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Abstract. A two-dimensional q-state Potts model with vacancifs and four-spin interactions 
is studied. Tne parameter space of the model contains a critical and a tricritical manifold. 
Moreover for 0 < g < 914 a multicritical p in t  i found which is the locus where the 
tricritical transition changes &om first- to secondader. At this multicritical pint,  which 
can be located exactly, the model is solvable. We mmpute the value of the central 
charge and a number of critical exponenu. 

L Introduction 

The classification of secondader phase transitions in types as critical, idcritical etc. is 
usually done on the basis of the number of coexisting phases that become critical. 
This is not convenient for the q-state Potts model, in which q-phase coexistence 
terminates at the transition point. For q 6 4, when the transition is continuous, it is 
usually termed a critical point. 

When neutral states are introduced in the Potts model [l], the second-order 
transition may become first-order, as the weight of these neutral states is increased, at 
what is then called the tricritical point. In this paper we further generalize this dilute 
Potts model with four-spin interaction and find a transition at which the tricritical 
point itself turns first-order. This new multicritical transition relates to the Uicritical 
point just like the tricritical to the critical point. For lack of better designation we 
will refer to it as trizcritical. 

A further clarification of this phenomenon may well be given by viewing this 
hierarchy of criticality in light of the order prameter. Let s be one of the spin 
variables, which assumes one of the values {1,2,. . . , q}. For the order parameter 
we may take 

In the high-temperature disordered phase this probability strictly vanishes. In the low- 
temperature ordered phase M deviates from zero. When q < 4 the order parameter 
of the Potts model in the ordered phase vanishes continuously as the critical point 
is approached. When vacancies are introduced into the model the transition may be 
lirst-order even for q 6 4. Then the value of M is discontinuous at the transition. 
At the bicritical point itself, where the transition changes from first- to second-order, 
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the order parameter vanishes continuously. When the tricritical p i n t  is approached 
along the first-order transition, the jump in the order parameter approaches zero 
continuously. However, we now propose the possibility that the magnitude of the 
discontinuity in the order parameter remains non-zero even up to the point where 
the transition becomes second-order, where it jumps to zero: the ‘tricntical’ transition 
itself has turned ht-order. 

Not only do we find the locus of the triznitical transition exactly, we also iind that 
the model is solvable at this point, just as the ordinary Potts model is solvable at its 
critical point In this paper we present the value of the central charge and of several 
critical exponents for the trizaitical point as a function of q. It turns out that the 
relation between the central charge and the critical exponents, does not follow the 
Kac formula except at special values of q. This is distinct from the hown exponents 
of e.g. the critical and tricritical point of the Potts model, which agree with the Kac 
formula even at non-integer values of q. 

The generalized Potts model we consider here has been discussed before [2], 
but the phenomenon that the hicritical transition may be driven first-order, and the 
solvability of the model has not been observed previously. 
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2. The model 

Consider the ordinary Potts model [3] on the square lattice L. Its Hamiltonian is 

- mi = J 6a;,ai 
<U> 

in which the variables s take values from {1,2, . . . , q} ,  and the summation is over 
nearest neighbour pairs of sites. This model has a transition between an ordered 
phase at large coupling constant J and a disordered phase at small J .  This transition 
is Iirst-order when q > 4 and second-order for q < 4 [4]. Since in high- or low- 
temperature expansions of the partition sum the number of states plays the role of a 
free parameter, q is usually not restricted to the natural numbers. 

In an attempt to unify the description of the first- and second-order transitions 
the model has been generalized [l] to the dilute Potts model, in which each site is 
either empty or occupied with a variable which assumes one of q values, Le. each site 
can be in one of q + 1 states. The Hamiltonian reads 

Here the variables v are zero or one for the vacant or occupied sites respectively. 
In this model the transition for q < 4 can be both first- (for large K l )  and second- 
order (for small Kl),  separated by what is called a tricntical point. It has turned out 
[1,2,3 that the exponents of the critical point and those of the triciritical point are 
two branches of the same function of q which is analytic for q < 4 and has a branch 
point at q = 4. 

