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I. INTRODUCTION

Consider the affine algebsd(n),, where(n—1) is the rank and” is the level*~3 Following
Refs. 4 and 5, the branching functions of the coset

Cnsyr,=SIN), @sTn),, /s /1, (1)

are characters of the highest weight modul¢g/Ms) of W, algebra$, whereW, is the Virasoro
algebra’ We are interested in computing these branching functions.

A. g-series identities

An important observation, made independently in Ref. 8 in the context of affine algebras and
in Ref. 9 in the context of branching functions, is that different approaches to computing the
characters lead to completely different expressions for them. Equating different expressions of the
same character leads to generalizations of the Rogers—Ramanujan identities. In the present work,
we are interested in the identities related to the branching functions.

1. Boson —fermion identities

Because one side of these identities is generated using operators that obey bosonic commu-
tation relations, while the other is generated using operators that obey fermionlike exclusion
principles, these identities are also known as boson—fermion identities.

In Ref. 5, the branching functions of the coset ,, ,, Were obtained by counting certain
configurations, known aseighted pathsThese paths appear naturally in using the corner transfer
matrix method to solve statistical mechanical mod8I3he expressions obtained are of the
bosonic type. In the present work, we restrict our attention to the ¢oget, and obtain expres-
sions for the branching functions by counting the Ferrers graphs that appear in the crystal base
description of the HWM's ofsT(n),. The expressions obtained are of the fermionic type, and
finitize the Lepowsky and Primc character formufas.
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2. Polynomial identities

In fact, we do not work directly in terms of the characters, which are formal infinite series.
Instead, we work in terms of polynomials which depend on a paranietand reduce to the
characters in the limit. —oc. In that sense, the identities we obtain are stronger than identities
between characters.

Equating the expressions of Ref. 5, and those obtained in the present work, we obtain poly-
nomial identities, one for each branching function#f ; ;. For fixedn, there are”(n? such
functions, and corresponding identities. These polynomial identities are generalizations of those
considered by Schur in his approach to provipgeries identities!

B. Two ways to count

Though the Ferrers graphs that we count are in one-to-one correspondence with the weighted
paths, the expressions that we obtain are different from those of Ref. 5 because our approach to
counting these objects is inherently different. We wish to outline the usual method of counting, in
order to emphasize the contrast to ours.

1. Indirect counting: Sieving

In Ref. 5, the counting was achieved usingiaving methodo obtain recurrence relations
which can solved. The main idea of the sieving approach can be summarized as 8llows:

Suppose one wishes to count the number of objects in a certainRjaghich satisfy certain
conditions'® This is typically a difficult problem, since the conditions satisfiedycan be quite
complicated. However, one can approachdirectly as follows:

As a first step, one considers a larger class of obf@gtdhat includes?, but satisfies weaker
conditions, and hence is easier to evaluate. Suppose one manages to do that. The next step would
be to evaluate the differend® = Q,— P, and subtract it to obtaiRy=Q,— P, (hence the name
sieving. However, evaluating; directly is once again typically just as hard as the initial problem
of evaluatingP,. Hence, it should also be evaluated in two steps: We consider a larger class of
objectsQ; that is easier to evaluate, and subtract that of the differézeeQ,— P,. We obtain
Po=Qy—Q;+P,. It is easy to see how the above procedure generalizes to give
Po=Qo— Q1+ "+ Qeveri Qodat " -

The objects we are interested in—Ferrers graphs and paths—have dimensions. Foy Ryrger
typically contains larger objects. If there are no restrictions on the dimensions of the objects being
counted, then the above sieving procedure continues indefinitely. If there are such restrictions, then
for sufficiently largei, the procedure terminates. Either way, the procedure amounts to writing a
recurrence relation for the sg®P,,P4,...} and solving it.

2. Direct counting: Sectoring

In contrast to the above, the approach used in this paper relies on a direct counting of the
objects of interest. The main idea is to divide the set of all objects into sectors, each of which is
easier to compute, and then to sum over all sectors. An outline of this approach is given below.

C. Outline of proof

(1) Given the set of graphs we wish to count, we propose to distinguish a certain subset to be
called parent graphs The remaining graphs are calledn-parents

(2) We propose a set of rules which redueesy non-parent graph uniquely to a parent graph by
removing nodes from it. Using these rules we can decompose any non-parent graph into a
parent graph plus a set of objects calgedomponentsThe rules are such that a parent graph
cannot be further reduced to another parent graph.
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(3) We show that the above set of rules is invertible. Each non-parent can be uniquely obtained
from a parent by attaching g-components. Consequently, the set of non-parents which reduce
to a given parent may be regarded as descendantsf that parent.

