
THE 1ψ1 SUMMATION

S. OLE WARNAAR

1. Introduction

Ramanujan’s 1ψ1 summation is one of the most important summation formulas in the
theory of basic hypergeometric series. It first appeared, without proof, as Entry 17 of
Chapter 16 in Ramanujan’s second notebook [1, 32], and was popularised by Hardy, who
mentioned the result in his twelfth and final lecture on Ramanujans life and work [23, §12.12],
calling it “a remarkable formula with many parameters”.

The 1ψ1 summation is an identity for what nowadays is referred to as a bilateral basic
hypergeometric series [20]. Neither Ramanujan nor Hardy stated it as such, instead writing
it in the symmetric, unilateral form

(1.1) 1 +

∞∑
n=1

(α−1; q2)n
(βq2; q2)n

(−αqz)n +

∞∑
n=1

(β−1; q2)n
(αq2; q2)n

(−βqz−1)n

=
(−qz; q2)∞(−qz−1; q2)∞(αβq2; q2)∞(q2; q2)∞

(−αqz; q2)∞(−βqz−1; q2)∞(αq2; q2)∞(βq2; q2)∞
,

for α, β, z, q ∈ C such that |q| < 1, |βq| < |z| < |αq|−1 and α, β /∈ {q−2, q−4, . . . }. In (1.1),

(a; q)∞ :=
∏∞
k=0(1−aqk) and (a; q)n :=

∏n−1
k=0(1−aqk) (for a positive integer n) are q-shifted

factorials.
Since

(1.2) (a; q)n =
(a; q)∞

(aqn; q)∞
,

the right-hand side of (1.2) can be used as the definition of (a; q)n for all integers n. In

particular one has (a; q)0 = 1 and the reflection formula (a; q)−n(q/a; q)n = (−q/a)nq(
n
2).

Replacing (α, βq2,−αqz) by (1/a, b, z) followed by the substitution q2 7→ q, (1.2) then allows
for (1.1) to be written in the modern, more compact, bilateral form

(1.3)

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az; q)∞(q/az; q)∞(b/a; q)∞(q; q)∞
(z; q)∞(b/az; q)∞(q/a; q)∞(b; q)∞

,

for |q| < 1, |b/a| < |z| < 1 and a/q, 1/b 6∈ {1, q, q2, . . . }. The symmetry (α, β, z) ↔
(β, α, 1/z) of (1.1) is now given by (a, b, z) ↔ (q/b, q/a, b/az) and is realised on the left of
(1.3) by replacing n 7→ −n and using the reflection formula.

Ramanujan’s 1ψ1 summation contains a number of well-known identities as special case.
Since for a negative integer n,

1

(b; q)n
= (bqn; q)−n = (1− bqn) · · · (1− bq−1),
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it follows that the summand of (1.3) vanishes for n < 0 if b = q. The resulting unilateral
summation is the classical q-binomial theorem [20, Equation (II.3)]

(1.4)

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

,

where |q| < 1 and |z| < 1. Replacing z 7→ z/a in (1.3), then letting a tend to infinity and
setting b = 0, gives Jacobi’s triple product identity [26]

∞∑
n=−∞

(−z)nq(
n
2) = (z; q)∞(q/z; q)∞(q; q)∞,

for arbitrary complex z and q such that z 6= 0. Finally, for complex z and q such that
|q| < 1 and z 6= 0, let θ(z; q) := (z; q)∞(q/z; q)∞ be a modified theta function. Substituting
(b, z) 7→ (aq, b) in (1.3), and using the geometric series to write the summand in symmetric
form, yields Kronecker’s theta function identity [29]

(1.5)
1

1− a
+

1

1− b
− 1 +

∞∑
k,n=1

(
akbn − a−kb−n

)
qkn =

θ(ab; q) (q; q)2
∞

θ(a; q)θ(b; q)
,

for |q| < |a| < 1 and |q| < |b| < 1.

In the next section a number of different proofs of Ramanujan’s 1ψ1 summation are re-
viewed, and in the third and final section several generalisations are discussed. For reasons
of space, generalisations of the 1ψ1 summation to root systems have been omitted. The
interested reader may find these surveyed in [40], which also includes a number of simple
applications of the 1ψ1 summation to number theory and the theory of special functions.
Further surveys of Ramanujan’s 1ψ1 summation may be found in Ramanujan’s edited note-
books [7, pp. 31–34], in [15] (which focuses on proofs) and [27] (which is mostly historical).

