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Srinivasa Ramanujan:
Going Strong at 125,
Part 11

Krishnaswami Alladi, Editor

Ramanujan passport photo.

The 125th anniversary of the birth of Srinivasa
Ramanujan was on December 22, 2012. To mark
the occasion, the Notices is publishing a feature
article of which this is the second and final install-
ment. This installment contains pieces by Ken Ono,
Kannan Soundararajan, Robert Vaughan, and Ole
Warnaar on various aspects of Ramanujan’s work.
The first installment appeared in the December
2012 issue, and contained an introductory piece
by Krishnaswami Alladi plus pieces by George An-
drews, Bruce Berndt, and Jonathan Borwein on
Ramanujan's work.

Krishnaswami Alladi is professor of mathematics at the
University of Florida. His email address is alladik@uf1.
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Ken Ono

Modular Forms, Partitions, and Mock Theta
Functions

Ramanujan’s work on modular forms, partitions,
and mock theta functions is rich with tantalizing
examples of deeper mathematical structures. In-
deed, his tau-function, his partition congruences,
and his mock theta functions are prototypes that
have helped to shape the modern mathematical
landscape.

Ramanujan was fascinated by the coefficients
of the function

(1) Az)=> 1Tmg":=q[](1-gMn*
n=1 n=1

=q - 24q% + 252¢® - 1472q* + - - -,
where g := 2™ and Im(z) > 0. This function is a
weight 12 modular form. In other words, A(z) is a
function on the upper half of the complex plane
such that

A (M) = (cz +d)2A(2)

cz+d

for every matrix (ﬁ 3) € SLy(Z). He conjectured
(see p. 153 of [12]) that

T(hm) = t(n)t(m),
for every pair of coprime positive integers n and
m, and that
T(P)T(P*) =T + pllT (P,

for primes p and positive integers s. Mordell proved
these conjectures, and in the 1930s Hecke later
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developed a framework for the theory of modular
forms and L-functions in which such properties
play a fundamental role.

Ramanujan was also very interested in the
size of the numbers 7(n), and for primes p he
conjectured (see pp. 153-154 of [12]), but could
not prove, that

IT(p)| <2p*.

This speculation is the first example of the
Ramanujan-Petersson Conjectures, among the
deepest problems in the analytic theory of auto-
morphic forms. This inequality was triumphantly
confirmed by Deligne [8] as a corollary to his proof
of the Weil Conjectures, work which won him a
Fields Medal in 1978. Although Ramanujan did
not anticipate the Weil Conjectures (the Riemann
Hypothesis for varieties over finite fields), he
correctly anticipated the importance of optimally
bounding coefficients of modular forms.
Ramanujan is also well known for his work on
the congruence properties of his tau-numbers. For
example, he proved that (see page 159 of [12])

@) T(n)= > d'' (mod 691).
dln

About forty years ago, Serre [13] and Swinnerton-
Dyer [14] wrote beautiful papers interpreting such
congruences in terms of certain two-dimensional
£-adic representations of Gal(Q/Q), the Galois
group of the algebraic closure of @. Deligne had
just proved that such representations encode the
coefficients of certain modular forms as “traces
of the images of Frobenius elements”. Serre and
Swinnerton-Dyer interpreted Ramanujan’s tau-
congruences, such as (2), as the first nontrivial
examples of certain exceptional representations.
For the prime £ = 691, there is a (residual) Galois
representation

paeo1 : Gal(Q/Q) — GL2(Z/6912)
which, for primes p + 691, satisfies

1
paeo1 (Frob(p)) = (0 ;1(1).

where Frob(p) € Gal(Q/Q) denotes the “Frobenius
element at p”. Congruence (2) is then implied by
Deligne’s prescription that, for primes p # 691,
one has

T(p) = Tr(pagor (Frob(p))) = 1+p'"  (mod 691).

The theory of modular £-adic Galois representa-
tions has subsequently flourished and famously
is the “language” of Wiles’s proof of Fermat’s Last
Theorem.

Ramanujan's work on tau-congruences is inti-
mately related to his work on partition congruences.
A partition of the natural number n is any nonin-
creasing sequence of natural numbers whose sum

JANUARY 2013

http://www.ams.org/myoffprints/noti926.pdf

is n, and the number of partitions of n is denoted
by p(n). The generating function for p(n) has two
convenient representations:

(3)

> pmgt =[]

n=0 n:ll_qn
=l+ 2 D .
,,Z;:I (1-g)%2(1-g2%)2 - - - (1-gq")?

The infinite product representation is analogous to
the infinite product for A(z) in (1), which explains
the important role that modular forms play in
the study of p(n), while the other representation
as a “basic hypergeometric series” foreshadows
Ramanujan’s last work: his discovery of “mock
theta functions”.

In groundbreaking work, Ramanujan proved
that

p(5n+4)=0 (mod)5),
p(7n+5)=0 (mod 7),
p(lln+6)=0 (mod11).