The original Potts model (2) exhibits a dual symmetry [3] between the low- 
and high-temperature phase, by means of which the critical p i n t  is easily located. 
Moreover, at the critical point the model is solvable [4]. These properties appear 
to be lost for the dilute Potts model. Therefore we now generalize the dilute Pots 
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model, thus restoring the dual symmetry, with the hope of finding a solvable tricritical 
point We propose the following Hamiltonian 

The summations and product run over the sites, links and faces of the lattice. The 
faces are labelled with Greek indices, and in the product it is assumed that the 
face p is immediately surrounded by the four sites i, j, IC and 1. This model 
has besides occupation variables v and Potts variables s also plaquette variables f 
taking the values zero or one. In the absence of the interaction coefficient Mz these 
variables may be summed out, resulting in a pure four-spin interaction with strength 
h[exp(Ml) + 11. The dual transformation is a trivial generalization of that of the 
ordinary Potts model. While keeping the configuration of 2r and f ked, the dual 
transformation may be performed on the remaining variables s. The dual model has 
the same form, with the role of f and v interchanged. We will show below that this 
model is equivalent to that defined and studied in [2]. 

3. Equivalent loop model 

In t h i s  section we will consider a different representation of the model (4). Via 
a random cluster expansion we map the model onto a loop model, for which we 
will solve the Yang-Baxter (m) equation [6]. This yields a solvable manifold in the 
space spanned by q and the coupling constants J ,  IC,, K2, Ml and M,. Another 
representation, as an 'interaction-round-a-face' (IRF) model of the Rmperley-Lieb 
type, will be discussed in appendix B. 

In order to write the above model as a loop model, we will first make a generalized 
random cluster expansion [7]. For this purpose the partition function of the model is 
written as 

Q 
The summation over a spin variable s is performed only when the corresponding site 
is occupied, i.e. v = 1. We expand the binomial products, so that each term in the 
expansion has, apart from multiplicative factors, two possible weights for each site, 
edge and face of the lattice. 
(1) For a site we either have the term v or the term ( I-v)eKt, represented graphically 

by leaving the site empty or placing a dot on the site, respectively. 
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(2) For a face we either have the term f or the term vvvv666(1-f)eM1, represented 
graphically by leaving the face empty or placing a dot on the face and bonds on 
the surrounding edges. These edges give a factor eJ. 

(3) For the remaining edges we either have the term vv6(eJ - 1) or 1, represented 
graphically by plating a bond on the edge or leaving it empty. 
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( I )  

F i r e  l. 
demmposition of the Same graph. 

(a) Graph of the random cluster expansion of (S), and @) polygon 

Each term in the expansion is now represented by a graph on the lattice consisting 
of bonds and dots. An example is shown in figure l (a) .  The sites of the lattice are 
now partitioned into connected components, or clusters, such that sites connected by 
a bond belong to the same cluster. We can now sum over { f , ~ ,  v} trivially. In fact, 
the distribution of dotted sites and faces fixes {f} and {v} completely and we only 
have to sum over {s}, yielding a factor qNo-N", where N ,  is the number of connected 
components and N,, the number of dotted sites. 

As a result we lind that the partition function can be written as the sum over all 
graphs G, on C consisting of dotted sites and faces and of edges covered by bonds, 
with the restriction that dotted sites (faces) are surrounded by four empty (covered) 
edges. 

(6) z = C e J [ 4 N r - P t ) + K ~ N v + K z P v t M ~ N r + M z 4 ( e J  - 1)Na-4NttFc 4 N r N ,  

GL 

where N, is the number of dotted faces, Nb the number of bonds and P, ( Pr) are 
the number of nearest-neighbour pairs of dotted sites (faces). 