Throughout the remainder of this article it is assumed that |q| < 1.

2. Proofs of the 1ψ1 summation

In the following we adopt the shorthand notation

(a1, . . . , ak; q)n := (a1; q)n · · · (ak; q)n

for n ∈ Z ∪ {∞}, and use the unilateral and bilateral basic hypergeometric series [20]

φr r−1

[
a1, . . . , ar
b1, . . . , br

; q, z

]
:=

∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , br−1; q)n

zn, |z| < 1,(2.1a)

ψr r

[
a1, . . . , ar
b1, . . . , br

; q, z

]
:=

∞∑
n=−∞

(a1, . . . , ar; q)n
(b1, . . . , br; q)n

zn,

∣∣∣∣ b1 · · · bra1 · · · ar

∣∣∣∣ < |z| < 1.(2.1b)

In these definitions it is assumed that the parameters are generic; if k is an arbitrary nonneg-
ative integer then none of the bi should be of the form q−k and, in the case of (2.1b), none of
the ai should be of the form qk+1. The customary one-line notation for basic hypergeometric
and bilateral basic hypergeometric series will also be adopted, so that the left-hand side of
(1.3) can be written as 1ψ1(a; b; q, z).

As mentioned in the introduction, Ramanujan recorded the 1ψ1 summation in his second
notebook without proof. Hardy also did not provide a proof. After stating the result in his
lecture [23, Equation (12.12.2)], Hardy remarked “This formula seems to be new. It is how-
ever deduced from one which is familiar and probably goes back to Euler”. He then stated
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the q-binomial theorem (1.4). Although Hardy was correct that the 1ψ1 summation was new
and could be obtained from the q-binomial theorem, the latter result was almost certainly
not known to Euler, with the earliest recording of (1.4) appearing in a 1811 textbook written
by Rothe [33], published more than 30 years after Euler’s death.

The first published proof of the 1ψ1 summation can be found in Hahn’s paper [22] from
1949. Hahn mentioned neither Ramanujan nor Hardy and appears to have been unaware of
these earlier occurrences of the result. Hahn was led to the 1ψ1 summation through a study
of the first-order homogeneous q-difference equation1

(2.2) (b− aqz)f(qz)− q(1− z)f(z) = 0,

for which he sought solutions of the form f(z) = f(a, b, z; q) =
∑
n∈ZAn(a, b; q)zn normalised

such that A0 = 1. Equating coefficients of zn in (2.2) leads to the recurrence An+1 =
An(1 − aqn)/(1 − bqn), so that f(a, b, z; q) = 1ψ1(a; b; q, z). To obtain the product form,
Hahn made repeated use of the q-binomial theorem in line with Hardy’s remark. As a first
step he used a limiting case (which was known to Euler) to expand 1/(b; q)n in the summand
of f . Thus

f(a, b, z; q) =
1

(b; q)∞

∑
n∈Z

∞∑
k=0

(a; q)nz
nq(

k
2)(−bqn)k

(q; q)k
=

1

(b; q)∞

∞∑
k=0

q(
k
2)(−b)k

(q; q)k
f(a, 0, zqk; q).

Since f(a, 0, zqk; q) = (−az)−kq−(k
2)(z; q)k f(a, 0, z; q) by the q-difference equation (2.2),

(2.3) f(a, b, z; q) =
f(a, 0, z; q)

(b; q)∞
1φ0(z; – ; q, b/az) =

(b/a; q)∞
(b, b/az; q)∞

f(a, 0, z; q),

where the second equality follows from the q-binomial theorem (1.4). Again by the q-
binomial theorem, f(a, q, z; q) = (az; q)∞/(q; q)∞, which determines f(a, 0, z; q) and thus
f(a, b, z; q) in full.

