
Solutions to exercises 1–9

1. Dominance order. Recall that the dominance order (>) on the set {λ ` n} of partitions
of size n is defined by λ > µ if λ1 + · · ·+λi > µ1 + · · ·+µi for all i > 1. This is a total order
for n 6 5 and a partial order for all n > 6. Show that λ > µ if and only if λ′ 6 µ′.

Solution. Proceeding by contradiction, assume that λ > µ but λ′ 66 µ′. Then there exists a
smallest positive integer i such that λ′1 + · · ·+λ′i > µ′1 + · · ·+µ′i. To pass from this inequality
for the area of the first i columns of λ and µ to an equality for the rows, notice that since
|λ| = |µ| we also have

(1) λ′i+1 + λ′i+2 + · · · < µ′i+1 + µ′i+2 + · · · .
As is easily seen from the figure

λ =
λ′i

λ′i+1+λ
′
i+2+···

µ =
µ′i

µ′i+1+µ
′
i+2+···

it follows that

λ′i+1 + λ′i+2 + · · · =
λ′i∑
k=1

(λk − i) and µ′i+1 + µ′i+2 + · · · =
µ′i∑
k=1

(µk − i).

Hence (1) can also be expressed as

λ′i∑
k=1

(λk − i) <
µ′i∑
k=1

(µk − i).

The minimality of i implies that λ′i > µ′i, so that

µ′i∑
k=1

(λk − i) <
λ′i∑
k=1

(λk − i) <
µ′i∑
k=1

(µk − i).

Including the i × µ′i rectangle on both sides, we obtain the following inequality for the area
of the first µ′i rows of λ and µ

µ′i∑
k=1

λk <

µ′i∑
k=1

µk.

This contradicts the fact that λ > µ.
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2. The centralizer of the symmetric group. Show that

zλ :=
∏
i>1

imi mi! = |Zw|,

where mi = mi(λ) is the multiplicity of i (the number of parts equal to i) in λ, w ∈ Sn has
cycle type λ (i.e., w has mi cycles of length i), and Zw is the centralizer of w.

Solution. Conjugation of elements of Sn does not change their cycle type (the conjugacy
classes of Sn are formed by the permutations of the same cycle type). Specifically, if

w = (c1, . . . , ck1)(ck1+1, . . . , ck2) . . . (ckr−1+1, . . . , ckr)

(where kr := n) then

πwπ−1 = (πc1 , . . . , πck1 )(πck1+1
, . . . , πck2 ) . . . (πckr−1+1

, . . . , πckr ).

For example, if w = (13)(264)(5) ∈ S6 (in one-line notation w = (361254)) and π =
(145)(263) (in one-line notation π = (462513)), then π−1 = (154)(236) (in one-line nota-
tion π−1 = (536142)) and thus

πwπ−1 = (π1, π3)(π2, π6, π4)(π5)

= (42)(635)(1)

= (1)(24)(356)

(in one-line notation πwπ−1 = (415263)). Pictoriallyc
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For π to be in Zw we require πwπ−1 = w. In other words, π can permute the cycles (of w)
of fixed length and/or cycle each cycle as in (abc . . . z) 7→ (rs . . . zab . . . q). If there are mi

cycles of length i in w it thus follows that

|Zw| =
∏
i>1

imimi!.
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3. Gaussian polynomials. Let n,m be nonnegative integers. Then the Gaussian polyno-
mials or q-binomial coefficients are defined as

(2)

[
n+m

m

]
=

∑
λ⊆(mn)

q|λ|.

Here the sum is over all partitions λ that fit in a rectangle of height n and width m, i.e.,
partitions λ such that λ1 6 m and l(λ) 6 n.

(a) Show that
(i)
[
n
0

]
= 1 (initial condition);

(ii)
[
n+m
m

]
=
[
n+m
n

]
(symmetry);

(iii)
[
n+m
m

]
=
[
n+m−1

m

]
+ qn

[
n+m−1
m−1

]
= qm

[
n+m−1

m

]
+
[
n+m−1
m−1

]
(q-Pascal identities).

(b) Show that

(3)

[
n+m

m

]
=

m∑
k=0

qk
[
n+ k − 1

k

]
.

Remark. One similarly shows the q-Chu–Vandermonde or Durfee rectangle identity[
n+m

m

]
=

n∑
`=0

q`(`+k)
[
m− k
`

][
n+ k

`+ k

]
,

where k is an arbitrary integer, and k = 0 corresponds to the Durfee square identity.
(The Durfee square of a partition is the largest square contained in its diagram.)

(c) Use (a) to construct the first six rows of the q-Pascal triangle and check that
[
5
2

]
computed this way matches the definition (2).

(d) Let (a; q)n := (1−a)(1−a q) · · · (1−a qn−1) denote a q-shifted factorial or q-Pochhammer
symbol. Use (a) to show that[

n

m

]
=

(qn−m+1; q)m
(q; q)m

.

(e) Let [n] := (1− qn)/(1− q) = 1 + q + · · ·+ qn−1 and [n]! := [1][2] . . . [n]. Show that[
n+m

m

]
=

[n+m]!

[n]! [m]!
and lim

q→1

[
n

k

]
=

(
n

k

)
.

Solution.

(a) (i) The only partition contained in a rectangle of zero width is the empty partition 0.
(ii) Replace the summation index λ ∈ (nm) by λ′ ∈ (mn) and use |λ| = |λ′|.
(iii) For the first recursion, we dissect the sum (2) according to the length of λ. The
term

[
n+m−1

m

]
corresponds to the generating function of partitions of length at most

n − 1 (those partitions fit in an (n − 1) × m rectangle) and the term qn
[
n+m−1
m−1

]
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corresponds to the generating function of partitions of length exactly n. Since the
diagram of such partitions has a first column of height n (contributing qn to the
generating function), after stripping off this column we are left with a partition that
fits in an n× (m−1) rectangle, which contributes

[
n+m−1
m−1

]
to the generating function.

The second recursion follows from (ii) or by carrying out a dissection according to
λ1 < m and λ1 = m.

(b) Note that part (iii) of (a) holds for all integers m if we define
[
n+m
m

]
:= 0 for m a

negative integer. To obtain (3) we may either iterate the second recursion in (iii),
which implies that[

n+m

m

]
=

[
n+m−K − 1

m−K − 1

]
+

m∑
k=m−K

qk
[
n+ k − 1

k

]
for all nonnegative integers K. (For K = −1 the above is also true but tautological.)
Choosing K = m yields (3). Equivalently, conditioning on the value of λ1 we may
write the sum in (2) as

m∑
k=0

∑
λ⊆(mn)
λ1=k

q|λ| =
m∑
k=0

qk
∑

λ⊆(kn−1)

q|λ| =
m∑
k=0

qk
[
n+ k − 1

k

]
.