We now split the summation in (6) into two parts. Fmt we fix the dots. This 
also fixes the states of the edges surrounding these dots. Then we sum over all the 
possible graphs GM consisting of bonds on the remaining edges, which form the 
reduced lattice M. Finally we sum over all dot configurations 

(9 z = C eJ(4N~ - PI) tKiNvtK2Pv t MI Nr+MzPc C ( e J  - 1)Ns-4NetP1 4 NrNv. 

dots GM 

From this expression it is clear that this model B equivalent to the one studied in [2]. 
Baxter et al [SI have shown how a Potts model on an arbitrary planar lattice 

can be written as a dense loop model, by making a polygon decomposition of its 
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surrounding or medial lattice. The second summation in the above expression is the 
partition function of such a F'otts model, on the lattice M. Therefore we can readily 
use their result to wite this part of the partition function as a loop model on the 
medial lattice M' of M 

The second sum is over all con6gurations consisting of closed non-intersecting loops 
on M', nl, nz and p l ,  pz are the number and Bofamam weights of the vertices 1 
and 2, of figure 2 and p in the number of loops. The variable N,  has been eliminated 
by 2Nc = N - Nb + p + N, + N,, N being the total number of sites of L. The 
weights p1 and pz are given by 

Each term in the set of bond graphs G& corresponds to one of the polygon 
decompositions GM,, as shown h~figure l(b). 

. I  I .  . I  I .  c J--- ---f j--- ---L . ._ j___ __./_._ 
I 
I .  . I  , .  . I  

J 
1 2 3 4 5 6 7 8 
r 7  

Fwre 2. "he eight vedices of the loop model. The edge of 1: runs in the NWSE 
dimion.  

Ilb a m u n t  for the configuration and the weight of the dots, we extend the loop 
model on M' to a generalized loop model on the medial lattice L' of C. by including 
the vertices 3, . . . , 8 of figure 2 

z = qN/Z p;' . . . p;;Bq'lZ (10) 
GL' 

where 
-l/4eK~/Z+Kz 

P7 = 4 -1/8eKr /4 P3 = P4 = P 
(11) 

--3/aeJ+Mi/4 = -1/4eJ+M~ I 2 f M t .  PS = p6 = 
It is in this simple loop representation that we seek a solvable subspace of the model. 
In appendix A we discuss the concept of YB equations for loop models and apply 
this to the loop model (10). The solution we find, at the isotropic point and up to a 
gauge transformation, is 

q =  (A-A-  1 2  ) 
P I =  Pz = 1 
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If we express the parameters of our model in terms of this solution, we find 

eJ = q'12 + 1 
8 1  = ~ - 1 ~ 1 1 2  

e~~ = ~ - 1 ~ 3 1 2 ( ~ 1 1 2  + 1)-4 

eMz = (A + 1)(q-1/2 + 1) (13) 

eKz = (A + 1). 

When A 2 1 these parameters correspond to positive Boltmann weights for the 
Pot& model. However positivity of the Boltzmann weights is not a condition for 
solvability, and we may define other non-physical branches of solvable models with 
the same value of q 

branch 
1 l < A < 2  
2 O < A < l  
3 - l < A < O  
4 - 2 < A < - 1  

4. Central charge and exponents 

In this section we @e analytical expressions for the central charge and some 
exponents of the model as defined by (4) and (13). The results, which are confirmed 
below by numerical data, tum out to be in contrast with the Kac formula, which, for 
unitary models, relates the central charge to critical exponents. 

For unitary models with central charge c < 1 parameterized by [9] 

h = 4,5,6,. . . 6 c = l -  
h(h  - 1) 

the critical exponents are given by [lo] 

[ h r -  ( h  - l )~] ' -  1 
1 < s < T <  h - 2 .  2h(h - 1) 2 =  

When the ordinary Potts model is generalized to a non-natural number of states 
q, e.g. in the random cluster formulation, it is in general not unitary. Even so, when 
the central charge is parametrized by (15) the exponents are still given by (16) in 
which the indices r and s take fixed integer values or are linear in h. The same is 
true for exponents of the o(n) model with general values of n [ll]. 

In order to calculate the central charge and exponents for the model (4) with 
(13) we use an alternative representation as a Rmperley-Lieb model. From the 
construction of these models as given in appendix B, it is apparent that they are 
equivalent to a large family of models, which includes the symmetric six-vertex model. 
For the latter the central charge c and some of the critical exponents z have been 
computed. They are @en by (B8)-(BlO) 

6 ICz - 1 
c =  1- and z = 

h(h-1)  2h(h - 1) 
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with h and k given by A and A‘ as 

r k x  
h 

A = 2 m s -  h and A’=2cos-. 

