions is that it suggests how to generalise each of his results. As independently discovered
by Andrews [12] and Paule [116], Bailey pairs can be iterated to give new Bailey pairs, leading
to what is known as the Bailey chain. This implies that many of Ramanujan’s identities for
partial theta functions extend to infinite families of such identities. For example, (3.4) is
the modulus-3 case of the following partial theta identity for all odd moduli [140]:

(3.7)

∞∑
n=0

(q; q)2nq
n

(aq, q/a; q)n

∑
06nk−16···6n16n

qn
2
1+···+n2

k−1+n1+···+nk−1

(q; q)n−n1
(q; q)n1−n2

· · · (q; q)nk−2−nk−1
(q; q)nk−1

= (1− a)

∞∑
n=0

anqkn(n+1) +

κ−1∑
i=1

(−1)i+1aiq(
i
2) (qi, qκ−i, qκ; qκ)∞

(q, aq, q/a; q)∞

∞∑
n=0

aκnqkn(κn+2i),

where k is a positive integer and κ := 2k + 1 the odd modulus.

It was observed by Andrews [10] (see also [79,80,106,140]) that by an appropriate residue
calculus identities for partial theta functions of the form (1.6) yield new identities for the
same class of functions. For example, (3.3) implies [140]

(3.8)

∞∑
n=0

(−1)nanqn
2+n =

∞∑
n=0

(q, aq; q2)n(aq)n

(−aq; q)2n+1
.

5The a in (3.6) should not be confused with the a in (3.5), which has been fixed to the value q.
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Curiously, Ramanujan stated the a = 1 case of this identity in the Lost Notebook [122, p. 13],
but appears to have missed the full form despite its connection with (3.3) and the occurrence
of other very similar identities, such as [122, p. 28]

(3.9)

∞∑
n=0

anq(
n+1
2 ) =

∞∑
n=0

(−q; q)n−1a
nq(

n+1
2 )

(−aq2; q2)n
.

Interestingly, (3.8) is relevant to another problem first considered by Ramanujan, that of
determining the asymptotic expansion of partial theta functions. In the Second Notebook
(see [22, p. 547]) he noted that the false theta series (2.1) admits the asymptotic expansion

(3.10) 2

∞∑
n=0

(−1)nqn
2+n ∼ 1 + t+ t2 + 2t3 + 5t4 + 17t5 + · · ·

where q = (1 − t)/(1 + t) → 1− (i.e., t → 0+). Berndt and Kim [23] have shown, more
generally, that the partial theta function (1.3) for 0 < q < 1 and x = −qb (b ∈ R) admits
the asymptotic expansion

(3.11) 2

∞∑
n=0

(−1)nqn
2+bn ∼

∞∑
n=0

ant
n.

They then used (3.8) to show that for b a positive integer the coefficients an are again integral.
They also conjectured that for sufficiently large n all an have the same sign. This was settled
by Bringmann and Folsom [34] using methods from the theory of modular forms. Specifically,
for n sufficiently large, an > 0 if b ≡ 1, 2 (mod 4) and an < 0 if b ≡ 0, 3 (mod 4). In the case
of Ramanujan’s original asymptotic expansion (3.10), the series on the right has been shown
by Stanley [133] to be the generating function of fixed-point-free alternating involutions
in S2n. For example, there are 5 fixed-point-free alternating involutions in S8, given in
cycle notation by (12)(34)(56)(78), (12)(38)(46)(57), (16)(24)(35)(78), (16)(24)(38)(57) and
(18)(24)(36)(57). For more on the asymptotics of partial theta function, see [33, 56, 67, 71,
76,81,109,111].