Hahn’s proof is certainly not the simplest demonstration of the 1ψ1 summation, and a
large number of alternative proofs have since been found, many of which are more elementary
than Hahn’s original proof. It follows from the work of Adiga et al. [1, pp. 26–28] on
Ramanujan’s second notebook or the monograph on elliptic functions by Venkatachaliengar
[38, pp. 20–25] that the second part of Hahn’s proof can be modified, eliminating the need
for the q-binomial theorem. Since, as a function of z, (az, q/az; q)∞/(z, b/az; q)∞ is analytic
in the annulus |b/a| < |z| < 1 and (for |b/aq| < |z| < 1) satisfies the q-difference equation
(2.2), it follows that

(2.4) 1ψ1(a; b; q, z) = C
(az, q/az; q)∞
(z, b/az; q)∞

,

with C = C(a, b, q) independent of z. The product on the right has a simple pole at z = 1.
Moreover, (a; q)nz

n/(b; q)n summed over the negative integers is analytic for |z| > |b/a|.
Multiplying both sides of (2.4) by (1 − z) and taking the z → 1 limit, it therefore follows
from Abel’s theorem that

lim
z→1

(1− z) 1ψ1(a; b; q, z) = lim
z→1

(1− z)
∞∑
n=0

(a; q)n
(b; q)n

zn = lim
n→∞

(a; q)n
(b; q)n

=
(a; q)∞
(b; q)∞

is equal to

C lim
z→1

(1− z) (az, q/az; q)∞
(z, b/az; q)∞

= C
(a, q/a; q)∞
(q, b/a; q)∞

.

1Hahn used a slightly different choice of parameters, writing (a− bz)f(qz)− (1− z)f(z) = 0.
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This shows that C = (b/a, q; q)∞/(q/a, b; q)∞.

It is also possible to obtain the 1ψ1 summation from the q-binomial theorem in what
is essentially a one-line proof. The idea, due to Ismail [24] and commonly referred to as
Ismail’s argument, is to view (1.3) as an identity of analytic functions in the variable b.
Since |b/a| < |z| < 1, both sides are analytic for |b| < min{1, |z/a|}. Moreover, for a
nonnegative integer k, both sides coincide for b = qk+1 by the q-binomial theorem (1.4) with
a 7→ aq−k. Since this sequence of b-values has an accumulation point at 0, the result follows
by the identity theorem for holomorphic functions. The restriction |b| < 1 can be lifted by
standard analytic continuation arguments.

There are numerous further proofs of Ramanujan’s 1ψ1 summation that use identities for
basic hypergeometric series, and the interested reader is referred to [2,3,6,9,11,12,14,15,19,
25,30,31,34,35]. One particularly appealing example of such a proof is due to Schlosser [35],
who applied Cauchy’s method [8] for turning terminating, unilateral basic hypergeometric
series into non-terminating, bilateral series. The starting point is the q-Pfaff–Saalschütz
summation [20, Equation (III.12)]

(2.5) φ3 2

[
a, b, q−n

c, abq1−n/c
; q, q

]
=

(c/a, c/b; q)n
(c, c/ab; q)n

.

By the simultaneous substitutions (n, a, b, c) 7→ (m + n, aq−m, b/az, bq−m), this can be put
in the form

(2.6)

n∑
k=−m

(a; q)k
(b; q)k

(z; q)n−k
(q; q)n−k

(b/az; q)m+k

(q; q)m+k
zk =

(az; q)n
(b; q)n

(q/az; q)m
(q/a; q)m

(b/a; q)m+n

(q; q)m+n
,

for integers m,n such that m + n > 0. The identity (2.6), which is invariant under the
substitution (a, b, z,m, n) 7→ (q/b, q/a, b/az, n,m), is a terminating analogue of the 1ψ1

summation. The latter arises by assuming |b/a| < |z| < 1 and letting m,n tend to infinity.
The required interchange of limits and sum is justified by Tannery’s theorem. The large-n
limit of (2.6), which is implied by the q-Gauss sum (itself the large-n limit of (2.5)), was
also independently found in [11,14,30].

Much more elaborate than the q-hypergeometric and/or analytic proofs of the 1ψ1 sum-
mation are a number of combinatorial proofs, see [10,16,17,41]. With the exception of [10],
these establish the identity in the form

(2.7)
(−aq,−bq; q)∞

(abq, q; q)∞

∞∑
k=−∞

(−1/a; q)k
(−bq; q)k

(azq)k =
(−zq,−1/z; q)∞
(azq, b/z; q)∞

, |b| < |z| < 1/|aq|.