(For the Durfee rectangle identity fix k and similarly condition on the largest rectangle
((`+ k)`) ⊆ (mn) that fits in λ.)

(c) Use part (iii) of (a) to construct rows n+m = 0, 1, . . . , 5. Let us label the left-pointing
arrow by the factor qn and omit the factor 1 for the arrows going to the right:

1

1 1

1 1 + q 1

1 1 + q + q2 . . . 1

1
1 + q

+ q2 + q3
1 + q + 2 q2

+ q3 + q4
. . . 1

1
1 + q + q2

+ q3 + q4

1 + q + 2 q2

+2 q3 + 2 q4

+ q5 + q6
. . . . . . 1

q0

q0 q1

q0 q1 q2

q0 q1 q2

q3

q0 q1 q2
q3 q4

(d) It suffices to check that the right-hand side with n 7→ n+m obeys the initial condition
(i) and the q-Pascal recurrence (iii) from (a).

(e) This follows in a straightforward manner from (d).
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4. Plethystic notation. The aim of this question is to prove the q-binomial theorem

(4)
∑
k>0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

using symmetric functions and plethystic notation. There are many alternative proofs, some
of which are simpler, but hopefully this demonstrates the power of plethystic manipulations.

(a) To get a better feel for (4) show that, for n a nonnegative integer, it implies
(i) the q-binomial expansion

n∑
k=0

q(
k
2)
[
n

k

]
wn−kzk =

n−1∏
i=0

(w + qiz);

(ii)

1 +
∑
k>1

[
n+ k − 1

k

]
zk =

1

(z; q)n
.

Remark. One can use (i) to prove Jacobi’s triple product identity
∞∑

k=−∞

(−z)kq(
k
2) = (z; q)∞(q/z; q)∞(q; q)∞

by replacing n 7→ 2n followed by k 7→ k + n and using

(q−nz; q)2n = q−(n+1
2 )(−z)n(z; q)n(q/z; q)n.

The triple product identity plays a key role in the theory of elliptic functions, and is
the simplest example of a denominator identity for affine Kac–Moody Lie algebras,

corresponding to A
(1)
1 (affine sl2).

(b) To prepare for the proof of (4) use plethystic notation to show that the generating
function σz[X] :=

∑
k>0 hk[X] zk satisfies

(i) σz[X + Y ] = σz[X]σz[Y ] and thus hk[X + Y ] =
∑k

i=0 hi[X]hk−i[Y ];

(ii) σz[1] = 1
1−z so hn[1] = 1;

(iii) σz[
a

1−q ] = 1
(az;q)∞

.

(c) Now prove (4) by showing that both sides are equal to σz[
1−a
1−q ].

Hint. For the left-hand side of (4) argue that it suffices to check equality with σz[
1−a
1−q ]

for a number of suitably chosen values of a and use part (b) to manipulate the alphabet
on which hr acts to recognise (3).
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Solution.

(a) (i) Replace (a, z) 7→ (q−n, zqn/w) where n is a nonnegative integer. Multiplying both
sides of the resulting identity by wn, the result follows since

(q−n; q)k
(q; q)k

= q(
k
2)+nk

[
n

k

]
.

(ii) Replace a 7→ qn and use that (qn; q)k/(q; q)k is 1 for k = 0 and
[
k+n−1

k

]
for k > 0.

(b) (i) Since log σz[X] = ψz[X] :=
∑

r>1
pr[X]
r

zr we have

σz[X + Y ] = eψz [X+Y ] = eψz [X]+ψz [Y ] = σz[X]σz[Y ].

Equating coefficients of zn the convolution formula for hk follows.
(ii) Note that for X =

∑
i>1 xi,

σz[X] =
∏
i>1

1

1− zxi
.

Hence, if X = x is a single-letter alphabet σz[x] = 1/(1− zx). The special case were
this letter is 1 gives (ii).
(iii) Recall that 1/(1− q) = 1 + q + · · · . Hence

σz

[ a

1− q

]
=
∏
i>1

1

1− azqi−1
=

1

(az; q)∞
.

(c) To prove the q-binomial theorem (4) we first note that, since σz[X−Y ] = σz[X]/σz[Y ],

(az; q)∞
(z; q)∞

= σz

[ 1

1− q
− a

1− q

]
= σz

[1− a
1− q

]
.

The q-binomial theorem is thus equivalent to∑
k>0

(a; q)k
(q; q)k

zk = σz

[1− a
1− q

]
.

Equating coefficients of zk yields

(a; q)k
(q; q)k

= hk

[1− a
1− q

]
,

where k is an arbitrary nonnegative integer. Since both sides are polynomials in a of
degree k, it suffices to prove the above for a = qn, where n is an arbitrary nonnegative
integer. That is, we must prove

(qn; q)k
(q; q)k

= hk

[1− qn

1− q

]
= hk(1, q, . . . , q

n).
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For n = 0 this is obvious so we may assume that n > 1 in the remainder. Then

hk

[
1− qn

1− q

]
= hk

[
1 + q

1− qn−1

1− q

]
=

k∑
i=0

qihi

[
1− qn−1

1− q

]
=

[
n+ k − 1

k

]
=

(qn; q)k
(q; q)k

.

Here we recognised the sum (3) which, together with the initial condition at k = 0,
characterises the Gaussian polynomials.
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5. The Hopf-algebra structure of Λ. In this exercise we examine the algebraic structure
of the ring of symmetric functions. All tensor products are over K := Z.

(a) Show that Λ is a commutative (unital associative) K-algebra with the usual product
m : Λ⊗Λ −→ Λ, f [X] g[Y ] 7−→ f [X] g[X] in plethystic notation, and unit e : K −→ Λ
defined by 1 7−→ 1[X] ≡ 1 extended K-linearly.
This structure can be nicely captured using string diagrams. Think of ‘time’ as
increasing upwards, and depict (note that K is not drawn)

m : e : id : γ :

with γ : Λ⊗Λ −→ Λ⊗Λ the permutation f [X] g[Y ] 7−→ f [Y ] g[X] = g[X] f [Y ]. The
axioms of a (unital associative) algebra and commutativity then take the form

(5) = = = , = .