Viewed as a function of x, the partial theta function (1.3) is entire. By a special case
of Hadamard’s factorisation theorem, if f is a rank-0 entire function with simple zeros at
x1, x2, . . . and f(0) = 1, then f(x) admits the Hadamard factorisation f(x) =

∏
n>1(1 −

x/xn). On page 26 of the Lost Notebook Ramanujan [122] gave the following remarkable
formula for the Hadamard factorisation of the partial theta function (1.3):

(3.12) Θp(x; q) =

∞∏
n=1

(
1 + xq2n−1

(
1 + y1(n) + y2(n) + · · ·

))
,

where

y1(n) =

∑∞
i=n(−1)iqi

2+i∑∞
i=0(−1)i(2i+ 1)qi2+i

, y2(n) = y1(n)

∑∞
i=n(−1)i(i+ 1)qi

2+i∑∞
i=0(−1)i(2i+ 1)qi2+i

.

This is significantly deeper than Hutchinson’s observation about the zeros as discussed in
the previous section. In [13] Andrews proved (3.12) by showing that

x−1
n = −q2n−1

(
1 + y1(n) + y2(n) +O(q3n(n+1))

)
provided that 0 < q < 2−n−7/3.6

6The bound on q, which is not believed to be sharp, is taken from [16, Theorems 18.1.3 and 18.1.4].
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The final type of results for partial theta functions that may be found in the Lost Notebook
are a number of expansions of ordinary theta functions in terms of partial theta functions,
not necessarily of the same nome q. One illustrative example is [122, p. 33]

(3.13)

∞∑
n=0

q2n2

(q2; q2)2n
(aq, q/a; q)n =

1

(q2; q2)∞

∞∑
n=−∞

anq3n2

.

Although elegant, results such as these are much less deep than his other formulas for
partial theta functions. The q-binomial theorem allows for the partial theta function in
the summand to be expanded as a Laurent polynomial in a, much like (1.5). Interchanging
sums, and using a special case of the q-Chu–Vandermonde sum known as the Durfee rectangle
identity, (3.13) follows. For a comprehensive treatment of (3.13) and related results, see [11]
and [132].

4. On the general theory of partial theta functions

Unlike ordinary theta functions, a general theory of partial theta is still far from complete,
and many properties of partial theta functions are not yet fully-understood. Below we survey
a number of recent developments.

4.1. The generalised triple product identity. One of the central results in the theory
of theta functions, the Jacobi triple product identity, does not have an analog for partial
theta functions, and (1.3) does not admit a simple product form. Instead, there is a pair
of closely related triple-product-like identities for the sum and product of two partial theta
functions [140]:

(4.1) 1 +

∞∑
n=1

(−1)n(an + bn)q(
n
2) = (q, a, b; q)∞

∞∑
n=0

(ab/q; q)2nq
n

(q, a, b, ab; q)n

and [18]

(4.2)

( ∞∑
n=0

(−1)nanq(
n
2)
)( ∞∑

n=0

(−1)nbnq(
n
2)
)

= (q, a, b; q)∞

∞∑
n=0

(ab/q; q)2nq
n

(q, a, b, ab/q; q)n
.

It is the first of these identities, which simplifies to the Jacobi triple product identity for
ab = q, that underpins (3.6). For additional proofs, variants or generalisations of (4.1) and
(4.2), see [?, 20, 108,125,135,138,141].

4.2. The zeros and spectrum of partial theta functions. Thanks to its representation
as a product, we have full control of the zeros of a theta function. For a partial theta func-
tion, however, the structure of its zeros is much more complicated, and sensitively depends
on the nome q. We already discussed the Hardy, Hutchinson and Andrews–Ramanujan re-
sults on the zeros of Θp(x; q). To put these results in broader context, an entire function
f belongs to the Laguerre–Pólya class if all of its roots are real, f has rank 1 (i.e., the
sum

∑
n>1 x

−2
n of nonzero roots, counted with multiplicity, is bounded), and f admits the

Hadamard factorisation

f(x) = xm ea+bx+cx2 ∏
n>1

ex/xn
(

1− x

xn

)
,

where a, b, c ∈ R (with c 6 0) and m is a nonnegative integer. The significance of this
class of entire functions stems from the following theorem, established by Laguerre [101]
and Pólya [118].
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(i) If (Pn)n>1 is a sequence of complex polynomials all of whose roots are real and which
converges uniformly inside a disk of positive radius, then this sequence converges
uniformly on compact subsets in C to an entire function in the Laguerre–Pólya class.