The possible values of A and A’ are 

2 (A-A-*) =.q 

A ’ €  { l /A, - l /A, -A, l , - l ) .  

The first three choices for A’ yield thermal exponents, and the last two magnetic 
exponents. It is clear that for general A the parameter k is non-integer, as required 

Because the disagreement with the Kac formula (16), for values of p other than 1 
and 2, is quite striking we have also WnStNcted the transfer matrix on a cylinder with 
a circumference of L sites. The construction of the transfer matrix and analysis of 
its eigenvalues are explained in [24]. The eigenvalues are computed numerically, not 
only for the physical branch 1, but also for the other branches (14), in which some of 
the Boltzmann weights are negative. From conformal invariance [12] it follows that 
they have the form 

by (16). 

The value of the bulk free energy f, is !amin from the equivalence (appendix B) 
to the six-vertex model [13]. Thus the amplitudes cj of the leading linite size 
corrections can be estimated from the numerical eigenvalues. The central charge 
c is the amplitude,  say cu, of the largest eigenvalue and the critical exponents are 
given by zj = (co - cj)/12. 

2 -2 0 A 

Plgure 3. ?he finite size amplitude of the eigenvalues 
of the transfer matrix. ?he dots indicate the 
numerical results of the largest two eigenvalues, and 
the c w e s  the theoretical predictions for the y”etrlc 
eigenvalues 
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In figure 3 the amplitudes of the Enite size corrections of the largest two symmetric 
eigenvalues of the transfer matrix are shown together with the theoretical formulae 
(17) for c and c - 121. The numerical data agree excellently with the theoretical 
amplitudes. The finite-size amplitude that runs from c = 1 at A = -2 down to 
c = -5 at A = 2 is associated With a change of sign between the states on the 
sites and the hces of the lattice. However, since the interchange of the sites and 
the faces is not taken into accnunt in the numerical calculation, this eigenvalue does 
not come out of the computation. When that theoretical amplitude is disregarded, 
the numerical data in each branch correspond to the largest two of the remaining 
amplitudes. 

The accuracy is very good, not only in the region where A > 1 is indeed the 
largest eigenvalue of the adjacency matrix, but also in the analytic continuation where 
A can be any of the four eigenvalues. Remarkably, the agreement does not even 
deteriorate when the parameter k in (18) is imaginary. 

In the ordinary Potts model the phase transition changes from second- to first- 
order when q = 4. We see a similar phenomenon in this generalized Potts model 
but now at q = 9/4, where A = 2. For larger values of q the equations (17) and 
(18) admit no real d u e  of the central charge. Apparently the solvable model is not 
critical at these values of q. 

Curiously the non-physical branches with -1 < A < 1 do not have such a cut-off 
in q but continue to be aitical for arbitrarily large values of q. 

From the above results it is clear that the new solvable Potts model is not at its 
tricritical point In the next section we discuss the nature of this new critical p i n t  of 
the Pots model. 

5. The phase diagram 

The role of the critical p in t  (13) becomes more apparent when the self-dual plane is 
considered. As explained in 121 the partition sum of the model (4) is invariant under 
a dual transformation 

I I 

eJ - 1 = q/(eJ - 1) 

eK1 = qeM1/(1-e-J)4 eMz=eKz(eJ-l+q)/q (21) 

eMl = q3eK1 /(eJ - 1 + q)4 - - 
- 

eK2 = eMz(1-e-J). 

The self-dual subspace can be conveniently parametrized by means of the weights of 
the corresponding loop model (ll),  with 

P1 = P Z  p3 = p4 = PS = P6 P7 = p8 (22) 

of which, with an overall normalization, two are independent In the loop model the 
dual transformation is simply an exchange of the two sublattices, corresponding to 
the sites and faces respectively of the original Potts model. In the ordered phase of 
the Pots model there exist an infinite cluster of sites, in which small dusters of faces 
are separated by small loops. In the disordered phase, the sites form small clusters 
circumscnied by loops inside an infinite cluster of faces. At the phase transition 
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F!gm 4 Schematic phase diagram in the selfdual plane. 