He also conjectured corresponding congruences,
known as Ramanujan's congruences, modulo pow-
ers of 5, 7, and 11. Extending his ideas, Atkin and
Watson proved [3], [15]:

If6 =5%7"11°and24A =1 (mod §),

thenp(dn+2A) =0 (mod 597'21+111°).

These congruences have inspired much further
work.

In the 1940s Dyson, seeking a combinatorial
explanation for the congruences, defined [9] the
rank of a partition to be the largest summand
minus the number of summands. He conjectured
that the partitions of 5n + 4 (resp. 7n + 5) are
divided into 5 (resp. 7) groups of equal size when
sorted by their ranks modulo 5 (resp. 7), thereby
providing a combinatorial explanation for the
congruences mod 5 and 7. This conjecture was
proved in the 1950s by Atkin and Swinnerton-Dyer
[5]. Dyson was unable to offer a combinatorial
explanation for the mod 11 congruence, and he
conjectured the existence of a statistic, which he
referred to as the “crank”, which would suitably
explain the congruences mod 5, 7, and 11. In the
1980s Andrews and Garvan [2] finally found the
elusive crank.

In addition to finding a combinatorial expla-
nation for Ramanujan’s original congruences,
researchers have looked for further congruences.
In the 1960s Atkin [4] found congruences, though
not so systematic, with modulus 13, 17, 19, 23,
29, and 31. About ten years ago the author and
Ahlgren [1], [10] found that there are partition
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Photo courtesy of Krishnaswami Alladi.

The lovely colonial style architecture is evident
in the Town High School in Kumbakonam that
Ramanujan attended.

congruences modulo every integer Q relatively
prime to 6. For example, we have

p(59*-13n+111247) =0 (mod 13).

These more recent results arise from the fact
that (3) is essentially a modular form. This fact,
combined with deep work of Shimura, makes it
possible to apply the methods of Deligne and Serre,
which explained Ramanujan’s tau-congruences, to
the partition numbers.

During his last year of life, when he was seeking
a return to good health in south India, Ramanujan

discovered functions he called mock theta functions.

In his last letter to Hardy, dated January 12, 1920,
Ramanujan shared hints (see p. 220 of [6]) of his
last theory. The letter, roughly four typewritten
pages, consists of formulas for seventeen strange

power series and a discussion of their asymptotics.

It contained no proofs of any kind. By changing
signs in (3), we obtain a typical example of a mock
theta function:

flq)= > agp(n)g"

n=0

_ a”
- Z (1+q)2(1+q2)2...

n-0 (1+gm?*

For followers of Ramanujan, the main questions
were: What did Ramanujan mean by a mock theta
function, and what roles do these functions play in
mathematics? These questions would remain open
for eighty years. In the meantime, such researchers
as Andrews, Choi, Dragonette, Dyson, Gordon,
Hickerson, McIntosh, Selberg, and Watson, to name
a few, proved beautiful theorems about these
strange g-series. Then in 2002, in his Ph.D. thesis
[17] written under Zagier, Zwegers made sense
of the mock theta functions. He discovered how
to “complete” them by adding a nonholomorphic
function, a so-called “period integral”, to obtain a
real analytic modular form.

http://www.ams.org/myoffprints/noti926.pdf

In the case of f(g) and its companion w(q),
Zwegers defined the vector-valued functions

F(z) =

G(z) =

(Fy(2), Fi(2), F2(2))"

= (@ %f(q), 2° w(q?), 2 w(—q?))T,
(Go(2), G1(2), Ga(z)T

*J’ (g1(T), go(T), —qz(T))T
—I(T+Z)

’

where the g;(z) are theta functions, and he proved

that H(z) := F(z)

and

— G(z) satisfies

i 00

H(z+1)= ( 0 0 C,,)H(z)

0T 0

H(-1/z) = V=iz - (1? g )H(z)

where G, := e'Tm, making it a vector-valued real
analytic modular form.

All of Ramanujan’s mock theta functions turn
out to be holomorphic parts of special weight 1/2
real analytic modular forms, which Bruinier and
Funke [7] call weak harmonic Maass forms. Loosely
speaking, a weight k harmonic Maass form is a
smooth function M(z) on H which transforms as
does a weight k modular form and which also
satisfies Ag (M) = 0. Here the hyperbolic Laplacian
Ay, where z = x + iy € H with x, y € R, is given by

02 9 . g .0
Ay = -y? (8x W)+1ky(a +15).