(ii) If f belongs to the Laguerre–Pólya class then there exists a sequence of complex
polynomials, all of whose roots are real, which converges uniformly to f on compact
subsets of C.

As a more restrictive notion, a function f is of type I in the Laguerre–Pólya class if it admits
the representation

f(x) = xm ea+bx
∏
n>1

(
1− x

xn

)
,

where b > 0,
∑
n>1 x

−1
n <∞ and xn < 0. An entire functions f of type I in the Laguerre–

Pólya class is the uniform limit on compact subsets of C of a sequence of polynomials with
negative real zeros and positive real coefficients [119]. From Hutchinson’s theorem it follows
that all zeros of Θp(x; q) are real and negative for 1/q2 > 4, a bound which was improved
to (37/20)2 = 3.4255 by Craven and Csordas [45]. Katkova, Lobova and Vishnyakova [72]
then proved the existence of a constant q∞ = 3.233636 . . . such that Θp(x; q) for q > 0
has only negative real zeros—and hence is of type I in the Laguerre–Pólya class—if and
only if 1/q2 > q∞. See also [29]. Moreover, as shown by Nguyen and Vishnyakova [114],
the partial theta function is extremal in the sense that any entire function of the form
f(x) =

∑
n>0 anx

n (an > 0) for which the sequence a2
n/(an−1an+1) is decreasing with limit

limn→∞ a2
n/(an−1an+1) = b > q∞ is in the Laguerre–Pólya class. In a similar vein, Katkova

and Vishnyakova [73] have proven the existence of a constant, s∞, such that all roots of
Θp(x; q) have negative real parts if 1/q < s∞.

In a long series of papers [83–98] Kostov has made a detailed study of the zeros and
spectrum of the partial theta function

θp(x; q) :=

∞∑
n=0

xnq(
n+1
2 ) = Θp

(
xq1/2; q1/2

)
.

Here q for |q| < 1 is a spectral value if θp(x; q) has multiple zeros as a function of x. Kostov
has shown that the only spectral value in the (closed) disk of radius 0.31 is q̃1 := 1/q∞ =
0.309249 . . . . Moreover, for 0 < q < 1 the partial theta function θp(x; q) has infinitely many
negative real zeros, and there exists a strictly increasing (real) sequence (q̃i)i>1 (with q̃1 as
above) converging to 1 such that θp(x; q̃i) has a single double zero, which is the right-most of
the real zeros. For all 0 < q < 1 not contained in the sequence of spectral values, θp(x; q) has
no multiple zeros. Finally, for q ∈ (q̃i, q̃i+1] there are exactly i pairs of complex conjugate
zeros counted with multiplicity. Kostov and Shapiro [100] have also used the partial theta
function θp(x; q) to settle the Hardy–Petrovitch–Hutchinson problem. Let ∆n denote the
set of all polynomials a0 + a1x+ · · ·+ anx

n with positive real ai such that all of its sections
a0 + a1x + · · · + aix

i for 1 6 i 6 n are real-rooted. The Hardy–Petrovitch–Hutchinson
problem then asks for the lower bounds

mn := inf
f∈∆n+1

a2
n

an−1an+1
.