(4) From the above, we classify the set of all graphs into sectors. Each sector contains precisely
one parent plus its descendants.

(5) We show that, given a parent graph, the set of all its descendants is generated by a product
over Gaussian polynomials.

(6) Since we know the explicit expression for the Gaussian polynomials in each sector, summing
over all sectors, with the proper weighting which follows from the weight of the parent graph,
we obtain the desired generating function of the graphs.

D. Plan of paper

In Sec. I, we outline a number of technical details related to weighted paths on the set of
dominant integral weights (ﬁ@z, and recall the bosonic generating function as evaluated in
Ref. 5. In Sec. lll, we introduce the main objects of this paper, K-graphs, and discuss their
properties. In Sec. IV, we describe the special set of K-graphs called parents. In Sec. V, we
describe the graph components to be added to a parent to generate more general K-graphs, called
descendants. In Sec. VI, we describe how the descendants are obtained from their parent, and why
each graph is either a parent, or descends from a uniquely defined one. In Sec. VII, we evaluate the
number of descendants of a certain parent. In Sec. VIII, we obtain fermionic expressions for the
finite analogs of all branching functions of the coggt, ;. In Sec. IX we summarize our results
to obtain the main theorem of this paper: polynomial identities for the finite analogs of the
branching functions. This section also contains a discussion of our results.

Il. PATHS

In this section, we consider weighted paths on the set of level-2 dominant integral weights of
sl(n), and recall their generating function as computed in Ref. 5.

A. Roots and weights

We start with some definitions from the theory of affine algebrast A, ,«; (i=0,...n—1),
and é be the fundamental weights, the simple roots, and the null root of the affine Lie algebra
sT(n), respectively. The subscript of A; can be extended toeZ by setting A;=A;, for
i=i'(modn). Leti=A;,;—A; (i=0,...n—1) be the weights of the vector representation of
sl(n), andp==""gA, be the Weyl vector.

Remark 1:For the rest of this work, we will simply use=b to indicatea=b (modn).

Let P=ZA,®--®ZA,_,®Z4 be the weight latticé? There is an invariant bilinear forr|-)
on P defined by

(AJA)=min )=, (Al8)=1, (5]5)=0, @

for O<i,js=n—1.

We are not interested in the full weight lattice, but in certain restrictions of it:

Definition 1: (P;) P; is the set of level-2 dominant integral weights, i.e.,
Py ={A;+Al0<isj=<n-1}.

Examples ofP; in the case oh=2, and 3 are shown in Fig. 1.

We can define paths oRj as follows:

Definition 2 (paths)For L €7, we define a patip asp=(\g,...,Ap) with all \;e P; and
)\H—l_)\i E{O,l,...,n/_\l}.

We are interested in particular sets of paths of lergttiefined by the following.
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(@ (d)
24,

Ag+A, A +A,
O»—<4¢0»—<4O0
2hy Ag+A, 24,

20 Ag+A, 2A,

FIG. 1. Examples of the sd®; . A directed bond from\ to A’(\,\’ eP3) indicates that a path can go fromto \'. (a)
n=2, (b) n=3.

Definition 3: [/ (Aj+ A, AQ) ]
L%L(Al‘f‘AJ ,Ak):{p:()\o,,)\L)|)\0:A|+AJ 1)\L:Ak+Ai+j*k+L}' (3)
For a pathpe 7 (Aj+A;,Ay) we call Aj+Aj, Ay, andL its initial point, boundary, and length,
respectively.
We note that 7 (Aj+A;,A,) is a finite analog (length L) of the set of
(Ay,Aj4j-i)-restricted paths of Ref. 14 and 15. B
With the paths i (A + Aj,Ay) we associate a special paitcalled the ground-state path,

as follows: .
Definition 4 (ground-state path)p

P=(At Ay At Akt AT A i) e LA Ay o0 Ay
Note that the initial point of the ground-state path may be different from that of the paths in
AA+AAY.

We can encode a path in terms of a sequence of integers as follows:

Definition 5 (sequence of integerdjor a pathp=(\g,... A ) €7 (A + A, A,) we define a
sequence of integergp) = (uq,...,4.), Whereg, = \,,; — N\, and where we have used
My1= At ALyigj-ke1- We denote the elemept, of «(p) by «(p), .