It would take too much space to fully describe the actual bijections leading to (2.7). Instead
it will be explained how the coefficients of zk on each side of the identity can be interpreted
combinatorially. Since the substitution (a, b, z) 7→ (b, a, 1/qz) leaves (2.7) invariant, it suf-
fices to restrict considerations to nonnegative values of k. For a full proof of the above form
of the 1ψ1 summation the reader is referred to the work of Corteel and Lovejoy [17] and of
Yee [41].

An overpartition is an ordinary integer partition in which the final occurrence of any part
of given size may either be overlined or not [18]. In the following, overpartitions will be
considered in which 0 is also an allowed part-size, so that (3, 1, 1̄, 0), (3, 1, 1̄, 0̄) and (3, 1, 1̄)
are all viewed as distinct overpartitions of 5. Denote the set of all such overpartitions by O
and, for λ ∈ O, write |λ| for the sum of the parts, l(λ) for the number of parts, and p(λ)
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for the number of non-overlined parts. For λ = (3, 1, 1̄, 0), |λ| = 5, l(λ) = 4 and p(λ) = 3,
whereas for λ = (3, 1, 1̄), |λ| = 5, l(λ) = 3 and p(λ) = 2.

Let P denote the set of partitions and D the set of distinct (or strict) partitions, where
in both cases partitions are not allowed to have 0 as a part. By adding 1 to each part of an
overpartition λ ∈ O, and by then separating the non-overlined and overlined parts to form
a pair of partitions, it follows that O is in bijection with P ×D . For example

(3, 1, 1̄, 0)↔ (4, 2, 2̄, 1)↔
(
(4, 2, 1), (2̄)

)
↔
(
(4, 2, 1), (2)

)
.

Clearly, if λ ∈ O corresponds to the pair (µ, ν) ∈P ×D , then |λ| = |µ|+ |ν| − l(µ)− l(ν),
p(λ) = l(µ) and l(λ) = l(µ) + l(ν). By the classical partition identities [4, Equations (5.11)
& (5.9)]

(2.8)
∑
λ∈P

al(λ)q|λ| =
1

(aq; q)∞
and

∑
λ∈D

al(λ)q|λ| = (−aq; q)∞,

it thus follows that the three-variable generating function for overpartitions is given by

O(a, z, q) :=
∑
λ∈O

ap(λ)zl(λ)q|λ|(2.9)

=

( ∑
µ∈P

(az/q)l(µ)q|µ|
)(∑

ν∈D

(z/q)l(ν)q|ν|
)

=
(−z; q)∞
(az; q)∞

.

For nonnegative integers n, r, s and an integer k, let f(n, k, r, s) be the cardinality of the
set of pairs (λ, µ) ∈ O × O subject to the restrictions

|λ|+ |µ|+ l(λ) = n, l(λ)− l(µ) = k, p(λ) = r, p(µ) = s.

For example, f(6, 2, 3, 2) = 9 with the following pairs (λ, µ) of overpartitions (arranged in
generalised Frobenius form [17] with the parts of λ in the first row and the parts of µ in the
second row) contributing to the count:(

2̄ 0 0 0
0 0

)
,
(

2 0 0 0̄
0 0

)
,
(

1 1̄ 0 0
0 0

)
,
(

1 1 0 0̄
0 0

)
,
(

0 0 0 0̄
2 0

)
,
(

0 0 0 0̄
1 1

)
,
(

1̄ 0 0 0
1 0

)
,
(

1 0 0 0̄
1 0

)
,
(

1̄ 0 0 0 0̄
0 0 0̄

)
.

By (2.9) the coefficient of zk (k ∈ Z) of the right-hand side of (2.7) may be expressed in
terms of f(n, k, r, s). Specifically,

[zk]
(−zq,−1/z; q)∞
(azq, b/z; q)∞

= [zk]
(
O(a, zq, q)O(b, 1/z, q)

)
=

∞∑
n,r,s=0

f(n, k, r, s) arbsqn.

For nonnegative integers n, k, r, s, let g(n, k, r, s) be the cardinality of the set of quintuples
(λ, µ, ν, ω, τ) ∈ P ×P × D × D × O such that all parts of ω exceed k, all non-overlined
parts of τ are equal to 1, all overlined parts of τ are in {1, . . . , k}, and

|λ|+ |µ|+ |ν|+ |ω|+ |τ | = n, l(µ) + l(ν) + p(τ) = r, l(µ) + l(ω) = s, l(τ) = k.