Petrovitch [117] showed that m1 = 4, m2 = 27/8 and m3 ≈ 3.264. Kostov and Shapiro
proved that the mn are algebraic, mn > mn+1 and limn→∞mn = q∞. Furthermore, they
constructed a sequence of polynomials

(
pn(x)

)
n>1

= (1 + x, 1 + x + x2/4, 1 + x + x2/4 +

x3/54, . . . ) such that (i) pn(x)− pn−1(x) = Anx
n, (ii) pn+1(x) realises the lower bound mn,

viz. mn = A2
n/(An−1An+1), and (iii) a scaled version of pn+1(1/x) converges to θp(x; 1/q∞).
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Similar ratios of coefficients arise in the theory of Padé approximants of entire functions
of the form f(x) =

∑
n>0 anx

n (an 6= 0 but not necessarily real), with smooth coefficients,

i.e., coefficients an such that a2
n/(an−1an+1) has a finite limit as n→∞. Once again, partial

theta functions are the simplest examples of such functions, since a2
n/(an−1an+1) is constant.

We refer the reader to the work of Lubinsky and Saff [107] for more on Padé approximants
of partial theta functions and how they relate to the zero distribution of the Rogers–Szegő
polynomials.

Sokal [129] considered a different (albeit related) kind of zero for partial theta functions.
He viewed θp(x; q) as a formal power series in q and defined the unique formal power series
−ξ0(q)/q, termed ‘leading root’, by the equation θp(−ξ0(q)/q; q) = 0. He showed that
ξ0(q) = 1 + q+ 2q2 + 4q3 + 9q4 + 21q5 + · · · =: a0 +a1q+ · · · has strictly positive coefficients
and that the ratio ak+1/ak converges to Katkova–Lobova–Vishnyakova constant q∞ in the
large-k limit. Sokal also posed the conjecture, which is still open, that the sequence (cn)n>1,
defined by ξ0(q) =

∏
n>1(1−q)−cn , is strictly positive, strictly increasing and strictly convex.

Subsequently, Prellberg [121] gave a simple combinatorial interpretation of the coefficients
mk of the leading root in terms of rooted trees. Flores and González-Meneses [53] have

further shown that these same coefficients, as well as the coefficients mk,i := [qk]
(
ξ0(q)

)i
of the ith power of the leading root, arise naturally from counting braids in the Artin–Tits
monoid

A∞ =

〈
a1, a2, a3, . . .

∣∣∣∣ aiaj = ajai, |i− j| > 2

aiajai = ajaiaj , |i− j| = 1

〉
on infinitely many strands. Assuming the standard lex order a1 < a2 < · · · , each element or
braid of A∞ has a unique maximal lex representative. Flores and González-Meneses proved
that mk,i is the number of elements of length k in A∞ whose maximal lex representative
starts with one of the letters a1, . . . , ai. For example, the braids of length 4 starting with
a1 are

a4
1, a

3
1a2, a

2
1a

2
2, a

2
1a2a3, a1a

2
2a1, a1a

3
2, a1a

2
2a3, a1a2a

2
3, a1a2a3a4,

so that m4,1 = a4 = 9. As a consequence of this result, q∞ admits the interpretation as the
growth rate of A∞.

4.3. Modularity. Unlike theta functions, partial theta functions are not modular forms.
They provide, however, examples of the more recent concept of a quantum modular form
as introduced by Zagier in [149]. Let Γ be a congruence subgroup of the modular group
SL(2,Z) and Q ⊂ Q an infinite ‘quantum set’. Then f : Q → C is called a quantum modular
form of weight k on Γ if for all ( a bc d ) ∈ Γ

f(z)− (cz + d)−kf

(
az + b

cz + d

)
extends to an open subset of R and has appropriate continuity or analyticity properties.
If to each point of Q one can attach a formal power series over C subject to additional
modularity properties, f is said to be a strong quantum modular form. Folsom, Ono and
Rhoades [55] have shown that the partial theta series∑