A... I ..A . ,  8 . .  , ' ~ ~ 

I .  

between the ordered and disordered phase the loops separating the clusters of faces 
and sites tend to be very long. The vacancies and dotted faces act in this description 
as loops around elementary plaquettes. 

Figure 4 gives a sketch of a plausible phase diagram, withiin the self-dual plane, 
which itself constitutes the phase transition between the ordered and disordered 
phases of the generalized Potts model. In the upper comer, when only p 1  and p z  
m e r  from zero, the model is reduced to the ordinary critical Pons model. In the 
right-hand comer, where only p7 and pa differ from zero, the loop version of the 
model has only two states: either all faces or all sites cany dots. In this limit the 
model is clearly at a first-order transition with an infinite surface tension. The critical 
region and the first-order region of the self-dual plane are separated by a hicritical 
curve indicated in the figure. Part of this curve will be in the known universality class 
of the tricritical Potts model. However, near the right-hand boundary of figure 4, the 
'tricritical' transition cannot be second-order, since the surface tension between the 
critical phase and the coexisting first-order phases can be made arbitrarily large. Thus 
we conchde, as the simplest scenario that the phase boundary between the critical and 
lirst-order regimes of the selfdual plane, is itself separated into a second-order and 
first-order segment, indicated in the figure by a fat and a double line respectively. We 
propose that the new multicritical point described in the previous sections, separates 
these two segmenk. If this description is correct the new multicritical point is related 
to the hicritical point just as the hicritical to the critical point; hence the name 
trP-critical point. 

A further investigation into the self-dual plane, and the nature of the phase 
mnsitions is reported in [24]. 

6. Summary and discussion 

In this paper we have introduced a generalization of the dilute Potts model. Though 
the parameter space contains the hicritical transition of the dilute Potts model, the 
tricritical model does not appear to be solvable. 

The generalized Potts model defined here has some properties in common with the 
ordinary Potts model, in particular it admits a duality Uansformation in its parameter 
space, and it is solvable at a point in the self-dual subspace. At this new solvable 
point the model is critical only for g < 9/4. We calculate the central charge and 
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critical exponents, both numerically and analytically. In contrast to the ordinary q- 
state Potts model the central charge and the critical exponents are not related by 
the Kac formula (15) and (16) for general q. Only for q = 1 and q = 2, when the 
model becomes identical to the A4 and E6 Emperley-Lieb models [19], this relation 
is recovered. We argue that this new solvable Potts model is multicritical and it is 
located where the tricritical phase transition changes from first- to second-order. This 
role in the phase diagram is verilied in [24]. 

Since the new multicritical transition is related to the hicritical point just as the 
tricritical to the critical point, we denote it as tri2critical. We suggest that the critical, 
tricritical and tri2critical transitions are the first three of a hierarchy of trimcritical 
points in generalized Potts models. The mmaitical point is then the locus in the 
phase diagram where the trin-'critical transition is tumed firstader. We note that 
the critical Potts model may be constructed as a Rmperley-Lieb model from an 
adjacency diagram like figure B1, with all q + 1 legs reduced by one site. A solvable 
hicritical point may be viewed as an analytic continuation in q, and can in fact be 
constructed by a similar method [14-16], based on the same adjacency diagram, but a 
different loop model. This altemative construction yields solvable specimens of both 
the critical and the tricritical point 

On the basis of these observations we propose that the solvable models 
constructed from an adjacency diagram like figure B1, generalized such that the 
single leg to the left contains n states and the q legs to the right n + 1, are precisely 
the triZncritical and trizm+'critical points introduced above. They constitute a second- 
order transition for 0 .$ q < [(n + 2 ) / ( n  + l)]'. 
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Appendix A. Yang-Baxter equations for loop models 

The essential difference between an ordinary vertex model and a loop model [17] is 
that for the latter the total weight of a configuration cannot be written as a product of 
local weights, each dependent only on variables in a restricted section of the lattice. 
In (8) the weight depends on the number of polygons p via q p / z ,  so that each polygon 
contributes a factor q'l2. When in a single vertex two loop segments are cut and 
joined again in a different way, by replacing vertex 1 by 2 of figure 2, p may be either 
increased or decreased by 1. Only by inspecting the entire polygons of which the 
segments are part, can one decide in which way p changes. 