Note that«(p) of p in Definition 4 is given by(p),=i+] —k+/.
Example 1:The ground state path associated to”5(A;+ A _;,A,) for n=3:
P=(2A0, Ao+ Aq,AgtAp200,Ag+Aq,Agt+Ajp2A0),
«(p)=(0,1,2,0,1,2,D.
Example 2:A path in p®Y e 74(2A,A,) for n=3:
pPM=(2A0, Ao+t A1, AgH+ A, A+ Ay, Ag+tAg, Agt Ay, Ai+Ay),
«p)=(0,1,0,2,1,0,2

Example 3:A path in p'? e 7(2A4,A,) for n=4:

PP=(2A0, Ao+ A1,2A 1, A+ Ap 205, Apt+ Ay, Ag+Ay),

«(p?)=(0,0,1,1,2,3,2
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B. Weighted paths

Let p be a path and be the ground-state path associatedptowith integer sequences
t(p)=(xq,..-,t) ande(p)=(uo,....t.), respectively. We define an energy functignby the
following.

Definition 6 (energy of a path):

L
E(p):/; O py1—p)— 6y 1— i), (4)

with @ the step function given by

0 <0
()= 1 ((1520)) 5

1. Connection with cosets of affine algebras

Consider the coseéft, ; ;. The branching functions corresponding to this coset can be defined
as follows. LetV(A) be ansT(n) HWM with highest weightA, and let|/A) be its highest weight
vector. Consider the tensor product decomposition

VAQSV(Ai )= 2 Oy n,, a®V(A). (6)
AEPZ

Among all vectors in the tensor product on the left-hand sﬁﬂ;@K,AiH_k,A is the space of highest
weight vectors whose weights are equal\tonodZ46. The connection betwee(l)Ak Apy oA and
7L (Ai+ A, A)) is as follows: It has been shown in Ref. 14 that in the limitLef:cc, there is a
bijection between the set of base vectors mk'Ai+j—k'Ai+AJ' and the set of paths in
7L (Ai+Aj,A)). This implies that the paths off (Aj+A;,A,) are characterized by weights.
Under this bijection the ground-state path associateditoA;+A;,A) is identified with|A,)
®|Ai+j—k>EQAk,Ai+j_k,Ak+Ai+j_k-

It turns out that the weight of a path can be expressed in terms of its energy function as

Definition 7:[weight of a pathpe 7} (Aj+A;,A()]

wt(p)=A;+A;—E(p)J. (7)

2. Finite analogs of branching functions

Given the above considerations, we define finite analogs of the branching furBtidosthe
coset?,; 1 as the generating function of the weighted pathsAr{A;+ A, Ay):

BL(Ai+Aj, A= > qEP. (8)
pe LA+ A} A

C. Bosonic expressions

We are interested in expressions for the generating fun&idm; + A;,A). In Ref. 5, the
following bosonicexpression foB, (A;+A;,A,) was obtained using recurrence relations based
on the sieving method explained in Sec. I

Theorem 1: Let A\=3""d\2,+Z6eP, with all ;=0 and=""J\,=N. For such\ set

Hl)\\l L (Dn

@y (@,
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with (@), =111 ;(1—g*)(m=1) and @),=1. Also, let77" denote the Weyl group ofl(n) (see,
e.g., Ref. 5, p. 91 Then

AL ]2
BLA+ A} A =g W2 3 (detw)by jj(Ait A ket p= WA H A +p)),
(10

where

by i(\) =gh i 2 H)L\H : (1)
q

For proof we refer the reader to Ref. 5.

lll. K-GRAPHS

Using matrices as intermediate structures, we give an alternative representation of the
weighted paths o3 in terms of Ferrers grapher, equivalently, Young diagramsvhich satisfy
certain restrictions. We refer to these Ferrers graphs, which were introduced and extensively
studied by the Kyoto schogbkee Refs. 14 and 16 and references thereis K-graphs.

A. Interpolating matrices

In this subsection, we associate a matrM(p) with two rows to each path
peA(Ai+A},A)).

Definition 8 (domain wall): Let «(p)=(xmq,..-.,4.) be the integer sequence of
peZL(Ai+A;,AY). If w,—u,_1=h,+1(0<h,<n), we say that there is a domain wall in the
sequence(p) of heighth, at position/".