Since modular forms appear prominently in
mathematics, I think that one expects these func-
tions to have far-reaching implications. One might
expect the functions themselves to play many roles.
This has already turned out to be the case. These
forms have appeared prominently in the following
subjects [11], [16]: partitions and g-series, moon-
shine, Donaldson invariants, probability theory,
Borcherds products and elliptic curves, and many

others.
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K. Soundararajan

Ramanujan and the Anatomy of Integers

The story of Hardy and Ramanujan and the taxicab
number 1729 is well known. It may be less familiar
that taxicab numbers also formed the motivation
for a famous paper of Hardy and Ramanujan on
the number of prime factors of integers (see paper
35 and announcement 32 in [22]). They note that

“anybody who will make a practice of factoris-

ing numbers, such as the numbers of taxi-cabs”
would verify that “round numbers”—integers com-
posed of a considerable number of comparatively
small factors—"“are exceedingly rare.” Hardy and
Ramanujan explain this phenomenon by show-
ing that almost all numbers n below x (in the
sense of density) are formed of about loglogn
prime factors. More precisely, if w(n) denotes
the number of distinct prime factors of n, then
|w(n) —loglogn| < ®(n)+loglogn for almost all
n < x, where ®(n) is any function tending to
infinity with n, and the same result holds also for

K. Soundararajan is professor of mathematics at Stanford
University. His email address is ksound@stanford.edu.
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Kannan Soundarajan receiving the First SASTRA
Ramanujan Prize from Dr. Aurobinda Mitra,
director of the Department of Science and
Technology, India, on December 20, 2005. Manjul
Bhargava (second from left), also a winner of the
prize that year, looks on. Also in the picture are
Krishnaswami Alladi, chair of the prize
committee (next to Soundararajan), and R.
Sethuraman, vice-chancellor of SASTRA (between
Bhargava and Mitra).

Q(n), which counts the prime factors of n with
multiplicity.

The Hardy-Ramanujan result was refined by
Erdos and Kac [9], who showed that (w(n) —
log log n) /y/loglog n has an approximately normal
distribution with mean 0 and variance 1. The Erdds-
Kac theorem is in relation to the Hardy-Ramanujan
theorem as the Central Limit Theorem is to the
Law of Large Numbers. These two results formed
the impetus for the development of probabilistic
ideas in number theory, and we refer the reader to
Elliott [7], Tenenbaum [27], and Kubilius [17] for
accounts of related work.

Hardy and Ramanujan proved their theorem by
means of an ingenious induction argument that
establishes a uniform upper bound for m(x), the
number of integers below x with exactly k prime
factors. The prime number theorem tells us that
m(x) = 1 (x), the number of primes below x, is
approximately x/log x. Landau generalized this to
show that, for any fixed k and large x, i (x) is ap-

proximately IO = ﬁ%’% In probabilistic terms,
this suggests that the number of prime factors
of an integer has an approximately Poisson distri-
bution with parameter loglogx. Since a Poisson
distribution with large parameter A approximates a
normal distribution with mean and variance equal
to A, this interpretation is in keeping with the
Hardy-Ramanujan and Erdos-Kac theorems. It is
therefore natural to wonder whether the uniform
upper bound of Hardy and Ramanujan could be
refined to an asymptotic formula, which would
be a considerable strengthening of the Erdos-Kac
theorem. This problem was highlighted by both
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Hardy and Ramanujan and inspired a great deal
of work over the years by many authors (notably
Pillai [20], Erdos [8], Sathe [25], and Selberg [26]),
culminating in the definitive work of Hildebrand
and Tenenbaum [15].

The Hardy-Ramanujan theorem, furthered by
the insight of Erdés, led to a host of problems
(see, for example, [13]) designed to understand the
multiplicative structure of a random integer—or
as Granville [4] has termed it, “the anatomy of
(random) integers”. Interestingly, the anatomy of a
random integer is strikingly similar to the anatomy
of random polynomials over finite fields and to the
anatomy of the cycle decompositions of random
permutations; see [2] and the forthcoming graphic
novel(!) [12] for accounts of these similarities. More-
over, understanding the anatomy of integers has
proven valuable in many problems of algorithmic
number theory, for example, in the development
of factorization algorithms such as the quadratic
sieve [21].

Out of the many beautiful theorems in the
area, let us mention the striking recent work of
Ford [10] in understanding the distribution of
integers having a divisor of a given size. Ford’s
work resolved a longstanding problem of Erdos:
How many distinct integers are there in the
N x N multiplication table? The Hardy-Ramanujan
theorem, Erdos observed, gives a quick proof that
the number of distinctintegers in the multiplication
table is o(N?). A typical integer of size N has
about log log N prime factors, and so the product
of two such integers has about 2 log log N prime
factors. Thus a typical element appearing in the
multiplication table has 21loglog N prime factors,
whereas a typical integer of size N? has only
about log log(N?) = loglog N +log 2 prime factors.
In other words, elements in the multiplication
table are quite atypical and thus few in number.
Refining a result of Tenenbaum [28], Ford’s work
establishes that true order of magnitude for
the number of integers in the multiplication
table is N2/((log N)5(loglog N):), with & being
the esoteric constant 1 — (1 +loglog2)/log?2 =
0.086.... In the study of random permutations,
there arises an analogous problem: Given n and
1 <k < n -1, the permutation group S, acts
naturally on the k-element subsets of {1,...,n}.
Now given a random element in S,, what is the
probability that there exists some k-element subset
left fixed by this permutation? Partial results on
this problem were established by Luczak and Pyber
[19] and have interesting applications [5]. Using
Ford’s work on integers as a guide to the anatomy
of permutations, one can obtain a more refined
understanding of this question [6].