It is of course well known how to circumvent this non-locality. By making use 
of a simple topological property of a closed loop, any non-intersecting loop model 
can be mapped onto a vertex model [SI. The disadvantage of this approach however, 
is that the total number of vertex states of the model is significantly larger than the 
number of states in the loop model, resulting in a larger number of YB equations 
with more unknowns. Moreover, for loop models in which intersections are allowed, 
a transformation to a local model is generally not possible. The question therefore is: 
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can we, despite its global properties, define a purely local condition for two transfer 
matrices T and T’ to commute? 

The partition sum of a local model on a finite lattice may be computed by dividing 
the lattice in two pieces, say P and Q. The partition sum of the whole is now the 
product of the partition sums of the pieces, summed on the states of the variables on 
the common boundaq 

It is this principle that allows the definition of a transfer matrix. The partition sum 
of a lattice is thus built up by repeatedly adding a row of vertices to an exisiting 
sequence. The Boltzmann weight of the mws already present only depends on the 
states of the last mw of edges. 

A generalization to a loop model is possible by the following redefinitions. The 
symbols (Y and p, which we will now refer to as connection states, determine not only 
(i) the state of the local variables on the boundary, e.g. which of the boundary edges 
are occupied by polygons, but also (ii) how the occupied boundary edges are mutually 
connected in the interior of the lattice. The 6m0 is replaced by another symbol, say 
d ( a , p ) ,  which is non-zero only if the local states of CY and p are the same and 
then it takes the value of the loop fugacity raised to the number of polygons that are 
closed by the merging of P and Q. Obviously this number is completely determined 
by the two connection states. 

It is this prescription that has allowed the definition of a transfer matrix for 
loop models 1181. Multiplication of a transfer matrix corresponds to the fusion of a 
finite rectangular lattice with an additional row of vertices. The same principle of 
connection states may be applied to the definition of the YB equation. The external 
edges and faces of both members of the equation are the boundary of a small lattice. 
There is an algebraic equation on the vertex weights for each connection state of 
these external elements. The weight of each of the possible terms in the equation is 
the product of vertex weights and the loop fugacity for each loop that is closed in the 
interior. 

A graphical representation of a typical example of an equation, for the loop 
model (lo), is shown in figure Al. 

Pigum Al. me equation g1 /2psp ip ;  + p&; + psp!,pF = p.~pkpy in graphical 
representation. 

solving the YB equation for this model yields the following result 
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sin( X - U) sin U 
pz = - 

SUI X P1 = P3 = P4 = sin 

sin(X + U) Sin(2X - U) q =  
P I =  p* = sin2X sin2X . 
The crossing parameter X controls the loop fugacity, U governs the spatial anisotropy, 
the isotropic point being at U = X/2. The YB equations are satisfied for U” = U - U’ 
and X = A’ = A”. 

Appendix B. Construction of solvable model 

An alternative way to construct the solvable manifold of the generalized ~Potts model 
is the method followed by Pasquier 119,201 and Owzarek and Baxter 1211. Below we 
will give the main ingredients in the construction. 

Figure Bl. The adjacency diagram. The solid disks represent the possible states of the 
sites, and the open circles those of the faces. The leftmost disk mrresponds to the 
vacancy, and the disks on the branches to the right the q spin states. The central branch 
point and the terminals of the branches mrrespond (0 the f = 1 and f = 0 faces 
respectively. 