n>0

(−1)nq(n+a/b)2 , q = e2iπz,

for coprime integers 0 < a < b and b even, is a strong, weight-1/2 quantum modular form
for z ∈ Qa,b with quantum set Qa,b := {h/k ∈ Q : gcd(h, k) = 1, h > 0, b | 2h, b - h, k ≡ a
(mod b), k > a}. It was later pointed out by Bringmann, Creutzig and Rolen [30] that the
condition a < b may be dropped. In the same paper, they also showed that the Fourier
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coefficients of certain Jacobi forms of negative index can be decomposed in terms of partial
theta functions. This was further extended to more general negative-index Jacobi forms
in [32]. In Section 3 we discussed the use of the partial theta function identity (3.8) in
the asymptotic expansions (3.10) and (3.11). Bringmann and Milas [31] have shown that a
similar use of (3.8) allows for the radial limits of the false theta functions

Fj,p(z) =

( ∑
n>0

−
∑
n<0

)
q(n+j/(2p))2

(for integers j, p such that 1 6 j 6 p and p > 2) to be explicitly computed. This shows that
that Fj,p(z) is a strong quantum modular form for z in the quantum set Qp = {h/k ∈ Q :
gcd(h, k) = 1 2p - k}.

Some of the partial theta function identities discussed in Section 3 also bear a close
relationship with mock modular forms, including Ramanujan’s mock theta functions. For
example, for a = −1 the identity (1.6) simplifies to

(4.3)

∞∑
n=0

qn

(−q; q)2
n

= 2

∞∑
n=0

(
−12

n

)
q(n2−1)/24 − 1

(−q; q)2
∞

∞∑
n=0

(−1)nq(
n+1
2 ),

where ( ·· ) is the Kronecker symbol, and where both q-series on the right are false theta series.
As discussed in greater detail in [35,41,64,113,123], the left-hand side is Ramanujan’s famous

third order mock theta function f(q) :=
∑
n>0 q

n2

/(−q; q)2
n for |q| > 1, i.e., the left-hand

side of (4.3) is f(q−1) for |q| < 1. Furthermore, the first false theta series on the right
(including the prefactor 2) can be rewritten as

f?(q−1) := 1−
∑
n>1

(−1)nq(
n
2)

(−q; q)n
, where f?(q) = 1−

∑
n>1

(−1)nqn

(−q; q)n
= f(q).

In other words, although f(q) = f?(q) inside the unit disc, for |q| > 1 their difference is a
false theta series, as can be seen immediately from Ramanujan’s identity (1.6).

Identities related to the fifth order mock theta function f0(q) :=
∑
n>0 q

n2

/(−q; q)n for

|q| > 1 arise from (1.6) in a similar manner. In the Lost Notebook, Ramanujan stated
ten identities relating the fifth order mock theta functions [122]. Andrews and Garvan [17]
proved the equivalence within two sets of five of these, resulting in what they called the ‘first
and second mock theta conjecture’, subsequently proved by Hickerson [65]. The first mock
theta conjecture is

f0(q) =
(q5; q5)∞(q5; q10)∞

(q, q4; q5)∞
− 2Φ(q2),

where

Φ(q) := −1 +

∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
.

As for f(q), the function Φ(q) is well-defined for |q| > 1, and defining Φ∗(q) := Φ(1/q), we
have

Φ∗(q) = −1−
∞∑
n=0

q5n+1

(q4; q5)n+1(q; q5)n
.
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Zwegers [151] observed that replacing q 7→ q5 in (1.6) and then specialising a = q or a = 1/q
leads to the following pair of identities for Φ∗(q):

−Φ∗(q) =

∞∑
n=1

n≡1 (mod 5)

(
12

n

)
q(n2−1)/120 − 1

(q, q4; q5)∞

∞∑
n=1

(−1)nqn(5n−1)/2

= −
∞∑
n=1

n≡4 (mod 5)

(
12

n

)
q(n2−1)/120 +

1

(q, q4; q5)∞

∞∑
n=0

(−1)nqn(5n+1)/2,

where |q| < 1. These identities were applied by Lawrence and Zagier [103] in their work
on quantum invariants of 3-manifolds, resulting in a ‘strange’-type formula for the Witten–
Reshetikhin–Turaev invariant of the Poincaré homology sphere. In much the same way, (1.6)
for q 7→ q5 and a = q±2 implies two identities for the function Ψ∗(q) = Ψ(1/q), where Ψ(q)
is featured in the second mock theta conjecture.