For example, the left-most diagram encodes Λ ∼= Λ⊗K id⊗ e−−−→ Λ⊗ Λ
m−→ Λ. Such an

equality of string diagrams is often alternatively expressed as a commutative diagram.
(b) Show that Λ also is a cocommutative (counital coassociative) coalgebra, with co-

product µ : Λ −→ Λ ⊗ Λ given by f [X] 7−→ f [X + Y ] and counit ε : Λ −→ K,
f [X] 7−→ f [0]. Here the axioms are given by flipping all diagrams in (5) upside down
and interpreting

µ : , ε : .

Do this using plethystic notation as well as by explicit computations for the power-
sum basis pλ.
Remark. Elements f ∈ Λ whose coproduct satisfies µ(f) = f ⊗ 1 + 1⊗ f , such as the
power sums pr, are called primitive.

(c) Show that the preceding structures are compatible, making Λ a bialgebra: µ and ε
are algebra homomorphisms (equivalently, m and e are coalgebra morphisms),

= , = , = .

(d) Show that the bialgebra-structure of Λ extends to that of a Hopf algebra, with an-
tipode S : Λ −→ Λ, f [X] 7−→ f [−X] extended as an (anti)homomorphism. Here the
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latter, depicted, say, as

S : ∼ , must obey ∼ = = ∼ .

Again do this using plethystic notation as well as by explicit calculation on the power-
sum basis pλ.
Remark. Viewed as equipped with this structure, Λ is commonly denoted by Symm.
Remark. Quantum integrability is related to quantum groups, which are sometimes
defined as Hopf algebras that are quasitriangular, i.e., cocommutative up to conju-
gation by an invertible element of the tensor product of the Hopf algebra with itself,
called the R-matrix, that behaves in a certain nice way under µ ⊗ id and id ⊗ µ to
guarantee it obeys the Yang–Baxter equation. Cocommutative Hopf algebras, such
as Λ, are either viewed as boring examples (R = 1⊗1) or excluded from the definition
of a quantum group.

(e) Show that Λ is self dual with respect to the scalar product on Λ ⊗ Λ given by
〈f1[X] g1[Y ], f2[X] g2[Y ]〉 := 〈f1[X], f2[X]〉〈g1[Y ], g2[Y ]〉 where the right-hand side
features the Hall scalar product on Λ. That is, the algebra and coalgebra struc-
ture of Λ are dual in the sense that 〈f [X + Y ], g[X]h[Y ]〉 = 〈f [X], g[X]h[X]〉 and
〈f [0], n〉 = 〈f [X], n 1[X]〉, where the scalar product on K is given by multiplication.

Solution.

(a) These are just the properties of the usual product.
(b) For the counit,

(ε⊗ id) f [X + Y ] = f [0 + Y ] = f [Y ] ≡ f [X] = f [X + 0] = (id⊗ ε),

where X and Y are arbitrary alphabets.
Coassociativity is clear since f [X + (Y + Z)] = f [(X + Y ) + Z].
Cocommutativity is clear since f [X + Y ] = f [Y +X].
On the power-sum basis the coproduct acts by sending pλ[X] to

pλ[X + Y ] =
∏
i>1

pλi [X + Y ] =
∏
i>1

(pλi [X] + pλi [Y ])

=
∑

ν(1),ν(2)

ν(1)∪ν(2)=λ

pν(1) [X] pν(2) [Y ],

from which cocommutativity follows. Alternatively, from the lectures,∑
λ

pλ[X]

zλ
= σ1[X],
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so that ∑
λ

pλ[X + Y ]

zλ
= σ1[X + Y ] = σ1[X]σ1[Y ],

from which cocommutativity again follows.
For the counit,

pλ[0] =
∏
i

pλi [0] = δl(λ),0 = δλ,0

so that ε⊗ id forces ν(1) = 0. Hence ν(2) = λ. The second half follows by cocommu-
tativity.
For coassociativity, note that the set of all triples of partitions ν(1), ν(2,1), ν(2,2) such
that ν(1)∪ (ν(2,1)∪ν(2,2)) = λ is equivalent to the set of all triples ν(1,1), ν(1,2), ν(2) such
that (ν(1,1) ∪ ν(1,2)) ∪ ν(2) = λ.
For l(λ) = 1, λ = (r), say, the coproduct of pr is pr[X + Y ] = pr[X] + pr[Y ], so that
µ(pr) = pr ⊗ 1 + 1 ⊗ pr. The power sums pr are thus primitive as per the above
remark.

(c) Clearly

f [X] g[Y ]
µ7−→ f [X] g[X]

ε7−→ f [0] g[0] = (ε⊗ ε)(f [X] g[Y ]).

Next, µ(1) = 1 ⊗ 1 as λ = 0 implies that ν(1) = ν(2) = 0. Alternatively, 1[X + Y ] ≡
1[X] 1[Y ] since p0 = 1 is the constant function.
We check the last axiom on the power-sum basis of Λ. Let us first consider primitive
elements. The string diagram on the left gives the coproduct of pr ps = p(r)∪(s). This
matches the result of the diagram on the right:

pr ⊗ ps
µ⊗µ7−→ (pr ⊗ 1 + 1⊗ pr)⊗ (ps ⊗ 1 + 1⊗ ps)

= pr ⊗ 1⊗ ps ⊗ 1 + pr ⊗ 1⊗ 1⊗ ps + 1⊗ pr ⊗ ps ⊗ 1 + 1⊗ pr ⊗ 1⊗ ps
id⊗γ⊗id7−→ pr ⊗ ps ⊗ 1⊗ 1 + pr ⊗ 1⊗ 1⊗ ps + 1⊗ ps ⊗ pr ⊗ 1 + 1⊗ 1⊗ pr ⊗ ps
m⊗m7−→ pr ps ⊗ 1 + pr ⊗ ps + ps ⊗ pr + 1⊗ pr ps

=
∑

ν(1)∪ν(2)=λ

pν(1)⊗ pν(2) , λ := (r) ∪ (s).