Given a pathp with N domain walls of heighté,,...,hy at the positionx,,... Xy, respec-
tively, we define the interpolating matriM (p) as follows:

Definition 9 (interpolating matrix):

M(p)= X1 (X2=X1) o (XN—Xn-1) (12
(p)= h, h, hy :
Example 4:The interpolating matrix op‘® in Example 3 is
Mo 1 2 3
(P)=13 5 5|
B. K-graph representation of a path
Let p be a path andM (p) its interpolating matrix of the form

Wl W2 Y WN

M(lﬂ)—(hl hy - hN)' (13

Consider a two-dimensional square lattice with arx,yj-coordinate system. Set
W=w;+---+wy, H=h;+---+hy. Starting from(0,—H), we draw a polygon by moving/,
steps to the right, theh,; steps up, thew, steps to the right, etc., until we reach the pdim,0).
Connecting(0,—H) and(W,0) with the origin by straight line-segments, the resulting grapthés
Ferrers graphor Young diagrancorresponding to the original pafkee Fig. 23)].

Definition 10 (K-graph)A Ferrers graph obtained from a pathon P53 , as described above,
is called a K-graph.

J. Math. Phys., Vol. 37, No. 2, February 1996
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(a) (b)

hy 1]
ol 1]

H

)
hy

wi

FIG. 2. (a) The general form of a K-graplib) A K-graph in £(2A4,A) for n=4.

Definition 11: ({5 (Aij+Aj,Ay) ZL(Ai+Aj,Ay) is defined as the set of K-graphs corre-
sponding to the set of pathr (A;+A;,A).

Definition 12 (profile of a graph)The set of horizontal and vertical line segments used to
construct a K-graph form the profile of a graph.

Example 5:The K-graph corresponding to the interpolating matrix of Example 4 is shown in
Fig. 2b).

Definition 13 (concave cornerA corner of the fornf.

Definition 14 (convex corner)A corner of the form|.

Definition 15 (plain of width w)A horizontal line segment aff nodes(or boxes marked by
a concave corner to its left and convex corner to its right.

Definition 16 (cliff of height h)A vertical line segment oh nodes(or boxe$ marked by a
convex corner at its bottom and a concave corner at its top.

Notice that a cliff on a K-graph corresponds to a domain wall in the corresponding integer
sequence.

Remark 2:From now on, we concentrate on K-graphs i (2A4,A,), unless otherwise
stated.

1. From a graph to its sequence of integers

For a graphG e ¥ (2A4,A,), we can recover the corresponding integer sequefite as
follows. Let

Wl W2 cee WN

M= hl h2 hN

14

be the interpolating matrix corresponding ®@ SetH=h,+---+hy, and take the integer se-
quence (0,1,2..,n—1,0,1....n—1,0,1,...) oflengthH+L+1. Starting from the left moving to
the right, we now keep the first, integers, then remove the ndxf integers, then keep the next
w, integers, remove the nekt, integers, etc. The remaining sequence of exalctiyl integers
corresponds ta(p).

2. From a graph to a path
To go from a graphG e ¥, (2A4,A) to its corresponding path=(\,,...,\.) on P we

simply first construct the sequence of integefp) =(ug,-..,.#.) as described above. We then
computen . =\, + i, using\g=2A,.

J. Math. Phys., Vol. 37, No. 2, February 1996
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3. Conditions on %, (2Aq,A\)

Among all K-graphs, those it¥| (2A,,A ) are characterized by the following conditions:

K1: W=L, with W the number of nodes in the first row.

K2: H+k=0, with H the number of nodes in the first column.

K3: h;_;+w;+h;=0 and 0<h;<n for 1<i<N, with hg=n.

K1 is obvious.K2 is obtained by considering tHeth component of(p) and the boundary
condition. To obtairk3, suppose théth cliff occurs at therth position. We can assumeg = X\,
+ A, Arow, = A+ Ab,wi forsomea,b.Nowwe have(p),_;=b— 1, L(p)r,Wi =b —w;. Since
there are cliffs at therth and {—w;)-th position, we should havei(p),=a and
t(p);—w,—1=a—1. Thus we gehj=a—b, h;_;=b—w;—a, which givesK3.

C. Fermionic expressions

We now wish to calculate the following sum.