We finally remark that the universal mock theta functions of Gordon–McIntosh [60] and
Hickerson [66] can all be expressed as simple sums over partial theta functions. For example,
the universal mock theta function g(z; q) is given by zg(z; q) = R(z; q)/(1−z)−1 with R(z; q)
Dyson’s rank generating function [57]

R(z; q) =

∞∑
n=0

qn
2

(zq, q/z; q)n
.

By modifying (3.6) and again using the Bailey chain, Ji and Zhao [69] used this to show
that Garvan’s Rogers–Hecke type formulas for the universal mock theta functions [58] can
be embedded into infinite series of such identities, much in the spirit of (3.7).

4.4. Partial theta functions and combinatorics. All of Ramanujan’s partial theta func-
tion identities have been proven analytically through the use of basic hypergeometric func-
tions and Bailey pairs. Finding combinatorial proofs is generally much harder, but signifi-
cant progress has been made in this direction. We already mentioned Kim’s and Levande’s
combinatorial proofs of (3.2). In his paper Kim also proved (4.2) combinatorially. Further
combinatorial proofs, including proofs of (3.8) and (3.9), as well as applications to other ar-
eas in combinatorics, such as integer partitions, unimodal sequences and derangements, may
be found in [3–6,10,24,40,42,70,77,78,105,110,131,143,144]. We single out [3], in which Al-
ladi gave a particularly elegant application of Ramanujan’s identity (3.9), closely resembling
Euler’s pentagonal number theorem [8]. If re/o(n) is the set of strict (or distinct) partitions
of n with smallest part odd and number of parts even/odd, and Re/o(n) := |re/o(n)|, then
(3.9) implies that

Re(n)−Ro(n) =

{
(−1)k if n = k2,

0 otherwise.

For example, re(9) = {(8, 1), (6, 3)} and ro(9) = {(9), (6, 2, 1), (5, 3, 1)} so that Re(9) −
Ro(9) = −1, whereas re(10) = {(9, 1), (7, 3), (4, 3, 2, 1)} and ro(10) = {(7, 2, 1), (6, 3, 1), (5, 4, 1)}
so that Re(10)−Ro(10) = 0.

4.5. The Tschakaloff function. Throughout this section, q = r/s for r and s nonzero
integers.
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As mentioned previously, in the literature on the arithmetics of partial theta functions,
these functions are better known as Tschakaloff functions. One of Tschakaloff’s main theo-
rems [136] is the irrationality of the Tschakaloff function

Tq(x) =

∞∑
n=0

xnq(
n
2)

for x ∈ Q∗ and |s| > |r|(3+
√

5)/2.7 He also proved the more general result that the linear
combination

A1Tq(x1) + · · ·+AmTq(xm)

is irrational [137] provided |s| > |r|(2m+1+
√

4m2+1)/2 and {Ai}mi=1 and {xi}mi=1 are sets of
nonzero rational numbers such that none of the ratios xi/xj are an integral power of q. In
particular, this result implies that 1, Tq(x1), . . . , Tq(xm) are linearly independent over Q. A
quantative version of Tschakaloff’s first irrationality result is due to Bundschuh [37], see
also [36, 39, 126, 134, 150] for related results. Assuming once again that x ∈ Q∗, he showed

that if γ := log|r|/ log|s| satisfies 0 < γ < 2/(3 +
√

5) then for every ε > 0 there exists a
bε > 0 such that ∣∣∣Tq(x)− a

b

∣∣∣ > |b|−1− 1+
√

5

2−(3+
√

5)γ
−ε

for all a, b ∈ Z and |b| > bε. This shows that for such q and x, the irrational number
Tq(x) is not Liouville. For K a quadratic field, Bézivin [26] has further shown that for
γ > 14 the Tschakaloff function Tq(x) for x ∈ K∗ is not also in K. For more on the
arithmetic properties of the Tschakaloff function we refer to the survey by Bundschuh [38]
and to [7, 27,44,49,74,82,99,145–147].