For example, g(6, 2, 3, 2) = 9 with the following quintuples contributing:

((2),(1,1),∅,∅,(1,1̄)), ((1,1),(1,1),∅,∅,(1,1̄)), ((1),(2,1),∅,∅,(1,1̄)), ((1),(1,1),∅,∅,(2̄,1)),

(∅,(3,1),∅,∅,(1,1̄)), (∅,(2,2),∅,∅,(1,1̄)), (∅,(2,1),∅,∅,(2̄,1)), (∅,(1,1),(1),∅,(2̄,1̄)), (∅,(1),∅,(3),(1,1)).

By (2.8), ∑
ω

ap(ω)q|ω| = (−aqk+1; q)∞ and
∑
τ

ap(τ)q|τ | = (−1/a; q)k (aq)k,
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where ω ∈ D and τ ∈ O satisfy the conditions described above, it follows that for k > 0

[zk]
(−aq,−bq; q)∞

(abq, q; q)∞

∞∑
i=−∞

(−1/a; q)i
(−bq; q)i

(azq)i

=
(−aq,−bqk+1; q)∞

(q, abq; q)∞
(−1/a; q)k (aq)k =

∞∑
n,r,s=0

g(n, k, r, s) arbsqn.

The 1ψ1 summation is thus equivalent to the combinatorial statement that f(n, k, r, s) =
g(n, k, r, s) for all nonnegative integers n, k, r, s.

To conclude our review of proofs of the 1ψ1 summation we discuss Kadell’s probabilistic
approach [28]. For integers n and n1, . . . , nk, let

gn :=
cqn

(1 + cqn)(1 + cqn+1)
and gn1,...,nk

:= gn1 · · · gnk
,

where the dependence on c and q has been suppressed. For integers k,M,N such that k > 0,
define G0,M,N := 1 if M +N > 0, G0,M,N := 0 if M +N < 0, and

Gk,M,N :=
∑

−N6n16n2−26···6nk−2k+26M+k−2

gn1,...,nk

for k > 1. Since

Gk,M,N = Gk,M,N−1 + g−N Gk−1,M+1,N−2

for k > 1, it follows that

(2.10) Gk,M,N =
q(

k
2)

(−qN−k+1/c,−cqM ; q)k

[
M +N

k

]
.

This identity will also be used in the large M and/or N limit, and by an abuse of notation
the corresponding limits of Gk,M,N will be denoted as Gk,∞,N , Gk,M,∞ and Gk,∞,∞.

Now fix 0 < q < 1 and c > 0, and let X be a random variable, uniformly distributed on
(0, 1). This may be used to define the discrete random variable N ∈ Z by

N =

⌈
logq

(
c−1X

1−X

)⌉
,

with probability mass function given by2

(2.11) P

(
qN+1 <

c−1X

1−X
6 qN

)
= P

(
cqN+1

1 + cqN+1
< X 6

cqN

1 + cqN

)
= (1− q) gN .

For 1 6 j 6 k integers, let N1, N2, . . . , Nk be an independent, identically distributed random
sample from the distribution (2.11) with order statistics N(1) < N(2) < · · · < N(k), subject
to

N(i+1) −N(i) > 2 for all 1 6 i 6 k − 1.

Since Gk,∞,∞ = q(
k
2)/(q; q)k, the joint probability mass function of the order statistics is

q−(k
2)(q; q)k

k∏
i=1

gN(i)

k−1∏
i=1

χ
(
N(i+1) −N(i) > 2

)
.

2Since (1− q)
∑

N gN = (1− q)G1,∞,∞ = 1 this is a properly normalised.
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Therefore, the (k − j + 1)th order statistic N(j) has probability mass function

P
(
N(j) = n

)
= q−(k

2)(q; q)k gnGj−1,∞,n−j+1Gk−j,−n−2,∞

=
(q; q)k(−c; q)k−2j+2(−1/c; q)2j−k−1

(q; q)j−1(q; q)k−j(−c; q)k−j+2(−1/c; q)j

(−cq1−j ; q)n
(−cqk−j+2; q)n

q(k−j+1)n,

where the second line follows from (2.10). When n is summed over the integers this should
give 1, thus proving the 1ψ1 summation (1.3) for (a, b, z) = (−cq1−j ,−cqk−j+2, qk−j+1),
where c > 0, 0 < q < 1 and j, k are integers such that 1 6 j 6 k. Making the substitution
(c, k) 7→ (−cqj−k−1, k + j − 1) and appealing to analytic continuation, it follows that (1.3)
holds with (a, b, z) = (cq−k, cqj , qk) for complex c, q such that |q| < 1, and positive integers
j, k. Since ψ1 1(cq−k, b; q, qk) is analytic in b for |b| < min{1, |c|} and the sequence b = cqj