In general let λ(1) and λ(2) be two partitions. The string diagram on the left gives

pλ(1) [X] pλ(2) [Y ]
m7−→ pλ(1) [X] pλ(2) [X] = pλ(1)∪λ(2) [X]

µ7−→ pλ(1)∪λ(2) [X + Y ].
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This matches the result from the diagram on the right:

pλ(1) [X] pλ(2) [Y ]
µ⊗µ7−→ pλ(1) [X +X ′] pλ(2) [Y + Y ′]

=
∑

ν(i,1)∪ν(i,2)=λ(i)
pν(1,1) [X] pν(1,2) [X

′] pν(2,1) [Y ] pν(2,2) [Y
′]

id⊗γ⊗id7−→
∑

ν(i,1)∪ν(i,2)=λ(i)
pν(1,1) [X] pν(2,1) [X

′] pν(1,2) [Y ] pν(2,2) [Y
′]

m⊗m7−→
∑

ν(i,1)∪ν(i,2)=λ(i)
pν(1,1) [X] pν(2,1) [X] pν(1,2) [Y ] pν(2,2) [Y ]

=
∑

ν(1)∪ν(2)=λ

pν(1) [X] pν(2) [Y ]
ν(i) := ν(1,i) ∪ ν(2,i)

λ := λ(1) ∪ λ(2),

where the final equality uses that the set of all subsets ν(i,1) (which determines ν(i,2))
of λi (viewed as a list, not a diagram) for i = 1, 2 separately is the same as the set of
all subsets ν(1) of λ = λ(1) ∪ λ(2).

(d) By (co)commutativity it suffices to check the first equality:

f [X]
µ7−→ f [X + Y ]

S⊗id7−→ f [−X + Y ]
m7−→ f [−X +X] = f [0] = f [0] 1[X].

Equivalently, on power sums,

S(pλ) = S
(∏

i

pλi

)
=
∏
i

S(pλi) = (−1)l(λ) pλ,

where the ordering is irrelevant by commutativity. Thus

pλ
µ7−→

∑
ν(1)∪ν(2)=λ

pν(1) ⊗ pν(2)

S⊗id7−→
∑

ν(1)∪ν(2)=λ

(−1)l(ν
(1)) pν(1) ⊗ pν(2)

m7−→
∑

ν(1)∪ν(2)=λ

(−1)l(ν
(1)) pλ = δλ,0 .

Here the last equality uses that there are
(
l(λ)
k

)
possible ν(1) with l(ν(1)) = k, whence

∑
ν(1)∪ν(2)=λ

(−1)l(ν
(1)) =

l(λ)∑
k=0

(
l(λ)

k

)
(−1)k =

(
1 + (−1)

)l(λ)
= δl(λ),0 = δλ,0 .
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(e) Again compute with power sums: 〈pλ[0], 1〉 = pλ[0] = δλ,0 = 〈pλ[X], 1[X]〉, while

〈pλ[X + Y ], pµ(1) [X] pµ(2) [Y ]〉 =
∑

ν(1)∪ν(2)=λ

〈pν(1) [X] pν(2) [Y ], pµ(1) [X] pµ(2) [Y ]〉

=
∑

ν(1)∪ν(2)=λ

〈pν(1) [X], pµ(1) [X]〉〈 pν(2) [Y ], pµ(2) [Y ]〉

=
∑

ν(1)∪ν(2)=λ

z−1
µ(1)

δν(1), µ(1) z
−1
µ(2)

δν(2), µ(2)

= z−1λ δλ,µ = 〈pλ[X], pµ[X]〉, µ := µ(1) ∪ µ(2).
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6. Principal specialisation. Recall that the hook-length of a square s = (i, j) ∈ λ is given
by h(s) = λi + λj − i− j + 1. Show that

(6)
∏

h∈H (λ)

(1− qh) =
n∏
i=1

(qn−i+1; q)λi
∏

16i<j6n

1− qj−i

1− qλi−λj+j−i
,

where H (λ) denotes the multiset of hook-lengths of λ, n is any integer such that n > l(λ)
and (a; q)m = (1− a)(1− aq) · · · (1− aqm−1). Use (6) to prove that

(7) sλ

[
1− a
1− q

]
= qn(λ)

∏
(i,j)∈λ(1− aqj−i)∏
h∈H (λ)(1− qh)

= qn(λ)
∏

i>1(aq
1−i; q)λi∏

h∈H (λ)(1− qh)
,

where n(λ) :=
∑

i>1(i − 1)λi. For a = qn and l(λ) 6 n this is known as the principal
specialisation formula for Schur functions.

Solution. Let l := l(λ). Then

∏
16i<j6n

1− qj−i

1− qλi−λj+j−i
=

∏
16i<j6l

1− qj−i

1− qλi−λj+j−i
l∏

i=1

n∏
j=l+1

1− qj−i

1− qλi+j−i

=
∏

16i<j6l

1− qj−i

1− qλi−λj+j−i
l∏

i=1

(ql−i+1; q)n−l
(qλi+l−i+1; q)n−l

.

By (aqm; q)k = (a; q)k(aq
k; q)m/(a; q)m,

(ql−i+1; q)n−l
(qλi+l−i+1; q)n−l

=
(ql−i+1; q)λi
(qn−i+1; q)λi

,

which shows that the right-hand side of (6) is independent of n (as long as n > l = l(λ)).
Define λl+1 := 0 and partition the diagram of the partition λ into

(
l+1
2

)
rectangles of height

one as follows

i=1

i=2

i=l

j=l+1 j=2j=3

λ1−λ2
λ2−λ3

λl−λl+1

where rows are labelled by i (1 6 i 6 ` from top and bottom) and the columns by j
(i < j 6 `+ 1 from right to left). The rectangle labelled (i, j) has width λj−1 − λj,

j−1∑
k=i+1

(λk−1 − λk) = λi − λj−1
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squares of in the same row to its right and j − i − 1 rectangles in the same column to the
south. Therefore,

∏
h∈H (λ)

(1− qh) =
∏

16i<j6l+1

(q1+(λi−λj−1)+(j−i−1); q)λj−1−λj

=
∏

16i<j6l+1

(qj−i; q)λi−λj
(qj−i; q)λi−λj−1

=

∏
16i<j6l+1(q

j−i; q)λi−λj∏
16i<j6l(q

j−i+1; q)λi−λj

=
l∏

i=1

(ql−i+1; q)λi
∏

16i<j6l

1− qj−i

1− qj−i+λi−λj
.

Both sides of the specialisation formula (7) are polynomials in a of degree |λ|. Hence
it suffices to show the identity for a = qn with n an arbitrary nonnegative integer. But
(1− qn)/(1− q) = 1 + q+ · · ·+ qn−1 so that we only need to prove the principal specialisation
formula. If n > l(λ) then both sides trivially vanish, so that without loss of generality we
may assume that l(λ) 6 n. Then, by the definition of the Schur function

sλ

[
1− qn

1− q

]
=

det16i,j6n(q(n−i)(λj+n−j))∏
16i<j6n(qn−i − qn−j)

=
det16i,j6n(yn−ij )∏

16i<j6n(qn−i − qn−j)
(yj := qλj+n−j)

=
∏

16i<j6n

qλi+n−i − qλj+n−j

qn−i − qn−j

= qn(λ)
∏

16i<j6n

1− qλi−λj+j−i

1− qj−i
.