4.6. Generalised partial theta functions. The definition of partial theta functions can
be extended to more general rank-r lattices Λ endowed with a positive definite bilinear form
〈·, ·〉 : Λ× Λ 7→ Q, such as the root or weight lattices from Lie theory. For example [47]8

(4.4) Θp(x; q) =
∑
λ∈Λ+

q
1
2 〈λ,λ〉 e2π i〈x,λ〉,

where Λ+ is the positive (or strictly positive) cone in Λ relative to some fixed basis α1, . . . , αr
and x ∈ Λ⊗ZC. For the codimension-1 lattice in Zr+1 spanned by αi = εi− εi+1 (εi the ith
standard unit vector in Zr+1) and x = x1ω1 + · · ·+ xrωr with 〈ωi, αj〉 = δij , this yields

Θp(x; q) =
∑

n1,...,nr>0

q
1
2

∑
i,j Cijninj e2π i

∑
i xini ,

where Cij = 〈αi, αj〉 is the Cartan matrix of sl(r+1,C). Since Cii = 2, this simplifies to (1.1)
for r = 1. Creutzig and Milas [46,47] have made a detailed study of the modular behaviour
of a regularised version of (4.4), which includes a regularisation of the rank-1 partial theta
function. They have also shown how (4.4) and ‘Kostant type’ analogues of (4.4) arise in the
representation theory of logarithmic W -algebras [46,47,112]. Further applications of partial
theta functions in representation theory may be found in [28], where these functions are
used to give fermionic formulas for q-multiplicities of low-level Demazure modules for sl2[t].

7The constant (3 +
√

5)/2 is not optimal and for sharper bounds, see e.g., [26, 44].
8For x = 0 these are essentially the ‘cone theta functions’ of [54].
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A very different kind of generalisation of partial theta functions is due to Kim and Love-
joy [79]. Hecke (or Hecke–Rogers) type indefinite theta functions [62] are functions of the
form ( ∑

r,s>0

−
∑
r,s<0

)
(−1)r+sxrysqa(

r
2)+brs+c(s2)

for ac < b2, and play an important role in the theory of mock theta functions. Kim and
Lovejoy defined partial indefinite theta series to be double-sums over indefinite quadratic
forms with a more restricted summation range, typically r, s > 0 subject to additional
parity conditions. Using this definition they generalised many of Ramanujan’s partial theta
function identities to identities for partial indefinite theta series. The indefinite analogue of
(1.6), for example, is

∞∑
n=0

(q; q)2nq
n

(aq, q/a; q)n
= (1− a)

∑
r,s>0

r≡s (mod 2)

(−1)ra(r+s)/2q3rs/2+r/2+s

+
a(q; q)∞

(aq, q/a; q)∞

∞∑
n=0

(−1)na2nq3n(n+1)/2.

References

[1] R. P. Agarwal, On the paper: “A ‘lost’ notebook of Ramanujan”, Adv. Math. 53 (1984), 291–300.

[2] A. S. Ahmad, On generalization of Ramanujan’s partial theta function identities, J. Inequal. Spec.
Funct. 6 (2015), 1–4.

[3] K. Alladi, A partial theta identity of Ramanujan and its number-theoretic interpretation, Ramanujan
J. 20 (2009), 329–339.

[4] K. Alladi, A new combinatorial study of the Rogers–Fine identity and a related partial theta series,

Int. J. Number Theory 5 (2009), 1311–1320.
[5] K. Alladi, A combinatorial study and comparison of partial theta identities of Andrews and Ramanujan,

Ramanujan J. 23 (2010), 227–241.