for j > 1 has 0 as accumulation point, this establishes (1.3) with (a, z) = (cq−k, qk), where
|b/c| < 1 and |q| < 1. Finally, since ψ1 1(c/z, b; q, z) is analytic in z for |z| < 1 and the
sequence z = qk for k > 1 once again has an accumulation point at 0, this implies (1.3) with
a = c/z. Replacing c 7→ az completes the proof.

3. Generalisations

There are very few summation or transformation formulas for bilateral or unilateral basic
hypergeometric series that include the 1ψ1 summation as a special case. For bilateral series
there only appears to be Chu’s q-analogue of Dougall’s 2H2 sum, given by [13, Theorem 2]

ψ2 2

[
a, b

c, d
; q,

cd

abq

]
=

(cd/bq, bq2/cd, c/a, d/a, b, q; q)∞
(cd/abq, bq/c, bq/d, q/a, c, d; q)∞

(3.1)

+ b
(bq/a, q/c, q/d, q; q)∞

(bq/c, bq/d, q/a, q/b; q)∞
φ2 1

[
bq/c, bq/d

bq/a
; q, q

]
for a, b, c, d ∈ C∗ such that |cd/abq| < 1. Chu’s proof of (3.1) uses Abel’s lemma, Heine’s 2φ1

transformation [20, Equation (III.1)] and the 1ψ1 summation (1.3). The latter is recovered
by taking d = abzq/c (so that |z| < 1) and then letting b tend to 0 (which requires that
|c/az| < 1). By

lim
b→0

ψ2 2

[
a, b

c, abzq/c
; q, z

]
= ψ1 1

[
a

c
; q, z

]
and lim

b→0
b

(c/abz; q)∞
(q/b; q)∞

= 0,

the 1ψ1 summation then follows with b replaced by c. Chu’s identity generalises several
other well-known identities, such as the q-Gauss sum (obtained for c = q or d = q) and the
non-terminating q-Chu–Vandermonde sum (obtained for a = 1). For d = abq2/c the 2φ1

series on the right of (3.1) may be summed by a special case of the q-Gauss sum, resulting
in a ‘balanced’ 2ψ2 summation that appears to be missing from the literature:

ψ2 2

[
a, b

c, abq2/c
; q, q

]
=

q/c

(1− aq/c)(1− bq/c)

(
(a, b; q)∞

(c, abq2/c; q)∞
− ab (q/c, c/abq; q)∞

(q/a, q/b; q)∞

)
.

Two examples of identities for unilateral basic hypergeometric series that generalise the

1ψ1 summation in the form (1.1) are

φ2 1

[
a, b

c
; q, z

]
− (bz, q/bz, c/b, a; q)∞

(z, q/z, a/b, c; q)∞
φ2 1

[
bq/c, b

bq/a
; q,

cq

abz

]
(3.2)

=
(az, q/az, c/a, b; q)∞
(z, cq/abz, b/a, c; q)∞

φ2 1

[
q/b, c/b

aq/b
; q,

q

z

]
,
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for max{|q|, |cq/ab|} < |z| < 1, and

φ3 2

[
a, b, q

c, abzq/c
; q, z

]
− (1− c/abz)(1− c/q)

(1− q/a)(1− c/bq)
φ3 2

[
q2/c, bzq/c, q

q2/a, bq2/c
; q,

c

az

]
(3.3)

=
(az, q/az, c/a, b, bzq/c, q; q)∞

(z, c/az, q/a, c, abzq/c, bq/c; q)∞
,

for |c/a| < |z| < 1. The first of these identities simplifies to the 1ψ1 summation (with b 7→ c)
when b = q and to the q-binomial theorem when a = 1 or b = c. It follows by applying Heine’s
transformation [20, Equation (III.3)] to the last term in Watson’s three-term transformation
formula [20, Equation (III.32)] for 2φ1 series. The second identity, which was first stated
by Andrews in [5, Theorem 6], simplifies to the 1ψ1 summation (again with b 7→ c) in the
b → 0 limit and to the q-Gauss sum when a = 1 or c = q. It follows by specialising c = q
in Gasper and Rahman’s three-term transformation formula [20, Equation (III.33)] for 3φ2

series and by noting that the second 3φ2 series on the right simplifies to a 2φ1 which can be
evaluated by the q-Gauss sum.