By (6) we arrive at (7) with a = qn.
An alternative proof uses the Jacobi–Trudi identity. Since

hr

[
1− a
1− q

]
=

(a; q)r
(q; q)r
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(with the standard convention that 1/(q; q)r = (qr; q)∞/(q; q)∞ which vanishes for r a negative
integer) we have

sλ

[
1− a
1− q

]
= det

16i,j6l

(
hλi+j−i

[
1− a
1− q

])
= det

16i,j6l

(
(a; q)λi+j−i
(q; q)λi+j−i

)
=

l∏
i=1

(a; q)λi+1−i

(q; q)λi+l−i
det

16i,j6l

(
(aqλi+1−i; q)j−1(q

λi+j−i+1; q)l−j

)
.

It is not hard to deform the Vandermonde determinant to

det
16i,j6n

( j−1∏
k=1

(1− xiak)
n∏

k=j+1

(1− xibk)
)

=
∏

16i<j6n

(ai − bj)(xi − xj).

(Both sides are polynomials in each of the variables of degree n− 1 and vanish when xi = xj
or ai = bj for some 1 6 i < j 6 n. Hence they are the same up to a constant, which is readily
seen to be 1 by comparing coefficients of (bnx1)

n−1(bn−1x2)
n−2 · · · (b2xn−1)1.) Replacing n by

l and choosing xi = qλi+1−i, ak = aqk−1 and bk = qk−1 yields

det
16i,j6l

(
(aqλi+1−i; q)j−1(q

λi+j−i+1; q)l−j

)
=

∏
16i<j6l

(aqi−1 − qj−1)(qλi+1−i − qλj+1−j)

and thus

sλ

[
1− a
1− q

]
=

l∏
i=1

(a; q)λi+1−i

(q; q)λi+l−i

∏
16i<j6l

(aqi−1 − qj−1)(qλi+1−i − qλj+1−j)

= qn(λ)
l∏

i=1

(a; q)λi+1−i

(q; q)λi+l−i

∏
16i<j6l

(1− aqi−j)(1− qλi−λj+j−i).

Since ∏
16i<j6l

(1− aqi−j)(1− qj−i) =
l∏

i=1

(aq1−i; q)i−1(q; q)l−i

and

(aq1−i; q)i−1(a; q)λi+1−i = (aq1−i; q)λi ,
(q; q)l−i

(q; q)λi+l−i
=

1

(ql−i+1; q)λi
,

this is also

sλ

[
1− a
1− q

]
= qn(λ)

l∏
i=1

(aq1−i; q)λi
(ql−i+1; q)λi

∏
16i<j6l

1− qλi−λj+j−i

1− qj−i

= qn(λ)
∏

(i,j)∈λ(1− aqj−i)∏
h∈H (λ)(1− qh)

.
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7. Inverse branching rule. According to the branching rule for Schur functions,

(8) sλ[X + 1] =
∑
µ≺λ

sµ[X].

Prove the combinatorial identity

(9)
∑
µ′≺λ′
µ�ν

(−1)|λ/µ| = δλν ,

and use this to show that

sλ[X − 1] =
∑
µ′≺λ′

(−1)|λ/µ|sµ[X].

For example

s(3,1)[X − 1] = s(3,1)[X]− s(3)[X]− s(2,1)[X] + s(2)[X].

Solution. It is clear that both sides of (9) vanish unless ν ⊆ λ and that the identity trivially
holds for ν = λ. We may thus assume in the remainder that ν ⊂ λ (strict inclusion).

Since λ/µ is a vertical strip, there is a smallest admissible µ, say µmin, given by µ′min =
(λ′2, λ

′
3, . . . ). Any µ such that µmin ⊆ µ ⊆ λ gives a vertical strip λ − µ. For example, if

λ = (8, 8, 5, 3, 2, 2, 2, 1, 1) then λ′ = (9, 7, 4, 3, 3, 2, 2, 2) so that µ′min = (7, 4, 3, 3, 2, 2, 2) and
hence µmin = (7, 7, 4, 2, 1, 1, 1).

Since µ/ν is a horizontal strip there is a largest possible µ, say µmax, given by µmax =
(λ1, ν1, ν2, . . . ). Any µ such that ν ⊆ µ ⊆ µmax gives a horizontal strip µ/ν. For example, if
ν = (7, 4, 3, 2, 1, 1) and λ as above then µmax = (8, 7, 4, 3, 2, 1, 1).

From the above it follows that we must prove that∑
µmin⊆µ⊆µmax

(−z)|µ/µmin|

vanishes for all ν ⊂ λ when z = 1. If µmin 6⊆ µmax then the sum is empty. This happens
when any of the parts of ν are less than that of νmin =

(
(µmin)2, (µmin)3, . . . ). For λ as above

νmin = (7, 4, 2, 1, 1, 1). For ν such that νmin ⊆ ν ⊂ λ it follows that µmax − µmin has at most
one box in each row and column, and has et least one box. Thus∑

µmin⊆µ⊆µmax

(−z)|µ/µmin| = (1− z)|µmax/µmin|,

which has the desired vanishing property.
For λ and ν as in the example the set of admissible partitions µ is{
(7, 7, 4, 2, 1, 1, 1), (8, 7, 4, 2, 1, 1, 1), (7, 7, 4, 2, 2, 1, 1), (8, 7, 4, 2, 2, 1, 1),

(7, 7, 4, 3, 1, 1, 1), (8, 7, 4, 3, 1, 1, 1), (7, 7, 4, 3, 2, 1, 1), (8, 7, 4, 3, 2, 1, 1)
}

and if we change ν to νmin then this reduces to{
µmin, µmax} = {(7, 7, 4, 2, 1, 1, 1), (8, 7, 4, 2, 1, 1, 1)

}
.