We now turn to Ramanujan’s work on “highly
composite numbers”. These are numbers n such
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that d(n) > d(k) for all 1 < k < n, where d(n)
counts the number of divisors of n. Ramanujan
described (see paper 15 in [22]) the anatomy of such
highly composite integers and also made a careful
study of the extremal order of d (n). Ramanujan was
also interested in finding large values of the iterated
functions d(d(n)) (whose exact order is determined
in the surprisingly recent paper [3])and d(d(d(n))).
Closely related to highly composite numbers are
the superabundant numbers: these are the integers
n for which o(n)/n is larger than o (k)/k for
all 1 < k = n-1, and where o(n) denotes the
sum of the divisors of n. Superabundant numbers
were studied extensively by Alaoglu and Erdoés
[1], who were directly motivated by Ramanujan’s
work. Interestingly, Ramanujan himself had studied
these classes of numbers, in notes related to his
long paper on highly composite numbers, but
owing to space considerations these were not
included in the published work. These manuscript
notes were discovered as part of Ramanujan’s
“Lost Notebook” [23] and were published with
annotations by Nicolas and Robin in [24]. While
interesting, these problems seem far from the
mainstream, and so it may come as a surprise
that the Riemann Hypothesis is equivalent to the
estimate o (n) < Hy + exp(Hyn) log Hy (Where Hp, is
the “harmonic number” H, = >_, 1/), and the
difficult cases of this inequality are precisely when
n is a superabundant number; see Lagarias [18] for
a charming account of this connection.

We end by mentioning an unpublished and
largely unknown fragment of Ramanujan on a
central topic in the anatomy of integers, namely,
on “smooth” (or “friable”) numbers. A number
is called y-smooth if all its prime factors are
at most y. Smooth numbers appear prominently
in algorithmic number theory (e.g., in factoring
algorithms) and are also useful in seemingly
unrelated questions such as Waring’s problem; see
[16]and [11] for excellent surveys on these integers
without large prime factors. A basic question is to
estimate ¥(x, y), which counts the number of y-
smooth integers below x; a precise understanding
of ¥(x, y) uniformly in a wide range is equivalent
to the Riemann Hypothesis [14]. The first published
work on smooth numbers in 1930 was by Dickman,
who showed that if x = y¥, u > 0 is considered
fixed, and y tends to infinity, then ¥Y(x, y) ~ p(u)x,
where p (the Dickman function) is defined as the
unique continuous solution to the differential-
difference equation up’(u) = —p(u—1) foru > 1,
and with initial condition p(u) =1 for0 < u < 1.
Given the significance of smooth numbers, it may
be interesting to record that Ramanujan appears
to have made a study of this problem. On page 337
of [23] one finds formulas for ¥ (y¥, y) in the range
1 < u = 5, which give inclusion-exclusion type
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expressions for p(u) in terms of iterated integrals
and with a clear indication of how the pattern is to

be continued.
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R. C. Vaughan

The Hardy-Littlewood-Ramanujan Method

In modern analytic number theory there are three
very powerful standard techniques that are central
to many investigations. One is the use of the theory
of Dirichlet series, including the Riemann zeta
function and Dirichlet L-functions; a second is the
application of sieve theory in all its manifesta-
tions; and the third is the subject of this survey.
It has its genesis in two papers of Ramanujan.
The most famous of these is the celebrated pa-
per [Hardy, G. H. & Ramanujan, S. 1918] (there are
also announcements in [Hardy, G. H. & Ramanu-
jan, S. 1917a] and [Hardy, G. H. & Ramanujan,
S. 1917b]), which is concerned mostly with the par-
tition function, but the paper [Ramanujan, S. 1918]
also describes the same fundamental idea. This
is that interesting number theoretic functions
have representations, or close approximations, as
infinite series indexed by the positive rational
numbers—that is, the a/g with 1 < a < g and
(a,q) = 1—and moreover that such expressions
can be obtained by consideration of generating
functions that have the unit circle as a natural
boundary and the terms in the aforementioned
series arise from the neighborhood of singularities
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at e(a/q). A very simple example of this is the
interesting formula
o
(1) o(n) = ==n > g 2cq(n),
g=1
which first appears in the second of these papers.
Here ¢;(n) is the eponymous sum

q
(2) cgn) = > elan/q).
a1

In addition to the partition function, Hardy and
Ramanujan also observe that the same ideas can
be applied to the number of representations of a
number as a sum of a fixed number of squares.