[6] K. Alladi, Partial theta identities of Ramanujan, Andrews, and Rogers–Fine involving the squares, in
The legacy of Srinivasa Ramanujan, pp. 29–53, Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan

Math. Soc., Mysore, 2013.

[7] M. Amou and K. Väänänen, On linear independence of theta values, Monatsh. Math. 144 (2005), 1–11.
[8] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Application, Vol. 2,

Addison-Wesley, Reading Mass., 1976.

[9] G. E. Andrews, An introduction to Ramanujan’s “lost” notebook, Amer. Math. Monthly 86 (1979),
89–108.

[10] G. E. Andrews, Ramanujan’s “lost” notebook. I. Partial θ-functions, Adv. Math. 41 (1981), 137–172.
[11] G. E. Andrews, Ramanujan’s “lost” notebook. II. ϑ-function expansions, Adv. Math. 41 (1981), 173–

185.

[12] G. E. Andrews, Multiple series Rogers–Ramanujan type identities, Pacific J. Math. 114 (1984), 267–283.
[13] G. E. Andrews, Ramanujan’s “lost” notebook. IX. The partial theta function as an entire function,

Adv. Math. 191 (2005), 408–422.
[14] G. E. Andrews, Private communication.
[15] G. E. Andrews and B. C. Berndt, Ramanujan’s lost notebook. Part II, Springer, New York, 2009.
[16] G. E. Andrews and B. C. Berndt, Ramanujan’s lost notebook. Part V, Springer, New York, 2018.

[17] G. E. Andrews and F. G. Garvan, Ramanujan’s “lost” notebook. VI. The mock theta conjectures, Adv.
Math. 73 (1989), 242–255.

[18] G. E. Andrews and S. O. Warnaar, The product of partial theta functions, Adv. in Appl. Math. 39
(2007), 116–120.

[19] W. N. Bailey, Identities of the Rogers–Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1–10.
[20] A. Berkovich, On the difference of partial theta functions, Bull. Malays. Math. Sci. Soc. 44 (2021),

563–570.

[21] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.



14 S. OLE WARNAAR

[22] B. C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

[23] B. C. Berndt and B. Kim, Asymptotic expansions of certain partial theta functions, Proc. Amer. Math.

Soc. 139 (2011), 3779–3788.
[24] B. C. Berndt, B. Kim and A. J. Yee, Ramanujan’s lost notebook: combinatorial proofs of identities

associated with Heine’s transformation or partial theta functions, J. Combin. Theory Ser. A 117 (2010),

857–973.
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Rogers–Szegő polynomials, Constr. Approx. 3 (1987), 331–361.
[108] X. R. Ma, The t-coefficient method to partial theta function identities and Ramanujan’s 1ψ1 summa-

tion formula, J. Math. Anal. Appl. 396 (2012), 844–854.

[109] R. Mao, Some new asymptotic expansions of certain partial theta functions, Ramanujan J. 34 (2014),

443–448.
[110] R. Mao, Proofs of two conjectures on truncated series, J. Combin. Theory Ser. A 130 (2015), 15–25.

[111] R. J. McIntosh, On the asymptotics of some partial theta functions, Ramanujan J. 45 (2018), 895–907.
[112] A. Milas, Characters of modules of irrational vertex operator algebras, in Conformal Field Theory, Au-

tomorphic Forms and Related Topics, pp. 1–29, Contrib. Math. Comput. Sci., 8, Springer, Heidelberg,

2014.

[113] E. T. Mortenson, On the dual nature of partial theta functions and Appell–Lerch sums, Adv. Math.
264 (2014), 236–260.



PARTIAL THETA FUNCTIONS 17

[114] T. H. Nguyen and A. Vishnyakova, On the entire functions from the Laguerre–Pólya class having the
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