17

Now

sλ[X − 1] =
∑
ν

sν [X − 1]δλν

=
∑
ν

sν [X − 1]
∑
µ′≺λ′
µ�ν

(−1)|λ/µ|

=
∑
µ′≺λ′

(−1)|λ/µ|
∑
ν≺µ

sν [X − 1]

=
∑
µ′≺λ′

(−1)|λ/µ|sµ[X],

where the last equality follows from the branching rule (8).
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8. Kostant’s multiplicity formula. Kostant’s formula is an explicit (computationally
not very efficient; Freudenthal’s recursion formula is much more practical) expression for the
weight multiplicities of irreducible representations of semi-simple Lie algebras, expressing the
multiplicities as an alternating sum over what is known as the ‘Kostant partition function’.
In this question we look at a combinatorial analogue of this formula in the case of gln.
Recall that the Kostka number Kλα counts the number of semistandard Young tableaux of
shape λ and weight α, i.e., sλ =

∑
µKλµmµ.

(a) Show that hµ =
∑

λKλµsλ and thus hλ =
∑

µ Pλµmµ, where Pλµ :=
∑

ωKωλKωµ will
play the role of Kostant partition function.

(b) Using the RSK correspondence it may be shown that Pαβ (for α and β (weak) com-
positions) counts the number of matrices with nonnegative integer entries such that
the ith row-sum is βi and the jth column-sum is αj.
Count P(2,1),(1,1,1) by listing all pairs of semistandard tableaux contributing to the sum
and by listing the relevant integer matrices.

(c) Use the Jacobi–Trudi formula to show that for µ a partition of length n,∑
w∈Sn

sgn(w)Kλ,w(µ+δ)−δ = δλµ,

where δ := (n− 1, . . . , 1, 0).
(d) For λ a partition of length n, prove the Kostant multiplicity formula

Kλµ =
∑
w∈Sn

sgn(w)Pw(λ+δ)−δ,µ

and use it to compute K(2,1),(1,1,1).

Solution.

(a) By sλ =
∑

µKλµmµ and the fact that {mλ} and {hµ} are dual bases of Λ, 〈sλ, hµ〉 =

Kλµ. Since the Schur basis of Λ is self-dual this implies that hµ =
∑

λKλµsµ.
(b) The relevant pairs of tableaux are

1 1 2 1 2 3 1 1
2

1 2
3

1 1
2

1 3
2 .

The corresponding three 3× 2 matrices are given by1 0
1 0
0 1

 1 0
0 1
1 0

 0 1
1 0
1 0

 .
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(c) According to the Jacobi–Trudi formula, for λ a partition such that l(λ) = n,

sλ = det
16i,j6n

(
hλi−i+j

)
=
∑
w∈Sn

sgn(w)hw(λ+δ)−δ

=
∑
w∈Sn

sgn(w)
∑
ν

Kν,w(λi+δ)−δsν .

Equating coefficients of sλ the result follows.
(d) We have

sλ =
∑
w∈Sn

sgn(w)hw(λ+δ)−δ =
∑
w∈Sn

∑
µ

Pw(λ+δ)−δ,µmµ

but also sλ =
∑

µKλµmµ. The formula for Kλµ immediately follows. Since

SSYT
(
(2, 1), (1, 1, 1)

)
=

{
1 2
3

, 1 3
2

}
,

we have K(2,1),(1,1,1) = 2. This follows from the Kostant multiplicity formula as

K(2,1),(1,1,1) = P(2,1),(1,1,1) − P(0,3),(1,1,1) = 3− 1 = 2,

since the only matrix contributing to P(0,3),(1,1,1) is0 1
0 1
0 1

 .
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9. Vertex operators. For n an integer define the linear operator αn : Λ→ Λ by

(10) α−nsµ =
∑

λ`|µ|+n
λ/µ=border strip

(−1)height(λ/µ)sλ

and
αnsλ =

∑
µ`|λ|−n

λ/µ=border strip

(−1)height(λ/µ)sµ

for n > 0.

(a) Show that αn and α−n are adjoint with respect to the Hall scalar product on Λ.
(b) Prove that the αn satisfy the commutation relations of the Heisenberg algebra, i.e.,

[αn, αm] = nδn,−m.
Hint. Use the representation of a partition in terms of its 0/1-sequence/edge se-
quence/code/Maya diagram. For example, the 0/1-sequence of the partition (5, 4, 4, 1)
is

0

0
1

0
1 1 1

0

0
1

0
1 1

←→ . . . 000101110010111 . . .

(c) Prove that the vertex operators

Γ±(z) := exp

(∑
n>1

zn

n
α±n

)
obey the commutation relation

Γ+(w)Γ−(z) =
1

1− zw
Γ−(z)Γ+(w).

(d) Prove that

(11) pnsµ =
∑

λ`|µ|+n
λ/µ=border strip

(−1)height(λ/µ)sλ.

Remark. For λ, µ ` n let χλ(µ) be the character of the irreducible representation of
Sn indexed by λ evaluated at (elements of Sn in the conjugacy class indexed by) µ.
From (d) and pµ =

∑
λ χλ(µ)sλ it follows that

χλ(µ) =
∑

T∈BST(λ,µ)

(−1)height(T ).

where BST(λ, µ) is the set of borderstrip tableaux of shape λ and weight µ, i.e., the
set of tableaux of shape λ and weight µ such that the µi boxes filled with the letter
i form a borderstrip, and where the height of a borderstrip tableau is the sum of the
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heights of the individual borderstrips making up the tableau. This is known as the
Murnaghan–Nakayama rule.

(e) Use (d) to prove
(i) the ‘Pieri rule’

Γ−(z)sµ[X] = σz[X]sµ[X];

(ii) the ‘branching rule’

Γ+(z)sλ[X] = sλ[X + z];

(iii) the skew Schur function identity

sλ/µ(z1, . . . , zn) =
〈
Γ+(z1) . . .Γ+(zn)sλ, sµ

〉
.

Solution.

(a) By the orthonormality of the Schur functions with respect to the Hall scalar product,

〈sλ, α−nsµ〉 = 〈αnsλ, sµ〉 =

{
(−1)height(λ/µ) if λ/µ is a border strip of size n,

0 otherwise.

(b) Remark. Before sketching the solution using 0/1-sequences, we remark that there are
several much simpler (and less combinatorial) methods for showing the Heisenberg
commutation relations for the αn. One uses fermionic Fock space (or semi-infinite
wedge space) in which αn may be realised in terms of fermionic creation and annihi-
lation operators ψk and ψ∗k on Z + 1/2 (which satisfy the anti-commutation relations
ψkψ

∗
k + ψ∗kψk = 1) as follows αn =

∑
k∈Z+1/2 ψk−nψ

∗
k. The other alternative method

uses (11) and the fact that the operator p⊥n : Λ → Λ, which act as the adjoint of
multiplication by pn, i.e., 〈p⊥n (f), g〉 = 〈f, png〉 for f, g ∈ Λ is given by n∂/∂pn. Then,
for n > 1, αn = p⊥n and α−n = pn. For example, if λ is a partition and µ the partitions
obtained from λ by removing a part of size n if it exists and 0 otherwise,

[p⊥n , pn]pλ = p⊥n (pnpλ)− pnp⊥n (pλ)

= p⊥n (pλ∪(n))− nmn(λ)pnpµ

= n(mn(λ) + 1)pλ − nmn(λ)pλ

= npλ.