One might speculate how this could have devel-
oped if Ramanujan had not been struck down by
illness. Fortunately, Hardy and Littlewood realized
the very great importance and generality of the
underlying conceptions and were able to develop
them so as to apply to the Goldbach and Waring,
and cognate, problems. There was also the realiza-
tion of the predictive possibilities of the method
in those cases where the arguments could not be
otherwise pursued to a satisfactory conclusion.
Later this led, through further important ideas of
I. M. Vinogradov and Davenport, in the 1930s to
the essential resolution of the ternary Goldbach
problem (namely, that every large odd integer is
the sum of three primes) and substantial progress
in the known upper bounds for G (k) (the smallest
s such that every large natural number is the sum
of at most s kth powers) in Waring’s problem
(see [Vaughan, R. C. 1997]). Davenport, along with
Birch and Lewis, embarked on the question of
applying the method to nondiagonal questions,
for example, the nontrivial representation of
zero by cubic forms (see [Davenport, H. 1963]
and [Davenport, H. 1962, 2005]). [Davenport, H. &
Lewis, D. J. 1963] had also established the
Artin conjecture concerning the local-to-global
principle for diagonal forms for all but a finite
set of degrees. When I was a postgraduate
student in the late 1960s, I became interested
in the method. However, I was warned by a
number of distinguished mathematicians that
the method was already played out and it would
be better to work on other things! Nevertheless,
in [Vaughan, R. C. 1977] I did manage to use the
method to deal with the cases not dealt with by
Davenport and Lewis, and in a different direction
[Montgomery, H. L. & Vaughan, R. C. 1975] we
were able to establish that there is a positive
number § such that the number E(x) of even
numbers not exceeding x which are not the sum of
two primes satisfies

E(x) < x'79.
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In the last twenty-five years there has been
a huge explosion of activity. This note is too
short to do more than mention a few highlights,
with the hope that the reader may be pointed
in an interesting direction. On Waring's prob-
lem the development of efficient differencing,
building on the earlier work, especially that of
Davenport, led to significant further progress
on the upper bound for G(k), and there is a
survey of this and some other connected results
in [Vaughan, R. C. & Wooley, T. D. 2002]. Very
recently, the sensational work of [Wooley, T. D.
to appear| now means that the asymptotic formula
for the number of representations of a natural
number as the sum of s kth powers is known to
hold when s = 2k? - 2k — 8. On questions involv-
ing forms there has been impressive progress
on applications of the method on a number
of fronts, especially by [Schmidt, W. M. 1979]
and [Wooley, T.D. 1997] on small zeros;
[Heath-Brown, D. R. 1983], [Hooley, C., 1988,
1991, 1994], and [Hooley, C., 1988, 1991, 1994]
on cubic forms; [Heath-Brown, D. R. & Browning,
T. D. 2009] on cubic polynomials; and [Briidern,
J&Wooley, T.D. 1998] and [Brudern, ] & Wooley, T.D.
2003] on a variety of topics.

In a different direction, [Heath-Brown, D. R.
1981] has ingeniously combined the circle method
with sieve theory, and this was taken up by
[Brudern, J. 1988] in his thesis and has been
exploited extensively by [Brudern, J. 1995], [Bru-
dern, J. & Kawada, K. 2002], [Kawada, K. 1997], and
[Kawada, K. 2005]. This has spawned a whole new
industry of ongoing work on sums of powers of
primes and almost primes.

In the original series of papers “On some
problems of partitio numerorum” by Hardy and
Littlewood there was an unpublished manuscript
on small differences between consecutive primes,
and it was this manuscript which, when combined
with developments in the large sieve, led to
the work of [Bombieri, E. & Davenport, H. 1966]
and the later refinements of [Pil’'tjai, G. Z. 1972],
[Huxley, M. N. 1977], and [Maier, H. 1985] on
(3) & = liminf PrtL = Pn

fi=-® log pn

The later proof by [Goldston, D. A, Pintz, J. &
Yildirnm 2009] that 6 = 0 rests mostly on sieve
theory, yet the motivation for the shape of some of
the main terms comes from heuristics arising from
the Hardy-Littlewood method. In many ways the
motivation for the large sieve also comes from the
Hardy-Littlewood method, and perhaps this can be
seen most clearly in [Gallagher, P. X. 1967]'s proof
of the large sieve inequality.