There are several further generalisations of the 1ψ1 summation that are not q-hypergeometric
in nature. The simplest example is Vildanov’s identity [39]3

(3.4)

∞∑
n=−∞

(bqn, qm−n/c; qm)∞
(aqn, qm−n/a; qm)∞

zn =
(az, q/az, q, q; q)∞
(z, q/z, a, q/a; q)∞

(zm, qm/zm, b/c; qm)∞
(qm, azm/c, b/azm; qm)∞

,

where m is a positive integer and |b/a| < |zm| < |c/a|. Vildanov’s identity is invariant
under the simultaneous substitution (a, b, c, z) 7→ (qm/a, qm/c, qm/b, 1/z), and for m = 1
is (1.3) with (a, z) 7→ (c, az/c). The identity can be proved by replacing n 7→ nm + k for
0 6 k 6 m − 1 and, for fixed k, carrying out the sum over n by the 1ψ1 summation. The
standard theta function addition formula

m−1∑
k=0

θ(azmqk; qm)

θ(aqk; qm)
zk =

(q; q)2
∞

(qm; qm)2
∞

θ(az; q)θ(zm; qm)

θ(a; q)θ(z; q)

(which may be viewed as a terminating analogue of Kronecker’s identity (1.5)) then yields
the right-hand side of (3.4).

One level up in complexity is a generalisation due to Guo and Schlosser [21], which is
presented below in a somewhat simplified form. For complex a, b, c, z such that |b/ac| <
|z| < 1,

(3.5)
∞∑

n=−∞

1− aznqn

1− azqn
(qzn, b/azn; q)∞
(azn, q/azn; q)∞

(a; q)n
(b; q)n

znn =
1

1− z
(b/a, q; q)∞
(q/a, b; q)∞

,

where zn = zn(a) := z(1 − aczqn)/(1 − azqn). If fn(a, b, c, z; q) denotes the ratio of the
summand on the left and the evaluation on the right, then, since zn+1(a) = zn(aq), it follows
that fn+1(a, b, c, z; q) = fn(aq, bq, c, z; q). This implies that f(a) :=

∑
n fn(a, ab, c, z; q) is

periodic along annuli, i.e., f(a) = f(aq), so that f(a) is an elliptic function in multiplicative
form. The upshot of (3.5) is that this elliptic function is bounded and thus a constant, and
that this constant is equal to 1. If c = 1 then zn = z, and (3.5) simplifies to Ramanujan’s

1ψ1 summation. If c is replaced by −c/a2z2 and then the z → 0 limit is taken (so that
zn → cqn/a), the Guo–Schlosser summation reduces to a limiting case of Bailey’s 6ψ6

summation [20, Equation (II.33)]. Guo and Schlosser prove (3.5) by once again appealing

3When z is an integral power of q the right-hand side of (3.4) should be interpreted in the appropriate
limiting sense. For example, for z = 1 the right hand side is m(b/c, qm; qm)∞/(a/c, b/a; qm)∞.
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to Ismail’s argument; both sides are analytic in b for |b| < 1, and for b = qk+1 the identity
reduces to the a 7→ aq−k case of the unilateral summation obtained by setting b = q in
(3.5). This extension of the q-binomial theorem (obtained when c = 1) is then proved using
inversion techniques.

A final non-hypergeometric generalisation is Schlosser’s noncommutative 1ψ1 summation.
Let A be a unital complex Banach algebra with norm ‖ ·‖, identity 1 and group of invertible
elements G(A). Assume that a, b, q, z ∈ A such that b, q are central elements, a, q, z ∈ G(A),
and

(3.6) max{‖q‖, ‖z‖, ‖bz−1a−1‖} < 1.