More combinatorially, adding a border strip b of size n to a partition changes its
0/1-sequence by swapping a 0 and a 1 a distance n apart (where the 0 is to the left
of the 1):

. . . 0w1 . . . 7→ . . . 1w0 . . .

where w represents a word of length n−1. Moreover, height(b) is exactly the number
of zeros of w. For example, if we go from

7−→
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this corresponds to

. . . 0010010111 . . . 7−→ . . . 0011010011 . . .

with w = 010 so that height(b) = 2. Conversely, removing a border strip b of length
n changes the 0/1-sequence by swapping a 1 and a 0 a distance n apart (where the 1
is to the left of the 0:

. . . 1w0 . . . 7→ . . . 0w1 . . . .

To now see what happens if we act with [αn, αm] on a Schur function, we shall assume
that n 6 0, m > 0 andm > −n. (This also implies the case n 6 0, m > 0 andm 6 −n
by adjointness. The case of equal sign is similar but simpler.) Replacing n by −n
we thus need to consider α−nαmsλ and αmα−nsλ where n,m are both positive and
m > n. By the above description of how adding/removing a border strip affects the
0/1-sequence, we see that in α−nαmsλ we first obtain a signed sum of Schur functions
indexed by 0/1-sequences obtained from that of λ by carrying out all possible swaps
of (1, 0) pairs at distance m and then we replace each of those Schur functions by a
signed sum of Schur functions obtained by all possible swaps of (0, 1) pairs at distance
n. For αmα−nsλ we proceed in the exact opposite order. The upshot is that any of
the Schur functions arising in the computation of α−nαmsλ and αmα−nsλ is obtained
by carrying out two swaps in opposite direction. In the generic case, a pair of swaps
commutes and simply involves a (0, 1) and (1, 0) pair that do not interact. As a result,
most terms in (

α−nαm − αmα−n
)
sλ

trivially cancel. For example, one of the terms obtained by computing α−2α3s(3,13) is
s(3,2):

(1,0)7→(0,1)7−−−−−−→ (0,1) 7→(1,0)7−−−−−−→

. . . 010001101 . . . . . . 000011101 . . . . . . 000110101 . . .

Exactly the same term is obtained in the computation of α3α−2s(3,13), by first swapping
the blue pair and then the red pair:

(0,1)7→(1,0)7−−−−−−→
−

(1,0)7→(0,1)7−−−−−−→

. . . 010001101 . . . . . . 010100101 . . . . . . 000110101 . . .

However, it is also possible that the two pairs are not independent and a more careful
analysis is required for those. When m > n we can have

. . . 1w1v0 . . .
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with w a word of length n− 1 and v a word of length m−n− 1. Hence the pair (1, 1)
are a distance n apart and the pair (1, 0) are a distance m apart. In the following we
write sgn(w) for the number of zeros in the word w. We can obviously carry out the
sequence of two swaps

(12) . . . 1w1v0 . . .
αm7−→ sgn(w) sgn(v) . . . 0w1v1 . . .

α−n7−→ sgn(v) . . . 1w0v1 . . . ,

where we first swapped red and green and then green and blue. But if we first want to
act with α−n and then αm then it is not clear we can obtain the same 0/1-sequence.
It turns out that we need to distinguish two scenarios. The first is

. . . 1w1v0u1 . . .

where u is a word of length n− 1. The sequence of steps (12) remains the same, the
extra u1 are just dummies:

. . . 1w1v0u1 . . .
αm7−→ sgn(w) sgn(v) . . . 0w1v1u1 . . .

α−n7−→ sgn(v) . . . 1w0v1u1 . . . .

But now we also have

. . . 1w1v0u1 . . .
α−n7−→ sgn(u) . . . 1w1v1u0 . . .

αm7−→ sgn(v) . . . 1w0v1u1 . . . .

Although the colour coding is different, the final two sequences are the same and
hence we again have cancellation. The second scenario is

. . . 1w1v0u0 . . .

where again u is a word of length n−1. Once more the sequence of steps (12) remains
the same:

. . . 1w1v0u0 . . .
αm7−→ sgn(w) sgn(v) . . . 0w1v1u0 . . .

α−n7−→ sgn(v) . . . 1w0v1u0 . . . .

But now we also have

. . . 1w1v0u0 . . .
α−n7−→ sgn(u) sgn(v) . . . 1w0v0u1 . . .

αm7−→ sgn(v) . . . 1w0v1u0 . . . ,

so that cancellation is again guaranteed. There is one case however, when no can-
cellation occurs, namely when n = m. Everything proceeds as before, leading to
cancellation, except for pairs of swaps that are each other’s inverse, as in

. . . 0w1
α−n7−→ sgn(w) . . . 1w0

αn7−→ . . . 0w1 (type I)

or

. . . 1w0
αn7−→ sgn(w) . . . 0w1

α−n7−→ . . . 1w0 (type II).

For any partition λ the number of pairs of swaps of type I exceeds the number of
swaps of type II by n. Intuitively the excess of swaps of type I over type II is clear.
First moving a 1 to the left is ‘easier’ as we are moving in the direction of the infinite
sea of 0s, whereas moving a 1 to the right is ‘harder’ as we are moving in the direction
of the infinite sea of 1s. It is perhaps surprising that the excess only depends on n
and not on λ. This can however be seen as follows. Young’s lattice, formed by all
integer partitions:
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0

can be reproduced starting from the word . . . 01 . . . for 0 and then, to increase the
rank, change a single (0, 1) pair a distance 1 apart to a (1, 0) pair:

. . . 01 . . .

. . . 0101 . . .

. . . 01101 . . . . . . 01001 . . .

. . . 011101 . . . . . . 010101 . . . . . . 010001 . . .