An unexpected development was the adaptation
of the method to deal with questions involving
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arithmetic progressions in general sets. This be-
gan with the seminal paper of [Roth, K. F. 1953]
dealing with sets having no three elements in arith-
metic progression and led to[Gowers, W. T. 1998]'s
proof of Szemerédi’'s theorem and the theorem of
[Green, B. J. & Tao, T. 2008] that the primes con-
tain arbitrarily long arithmetic progressions. This
is another very active area; see, for example,
[Green, B. J. 2007] or [Tao, T. & Vu, Van, 2006]. A
cognate area concerns the mean square distribu-
tion of sets of integers in arithmetic progressions.
The prototype is the more precise version of the
Barban-Davenport-Halberstam theorem concerning
the set of primes due to [Montgomery, H. L. 1970]
and refined by [Hooley, C. 1975]. Montgomery
used a variant of the Hardy-Littlewood method,
and more recently this was revived by [Gold-
ston, D. A. & Vaughan, R. C. 1996] for the set
of primes and by [Vaughan, R. C. 1998] to treat
general dense sets. This has been taken a step
further by [Brudern, J. 2009], which extends the
ideas of the latter paper to treat general binary
additive problems.

Another aspect of the method is that the idea
of large peaks near “rational points” e(a/q) with g
relatively small (the major arcs) and lesser peaks
near e(a/q) with g relatively large (the minor
arcs) has suggested divisions of arguments in,
apparently, otherwise quite unrelated topics. An
important example of this is the work of Bombieri,
Iwaniec, Huxley, and Watt on exponential sums
which led to the currently best-known bounds
for the Riemann zeta function on the %-line, and
the error terms in the Dirichlet divisor problem
and Gauss’s estimation of the number of lattice
points in a large disc centered at the origin. For an
exposition of this, see [Huxley, M. N. 1996].

For standard accounts of the Hardy-Littlewood
method in its more classical forms, see
[Davenport, H. 1962, 2005] and [Vaughan, R. C.
1997]. The foreword to the second edition of
[Davenport, H. 1962, 2005] gives a good survey
of a number of the applications as they stood in
2005.
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S. Ole Warnaar

Ramanujan’s | /; Summation

Notation. It is impossible to give an account of the
11 summation without introducing some g-series
notation. To keep the presentation as simple as
possible, we assume that 0 < g < 1. Suppressing
g-dependence, we define two g-shifted factorials:
(@)s = [TiLo(1 — ag*) and (@), := (a)x/(aq*)w
for z € C. Note that 1/(g), = 0 if n is a nega-
tive integer. For x € C — {0, —1,...}, the g-gamma
function is defined as I; (x) := (g)x—1/(1 — g)*" L.

Ramanujan recorded his now famous ¢/, sum-
mation as item 17 of Chapter 16 in the second
of his three notebooks [13, p. 32], [46]. It was
brought to the attention of the wider mathematical
community in 1940 by Hardy, who included it in
his twelfth and final lecture on Ramanujan’'s work
[31]. Hardy remarked that the result constituted
“a remarkable formula with many parameters.”
Instead of presenting the ¢, sum as given by
Ramanujan and Hardy, we will state its modern
form:

o0

1) 3 (@n p_ (a2)x(q/a2)w (b]@) (@)

(b)n (Z)m(b/‘az)m(q/a)oo(b)m !
|b/al <|z| <1,

n=—c

where it is understood that a,q/b ¢ {q,q%,...}.
Characteristically, Ramanujan did not provide a
proof of (1). Neither did Hardy, who, however,
remarked that it could be “deduced from one
which is familiar and probably goes back to
Euler.” The result to which Hardy was referring
is another famous identity—known as the g-
binomial theorem—corresponding to (1) with b =
g: Sn-02"(@n/(@)n = (az)w/(2)~ and valid for
|z| < 1. Although not actually due to Euler, the
g-binomial theorem is certainly classic. It seems
to have appeared first and without proof (for
a = g V) in Rothe’s 1811 book Systematisches
Lehrbuch der Arithmetik, and in the 1840s many
mathematicians of note, such as Cauchy (1843),
Eisenstein (1846), Heine (1847), and Jacobi (1847),
published proofs. The first proof of the ;y;
sum is due to Hahn in 1949 [30] and, as hinted
by Hardy, uses the g-binomial theorem. After
Hahn, a large number of alternative proofs of (1)
were found, including one probabilistic and three
combinatorial proofs [2], [3], [5], [16], [17], [19],
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[20], [18], [23], [24], [32], [34], [35], [44], [48], [53],
[50]. The proof from the book, which again relies
on the g-binomial theorem, was discovered by
Ismail [32] and is short enough to include here.
Assuming |z| < 1 and |b| < min{l, |az|}, both
sides are analytic functions of b. Moreover, they
coincide when b = qk+l withk =0,1,2,... by the
g-binomial theorem with a — ag . Since 0 is the
accumulation point of this sequence of b’s, the
proof is complete.

Apart from the g-binomial theorem, the
1@ sum generalizes another classic identity,
known as the Jacobi triple-product identity:
S—w(-D"2"q(2) = (2)0(q/2) (@ = 0(2).
This result plays a central role in the theory of
theta and elliptic functions.