The lirst step is the observation that the variables of the model, both at the sites 
and the faces, may be represented as the vertices of a simple adjacency diagram A, 
shown in figure B1. The rule is that each face and site ‘of the lattice takes a value 
corresponding to a vertex of A, with the restriction that a combination of a face and 
an adjacent site take values which are adjacent on A. By this rule the sites and faces 
of the lattice automatically take values from different non-overlapping subsets of A. 
The site values are the vacant state at the end of the short leg, and the midpoints 
of the q longer legs corresponding to the states s = 1,. . . , q. The faces take the 
value f = 1, corresponding to the central branch point of the diagram, or f = 0, 
the end-point of each of the longer legs. Thus the sites around a face with f = 0 
must all be occupied and have the same spin value, as required by the product in (4). 
It is not difficult to see that the configurations thus constructed correspond to the 
configurations of the model (4). Once the identification of the configurations of the 
model with an adjacency diagram has been made, the definition of the model closely 
follows Pasquier 119,201, Owzarek and Baxter [21] and Wda and Nienhuis [22]. We 
will follow the convention of referring to the vertices of the adjacency diagram as 
heights. 
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The diagram A may be represented by means of the adjacency matrix A, of which 
the indices take heights on A. The matrix element A,, is one il a and b are adjacent 
on A, and zero otherwise. The largest eigenvalue of A we denote by A, and the 
corresponding eigenvector elements as Sa. 

The Boltzmann weight is given by the product over all elementary plaquettes each 
consisting of two neighbouring sites and faces, of the expression 

The variables a ,  b, c ,  d live on the sites and faces of the lattice and take heights 
in A. The p e r s  on the eigenvectors differ slightly from those in the references 
[19,20,22], such that the weights are completely isotropic. This variation corresponds 
to a gauge transformation which does not affect the Boltzmann weight of the entire 
configuration. 

Figure B2. Graphical representation of the two terms m the local Boltzmann weight of 
the ’Empedey-Lieb models. The weight is only non-zero when the height wriables not 
separated by lines take the same value. 

The partition sum of the model is the sum over all possible configurations of the 
product of the local Boltzmann weights. The product may be expanded by selecting 
for each plaquette one of the terms of (sl), graphically represented as in figure B2. 
Thus each term in the expansion partitions the lattices by means of closed polygons 
into connected regions. All the sites or faces in the same connected region must take 
the same height in A, as a result of the 6 symbols in (Bl). The total Boltzmann 
weight, which still depends on the heights actually assumed in each of the regions, 
cdn be factorized into contributions associated with each polygon [19,22]. 

Fmt the local weight for each single plaquette is split as follows 

(s2) 

These two factors are associated with the two polygon segments that pass through the 
plaquette. Now we have to make a distinction between polygons that are contractible 
to a point, and those that wind around the torus or cylinder on which the lattice 
is spread. For contractible polygons, the total power of Salsb, depending on the 
heights a and b assumed inside and outside respectively, is always one, since the 
polygon cannot intersect itself. Therefore this polygon contributes the following 
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factor to the total Boltzmann weight 
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in which the result of the 6 symbols, ensuring a constant height in the regions 
immediately inside and outside the polygon is understood. For those polygons that 
do not have other polygons inside them, the summation on the height assumed in 
the interior can be performed since it does not appear in the Boltmann weight 
otherwise than indicated in (B3). The result is that the weight of the polygon is equal 
to the largest eigenvalue of A, ie. A. It is important to observe not only that these 
inner loops all contribute the same factor to the Bolkmann weight, but also that the 
dependence on b disappears by the summation on a. Therefore the summation on 
the height assumed in the region immediately surrounding the inner loops can now 
be performed in the same way, resulting in the same factor for the polygons that 
surround these regions. This process can be continued for all contractible polygons. 

If the lattice is wrapped on a torus, then there may also be polygons that cannot 
be continuously contracted to a point, because they wind around the torus. These 
polygons contribute to the Boltzmann weight a factor Aab, depending on the height 
assumed in the regions on either side of the polygon. These regions themselves also 
wind around the torus and must be bounded between two non-contractible polygons. 
Thus the contribution for a total of e such polygons, after the summation on the 
height assumed in the regions between is performed, is given by TI AL. Now we have 
obtained a simple expression for the partition sum of the model (Bl) 

034) 

in which p and e are the number of contractible and non-contractible polygons, 
respectively, and the summation on A' is over all eigenvalues of A. For a cylinder a 
simiilar expression may be derived, in which the matrix product AL is not traced, but 
sandwiched between vectors determined by the boundary conditions on the ends of 
the cylinder. This is applicable only to certain boundary conditions, which forbid the 
domain walls to terminate on the bouudaly. It should be noted that these expressions 
are the same for a wide class of different models, specified only by their adjacency 
matrix. 