Let C := {b, qa−1, qz−1a−1z}, and further assume that the binomials 1 − cqn ∈ G(A) for
c ∈ C and nonnegative integer n. (By (3.6), the binomials 1 − qn, 1 − zqn and bz−1a−1qn

are also invertible, with inverses given by Neumann series.) For, a1, . . . , ar, b1, . . . , br ∈ A
such that 1− bjqn ∈ G(A), define⌊

a1, . . . , ar
b1, . . . , br

; q

⌉
∞

:= γ1γ2γ3 · · · and

⌈
a1, . . . , ar
b1, . . . , br

; q

⌋
∞

:= · · · γ3γ2γ1,

where

γi := (1− b1qi−1)−1(1− a1q
i−1) · · · (1− brqi−1)−1(1− arqi−1).

Then [36, Equation (3.3)]4

1 +

∞∑
n=1

n∏
i=1

(
(1− bqn−i)−1(1− aqn−i)z

)
+

∞∑
n=1

n∏
i=1

(
z−1(a− qn−i+1)−1(b− qn−i+1)

)
=

⌊
q, bz−1a−1z

b, bz−1a−1
; q

⌉
∞

⌈
qz−1a−1

qz−1a−1z
; q

⌋
∞

⌊
az

z
; q

⌉
∞
.

When A = C, this is exactly Ramanujan’s 1ψ1 summation. Schlosser proves his summation
by modifying the Andrews–Askey proof [6] of (1.3) to the setting of Banach algebras. In
particular, he shows that the left-hand side satisfies the three functional equations

F (a, b, z; q) = F (aq, bq, z; q)(1− b)−1(1− a)z,

z F (a, b, z; q) = az F (a, b, zq; q) + F (aq, b, z; q)(1− a)z,

F (a, bq, z; q) = b F (a, bq, zq; q) + (1− b)F (a, b, z; q),

which may be combined to yield the following analogue of (2.3):

F (a, b, z; q) =

⌊
bz−1a−1z, 0

bz−1a−1, b
; q

⌉
∞
F (a, 0, z; q).

By mimicking the steps taken on page 3, the evaluation of F (a, 0, z; q) then follows from the
noncommutative q-binomial theorem [37, Theorem 7.2]

F (a, q, z; q) =

⌊
az

z
; q

⌉
∞
.

Acknowledgements. I am grateful for helpful discussions with Bruce Berndt, Sarat Moka
and Michael Schlosser.

4The conditions that q ∈ G(A) and ‖q‖ < 1 are inadvertently missing in [36].
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R. Acad. Sci. Paris, T. XVII, (1843), 523; reprinted in Œuvres de Cauchy, Ser. 1, Vol. 2, pp. 42–50,

Gauthier-Villars, Paris, 1893.

[9] S. H. Chan, A short proof of Ramanujan’s famous 1ψ1 summation formula, J. Approx. Theory 132
(2005), 149–153.

[10] S. H. L. Chen, W. Y. C. Chen, A. M. Fu and W. J. T. Zang, The algorithm Z and Ramanujan’s 1ψ1

summation, Ramanujan J. 25 (2011), 37–47.
[11] W. Y. C. Chen and A. M. Fu, Semi-finite forms of bilateral basic hypergeometric series, Proc. Amer.

Math. Soc. 134 (2006), 1719–1725.

[12] W. Chu, Abel’s lemma on summation by parts and Ramanujan’s 1ψ1-series identity, Aequationes Math.
72 (2006), 172–176.

[13] W. Chu, q-Extensions of Dougall’s bilateral 2H2-series, Ramanujan J. 25 (2011) 121–139.

[14] W. Chu and L. Di Claudio, Classical Partition Identities and Basic Hypergeometric Series, Quaderno
6, Edizioni del Grifo, 2004.

[15] W. Chu and X. Wang, Proofs of Ramanujan’s 1ψ1-summation formula, Ars Combin. 97A (2010),

65–79.
[16] S. Corteel, Particle seas and basic hypergeometric series, Adv. Appl. Math. 31 (2003), 199–214.

[17] S. Corteel and J. Lovejoy, Frobenius partitions and the combinatorics of Ramanujan’s 1ψ1 summation,

J. Combin. Theory Ser. A 97 (2002), 177–183.
[18] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2003), 1623–1635.

[19] N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., Providence, 1988.
[20] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics

and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.

[21] V. J. Guo and M. J. Schlosser, Curious extensions of Ramanujan’s 1ψ1 summation formula, J. Math.
Anal. Appl. 334 (2007), 393–403.
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