The ;/; Sum as Discrete Beta Integral
As pointed out by Askey [8], [9], the ; /; summation
may be viewed as a discrete analogue of Euler’s
beta integral. First, define the Jackson or g-integral
Is = f(t)dgt == (1-q) S f(cq™)cq". Replacing
(a,b, z) — (-c,—cq**#,q*) in (1) then gives

R « 0(=cq®) Tz (c)T4(B)

0 (—Dasp 0(—c) Tgla+p)’

where Re(a),Re(f) > 0. For real, positive ¢ the
limit g — 1 can be taken, resulting in the beta
integral modulo the substitution t — t/(1 — t).
Askey further noted in [8] that the specialization
(x,B) — (x,1—x) in (2) (so that 0 < Re(x) < 1)
may be viewed as a g-analogue of Euler’s reflection
formula.

2) dgt = ¢

Simple Applications of the ;y/; Sum

There are numerous easy applications of the
1, sum. For example, Jacobi’s well-known four-
and six-square theorems as well as a number
of similar results readily follow from (1); see
e.g., [1], [14], [15], [21], [22], [25]. To give a
flavor of how the 1y implies these types of
results, we shall sketch a proof of the four-
square theorem. Let r¢(n) be the number of
representations of n as the sum of s squares.
The generating function Rs(q) := X ,.0 rs(n) (—q)"
is given by (Z,”,',:_m(—l)'"q'"z)s. By the triple-
product identity this is also ((g)«~/(—q)«)". Any
identity that allows the extraction of the coefficient
of (—g)" results in an explicit formula for r;(n).
Back to (1): replace (b,z) — (ag,b) and multiply
both sides by (1 — b) /(1 — ab). By the geometric
series this yields

(1-a)(1-b) kn( pkipn _ q-kjp-n
S e knz;lq (a*p" - a*p")

_ (abg)~(g/ab)«(q)3
(aq)=(g/a)x(bq)=(q/b)=’

o0

3) 1+
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which may also be found in Kronecker’s 1881
paper “Zur Theorie der elliptischen Functionen”.
For a,b — —1 the right side gives R4(g), whereas
the left side becomes

)

1_82 qm Z n(_l)n+k

m=1 nk=1
nk=m
=1+8 > (=)™ ) d.
m=1 d=1
4td|m

Hence ry(n) = 8 4.1, 44 d. This result of Jacobi
implies Lagrange’s theorem that every positive
integer is a sum of four squares. By taking
a,b? — —1 in (3) the reader will have little trouble
showing that r2(n) = 4(di(n) — dz(n)), with dx (n)
the number of divisors of n of the form 4m + k.
This is a result of Gauss and Lagrange which
implies Fermat’s two-square theorem.

Other simple but important applications of the
11 sum concern orthogonal polynomials. In [11]
it was employed by Askey and Wilson to compute
a special case—corresponding to the continuous g-
Jacobi polynomials—of the Askey-Wilson integral,
and in [10] Askey gave an elementary proof of
the full Askey-Wilson integral using the ;y/; sum.
The sum also implies the norm evaluation of the
weight functions of the g-Laguerre polynomials [45].
These form a family of orthogonal polynomials
with discrete measure pu on [0,c - o) given by
dgu(t) = t*/(—t) dgt. The normalization [ dgpu(t)
thus follows from the g-beta integral (2) in the
limit of large B.

Generalizations in One Dimension

There exist several generalizations of Ramanujan’s
sum containing one additional parameter. In his
work on partial theta functions, Andrews [4]
obtained a generalization in which each product
of four infinite products on the right-hand side is
replaced by six such products. Another example is
the curious identity of Guo and Schlosser, which is
no longer hypergeometric in nature [27]:

i (@)x(1 — ackg®) (ck@) = (b/ack)w
(b)k(1 - azg¥)(acy) . (q/ack), ¥

_ 1 (@) (b/a)
(1-2) (g/a)x(b)s’

where ¢ := z(1 — aczg®) /(1 — azg*) and |b/ac| <
|z| < 1.For ¢ =1 this is (1).

Asdiscovered by Schlosser [49], a quite different
extension of the ;y, sum arises by considering
noncommutative variables. Let R be a unital Banach
algebra with identity 1, central elements b and g,
and norm | - |l. Write a~! for the inverse of an
invertible element a € R. Let [[[_,, a; stand for 1

k=-o
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-apifn=manda,', - -a,!

ifn=m-1,a,-- i+l

if n < m -1, and define
ai,...,ar _\*
(b.,...,b,’z)k

r
=11 [z [T(1-ag"hH —bsq"')-'],
i

s=1
where k € ZU {}, ay,...,a,,by,...,b, € R, []; =
[1¥, in the + case and [[; = []., in the

-

case. Subject to max{|ql,|z|,|lba 'z} <
the following noncommutative ; ¢/, sum holds:

(za ) (qa’lfl )*(bza‘lz“l,q )’
= i1 i1 1) .
z gza=-'z-1"" )\ ba-lz-1,b’ )&

Higher-Dimensional Generalizations

Various authors have generalized (1) to multiple
11 sums. Below we state a generalization due to
Gustafson and Milne [28], [41] which is labelled
by the A-type root system. Similar such ;y;,
sums are given in [6], [7], [29], [43], [47]. More
involved multiple ;¢; sums with a Schur or
Macdonald polynomial argument can be found
in [12], [36], [42], [52]. For ¥ = (r,...,1y) € Z"
denote |r|:=r; + -+ + ry. Then

Sz ] xiq" —x;9"”

rein l<i<j=n Xi = X\,‘

(ajxij)r,
(bjxij)n

ij=1
(bjxij/ai)e(GXij) e
(Gxij/ai)e (BiXij) o

_ (az)x(q/az)~
(2)w(blaz)s 2,

where a :=a,---an, b := ¢'"by - - - bp, Xij =
xi/xjand |b/a| < |z| < 1. Milne first proved this
for by = -+ = by [41], and shortly thereafter
Gustafson established the full result [28]. We have
already seen that the ;, sum implies the Jacobi
triple-product identity. The latter is the Am case
of Macdonald’s generalized Weyl denominator
identities for affine root systems [38]. To obtain
further Macdonald identities from the Gustafson-
Milne sum, one replaces z — z/a before letting
ai,...,an — o and bi,...,by, — 0. Extracting the
coefficient of z° (on the right this requires the
triple-product identity) results in the Macdonald
identity for A(,,]_),.

Higher-dimensional generalizations of a special
case of the ;y/; sum can be given for all affine root
systems. A full description is beyond our scope
here, so we will sketch only the simplest case. The
reader is referred to [26], [38], [39], [40] for the
full details. In [39] Macdonald gave the following
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multivariable extension of the product formula for
the Poincar€ polynomial of a Coxeter group:
(4)
1 —tye® 403 1-t thNa)
wier:= 3 [l T-ww = [l Tome
weW aeR* QER*
Here R is a reduced, irreducible finite root system
in a Euclidean space V, R the set of positive roots,
W the Weyl group, and tx for & € R* a set of formal
variables constant along Weyl orb,its. The symbol
" stands for [Tgeg- t},ﬂ’“””““' with (-,-) the
W-invariant positive definite bilinear form on V. If
all ty are set to t, then M@ = (htl®) with ht(x)
the usual height function on R, in which case W (t)
reduces to the classical Poincareé polynomial W (t).
Now let S be a reduced, irreducible affine root
system of type S = S(R) [38]. In analogy with the
finite case, assume that t; for a € S is constant
along orbits of the affine Weyl group W of S. Then
Macdonald generalized (4) to [40]
1-t ew(a)
® 2 Il g
weW aeS+

r] (tath"“))N(th”“)qx(“EBl/&x)m
(¢ht(e)2 ’

oER*

where B is a base for R. The parameter g on
the right is fixed by g = [],cp(s) exp(ngqa), where
B(S) is a basis for § and the n, are the labels
of the extended Dynkin diagrams given in [38].
If R is simply-laced, then t; = t. In the case
of S(R) = A{", g = exp(ap + a;) so that after
replacing exp(a;) by x we obtain the ;y/; sum (1)
with (a,b, z) — (x/t,tx,t). This is not the end of
the story concerning root systems and the ;y/,
sum. Identity (5) can be rewritten as [40]

(6)

zz r] (ge® )lmyl

v ack Lad € (ay)

B (tath((d)q)m(th((ﬂ,qX(NEB)/ttx)m
- [] (tht(mq)m(tht(al)m
(ge®)n(ge s
(tag e (tage %)’

xER*

where QY is the coroot lattice. Interestingly,
for ty = t this was also found by Fishel,
Grojnowski and Teleman [26] by computing
the generating function of the g-weighted Euler
characteristics of certain Dolbeault cohomologies.
For R = Ap_1, Q¥ = Q = 3, rig; with |r| = 0,
R={ei—€;: 1<i=+j=<n}, and tht(&-€) = tj-i,
By fairly elementary manipulations, the identity
(6) may then be transformed into the multiple ; /1
sum
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for |b/a| < |z| <1 and |t| < 1. This is the only
result in this survey that is new.

We finally remark that all higher-dimensional
11 sumsadmit representations as discrete Selberg-
type integrals. The most important such integrals
are due to Aomoto [6], [7] and Ito [33], and are

closely related to (5). Further examples may be The museum at SASTRA University in

found in [37], [51]. Kumbakonam, where several manuscripts,
letters, papers, documents, photographs, etc.,
relating to Ramanujan are displayed.

Photo courtesy of Krishnaswami Alladi.
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