Now fix n. It is clear that the word representing 0 has an excess of swaps of type
I over type II of exactly n, the former contributing n and the latter 0. One now
easily checks that every time one goes one step deeper into Young’s lattice this excess
remains the same. Indeed increasing the rank by one we only need to consider the
change in type I and type II swaps when going from

abw01vcd 7−→ abw10vcd,

where w and v are words of length n− 2 and a, b, c, d ∈ {0, 1} are single letters. For
example, in the case

10w01v00 7−→ 10w10v00

we see that in the 0/1 sequence on the left we can carry out a type I swap: (0, 1) 7→
(1, 0) 7→ (0, 1) and two type II swaps: (1, 0) 7→ (0, 1) 7→ (1, 0) and (1, 0) 7→ (0, 1) 7→
(1, 0). In the word on the right we can carry out no type I swaps and one type II
swap: (1, 0) 7→ (0, 1) 7→ (1, 0). By symmetry it in fact suffices to only analyse the
changes in the number of type I and type II moves in

abw01 7−→ abw10

for a, b ∈ {0, 1}.
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(c) More generally, consider

Γ±(z) := exp

(∑
n>1

zn α±n

)
,

where z = (z1, z2, . . . ). Then

Γ−(z)Γ+(w) = exp

(∑
n>1

nznwn

)
Γ+(w)Γ−(z).

To prove this, define E±(z) :=
∑

n>1 znα±n and F (z,w) :=
∑

n>1 nznwn, so that we
must show that

(13) eE−(z) eE+(w) = eF (z,w) eE+(w) eE−(z) .

One way to proceed is using the Baker–Campbell–Hausdorff formula but this is
overkill, and we can proceed using only elementary means. From [αn, α−m] = nδn,m,

E+(z)E−(w) =
∑
n,m>1

znwmαnα−m

=
∑
n,m>1

znwm
(
α−mαn + nδn,m

)
= E−(w)E+(z) + F (z,w).

Hence, by induction on k,

Ek
+(z)E−(w) = E−(w)Ek

+(z) + kF (z,w)Ek−1
+ (z)

for arbitrary positive integer k. By another round of induction this may be lifted to

(14) Ek
+(z)E`

−(w) =

min{k,`}∑
i=0

i!

(
k

i

)(
`

i

)
F i(z,w)E`−i

− (w)Ek−i
+ (z),

for arbitrary positive integers k, `. Since for k = 0 or ` = 0 the above identity
is trivially true we may extend the range of k and ` to all nonnegative integers.
Dividing both sides of (14) by k!`! and then summing the resulting identity over k
and ` the claim (13) follows.

(d) We choose n sufficiently large so that l(µ) + r 6 n, and consider

pr(x1, . . . , xn)sµ(x1, . . . , xn) =
1

∆(x1, . . . , xn)

n∑
k=1

xrk
∑
w∈Sn

sgn(w)
n∏
i=1

xλi+n−iwi
.

Interchanging the order of the two sums and using that∑
w∈Sn

fw

n∑
k=1

xrk =
∑
w∈Sn

fw

n∑
k=1

n∏
i=1

x
rδk,i
wi =

n∑
k=1

∑
w∈Sn

fw

n∏
i=1

x
rδk,i
wi ,

it follows that

pr(x1, . . . , xn)sµ(x1, . . . , xn) =
n∑
k=1

sµ+rεk(x1, . . . , xn),
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where εi is the ith unit vector in Zn. We now want to rectify the Schur functions
sµ+rεk for all k. If the augmented kth column in the determinant is equal to the jth
column for some 1 6 j < k, i.e., if µk = µj − j + k − r, the Schur function simply
vanishes. For example, if µ = (3, 1, 0, 0) and r = 2 then, for k = 3, µ3 = µ2−2+3−2
so that s(3,2,0,0)+2(0,0,1,0) = 0. Otherwise, by moving the kth column of the determinant
representing sµ+rεk to the left we can rearrange the determinant so that it corresponds
to that of a Schur function sλ indexed by a partition λ. In this case there exists an `
with 1 6 ` 6 k such that

λ =
(
µ1 + n− 1, . . . , µ`−1 + n− `+ 1︸ ︷︷ ︸

`−1 terms

, µk + n− k + r,

µ` + n− `, . . . , µk−1 + n− k + 1︸ ︷︷ ︸
k−` terms

, µk+1 + n− k − 1, . . . , µn︸ ︷︷ ︸
n−k terms

)
.

This implies that λ/µ has no boxes in the first ` − 1 rows and last n − k rows,
µk − µ` − k + `+ r > 1 boxes in the `th row and µi−1 − µi + 1 > 1 boxes in each row
for `+ 1 6 i 6 k. Moreover, row i and i+ 1 for ` 6 i 6 k − ` overlap in exactly one
column (with column coordinate j = µi + 1). Pictorially,

µk−1−µk+1

µk−2−µk−1+1

µ`−µ`+1+1

µk−µ`+k−`+r

µk

µk−1

µ`

which is a borderstrip of height k − ` and size r. Since we have moved the kth row
exactly k − ` positions to the left,

sµ+rεk = (−1)k−`sλ = (−1)height(λ/µ)sλ,

and thus

n∑
k=1

sµ+rεk(x1, . . . , xn) =
∑

λ`|µ|+r
λ/µ=border strip

(−1)height(λ/µ)sλ(x1, . . . , xn).

(e) Comparing (11) with (10) it follows that α−n act on symmetric functions by multi-
plication by pn. Hence

Γ−(z) = exp

(∑
n>1

zn

n
α−n

)
= exp

(∑
n>1

zn

n
pn

)
= exp

(
ψz(·)

)
= σz(·)

and thus

Γ−(z)sµ[X] = σz[X]sµ[X],
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proving (i). For (ii), since Γ+(z) is the adjoint of Γ−(z),〈
Γ+(z)sλ, sµ

〉
=
〈
sλ,Γ−(z)sµ

〉
=
∑
ν�µ

z|ν/µ|〈sλ, sν〉 =

{
z|λ/µ| if λ � µ

0 otherwise.

Comparing this with〈
sλ[·+ z], sµ

〉
=
∑
ν≺λ

z|λ/ν|〈sν , sµ〉 =

{
z|λ/µ| if µ ≺ λ

0 otherwise,

completes the proof. Finally, (iii) is just an iterated version of (ii), which says that

Γ+(z)sλ =
∑
ν

sλ/ν(z)sν

Iterating this n times, using that∑
µ

sλ/µ[X]sµ/ν [Y ] = sλ/ν [X + Y ],

yields

Γ+(z1) . . .Γ+(zn)sλ =
∑
ν

sµ/ν(z1, . . . , zn)sν .

By taking the Hall scalar product with sµ this gives〈
Γ+(z1) . . .Γ+(zn)sλ, sµ

〉
= sλ/µ(z1, . . . , zn).
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