B.1. Equivalent Temperlq-Lieb model 

We now return to the original definition of our model given in equation (5) and mite 
it as a IRF model on the lattice spanned by L and its dual lattice 

If we denote the value of the Potts spins by s and s', and the cases 2)  = 0 or f = 0 
by a big dot (0 )  and f = 1 by a small dot (.), the weights can, symbolically, be mitten 
as 
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Precisely when we substitute the solution (13), these weights can be Written in the 
form (Bl). The eigenvectors of the adjacency matrix that respect the permutation 
symmetry between the q Potts states, and the corresponding eigenvalues are given by 

The eigenvector elements correspond to the states of A read from left to right in 
figure B1. 

B.2. The central charge and critical wponents 

The partition sum (B4) is written as the sum of partition sums of polygon models 
m which the contractible and non-contractible polygons are weighted differently. It 
has been noted for a long time that the six-vertex model can also be formulated as 
a polygon model [SI. The weight A of the contractible polygons is related to what 
is called the crossing parameter, and the weight of the non-contractible loops A' 
can be controlled independently by means of a so called seam [SI, which does not 
affect the free energy. For this class of six-vertex models, which have Boltmann 
weights {1,1,1,1, ( A  + 2)'12, ( A  + 2)1/2}, the central charge has been calculated 
both numerically and analytically [12,23]. It has the form 

6k2 
h(h - 1) 

c = l -  

in which 

(B9) 
7r k x  A' = 2 cos - 

h 
A=2cos-  and 

h 

are the weights of the contractible and non-contractible loops respectively. Since the 
partition sum (B4) is the sum of polygon model partition sums with different wlues 
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of c, the central charge of the total corresponds to that of the largest term, ie. k = 1. 
The other contributions yield the critical exponents of the form 
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k2 - 1 
2h(h - 1) * X =  

Since A and A' are two eigenvalues of the adjacency matrix A, A satisfies (B7), and 
A' E {l/A, -l/A, -A, 1, -9. The eigenvalues fl are ( q  - 1)-fold degenerate. 
They give rise to magnetic exponents, since the corresponding eigenvector break the 
permutation symmetry between the q Potts states. 

Another possible approach to the critical exponents of the model is to study the 
long distance dependence of certain two-point correlation functions. In particular for 
the models defined by (Bl) we take an eigenvector of the adjacency matrix 

with an eigenvalue A' < A, and study the two-point correlation functions of the 
operator Si/S,, depending on the local height a 

When this correlation is evaluated in the plane, where all polygons are contractible, 
the prescription is as E>llows. The polygons that do not include either of the two 
positions 0 or T,  are unaffected and still have, after summation on the interior heights 
the original weight A. The weight of the inner loops that contain either the origin 0 or 
the site T,  normally given by (B3), is now multiplied with the ratio of the eigenvector 
elements S;/S,. When the summation on the state a in the interior is performed, 
the polygon acquires the weight A', and the modification of the weight, now 
is passed on to the region immediately surrounding this inner polygon. Again the 
process of summation can be continued. The result is that those polygons that contain 
precisely one of the positions to be correlated, acquire a factor A' instead of A. 

Finally the polygons surrounding both positions will have a more complicated 
weight Let a be the height assumed inside the smallest polygon that surrounds both 
0 and T. This height is weighted by a factor Si /Sa &om each of the operators. The 
polygon surrounding this region still contributes a weight (B3) which we may write as 
the (asymmetric) matrix 

0313) 
s a  

Bab = 
sb 

which has the same eigenvalues as A. The summation on the heights assumed in the 
regions surrounding both 0 and T is in fact equivalent with the matrix multiplication 
with B. Far n such polygons, the end result is therefore some fixed linear combination 
of the nth p e r  of the eigenvalues of B, and therefore of A. In the thermodynamic 
limit there will in general be many polygons that surround both points, so that the 
contribution will be dominated by An. Correlation functions of this type have been 
studied in the Coulomb gas approach [ll], and decay algebraically as lrlzz with x 
given by (B10). In this formulation k plays the role of an electric charge. 