FLA+AA)= > qlelm, (15)
Ge L (Aj+Aj Ay

where |G| denotes the number of nodes @. Regarding the above, we have the following
theoremt*16

Theorem 2:Let p be a path iy (A;+A;,A,) andG(p) be the corresponding K-graph. The
number of nodes oG (p) is given by

n-1
Gl=2 m,, (16)
/=0
wherem, is determined from
n—-1
(Aict A —wi(p) = 2, ma,. 17
Using
(Ailaj)=6; (i,j=0,...n—1),
we obtain

m=(A|(Agt+Ajs 0 —wt(p)) (1=0,..n—1).

Since we define the sufi5) in the “principal picture,” i.e., each node has equal weight,1/
it is invariant under the Dynkin diagram automorphisms. Thus we can reduce the calculation of
(15 to that of F (Ag+Aj,Ay). From now on, we hence assurineO.

Setting (A + Aj_i) — (Ao + Aj) = =0°tm e, , we haves}Ztm, = k(j — k) forj=k, = (k
—j)(n—k) for j<k. Calculating|A,|*+|A;_y|*~|A;|* and comparing15) with the bosonic
expression, we obtain

FuAgHAj, A =M= IR, (Ag+Aj,Ay). (18)
In the remainder of this paper we will compute a fermionic type of expressioR foGiven
(18) and the bosonic expressiohO) for B, , this gives rise to polynomial identities for the finite
analogs of the branching functions of the coggt; ;.
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IV. PARENTS

From the set of all K-graphs if¥; (2A4,A,) we select a subset of graphs to be called parent
graphs, or simply parents. Léi'=(m,,...,m,_;) e(Z-o)" "%, such that

n—-1
k+ >, im;=0, (19
i=1

and letM be the interpolating matrix of a graghe % (2A,,A}), with entries

Wl W2 Y WN
ME=| 0 ) (20
Definition 17 (parent associated to InG is the parent associated o if
hl! .,hmnilzn_l
Pm, 1P om, ,=N—2
(21)
hN*ml+17""hN:1’
with N=3=""!'m;, and
hi_1+Wi+hi=2n, 1<i<N, (22)

where we recall thalhy=n.
Example 6:The K-graph ofp® shown in Fig. 2b) is the parent associated tio=(0,1,2.

A. The number of nodes of a parent graph

Let C be the Cartan matrix o§l(n), i.e., C;;=24
inverse ofC is then given by the following formula:

i(n—j)
n
j(n—i)
n

8ij-1— 0 j+1(1,j=1,...n—=1). The

i

(i<j)
(C™Y= (23)

(i>j).

With this definition we have the following lemma:

Lemma 1:The number of nodes of the parent associatedh s given bynm'C ™ 1m.

Though the proof of this statement is rather elementary, we need to take some care as some of
the entries ofm can actually be zero. In the following we use the notati®h to denote
3_1m,_;. Clearly,(i)—(i—1)=m,_;. We now compute the number of nodes of a pahefrh)
as follows:

N i n-1 (k) k-1 () [
N(m) = > hw;=>, , > > , > + > hiw; . (24
i=1j=1 k=1i=1+(k-1) \ /=1 j=1+(/-1) j=1+(k-1)
Now use(22) andhy,_1y=---=h;=n—i to get

J. Math. Phys., Vol. 37, No. 2, February 1996
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—

RN

v
+“—r

n-i+1

FIG. 3. An (i,j)-component.

k=1 ()

Nm)=> > (n—k)(E > {2/ = (= (N=)) 8} (—1y+1}

7=1 j=1¥(/-1)

+ > {Zk—(h<k1>—(n—k))5j,<k1>+1})- (25
j=1+(k—1)

Finally, after some changes of variables, we obtain

n—-1 k-1 n—1 Mp—k k m,_,
N(m)=2> > Z(n—kmm,+ > (n—k) >, (2ik—2 > (hy—py—(n=2))81
k=1 /=1 k=1 i= /=1 j=1
n—-1 k-1 n—1 my_y
=2> > /(n—kmim,+ >, > k(n—k)(2i—1). (26)
k=1 /=1 k=1 i=1

Summing overj andi this results innm‘'C ™~ m.

V. g-COMPONENTS

Now that we have distinguished a subset of all K-graphs as parents, we wish to describe the
minimal connected configuration of nodes that can be removed or added to a K-graph in
Z1(2A4,A)) to obtain another K-graph ifF, (2A4,A,). Since, as we will see in Sec. VII, these
configurations are generated by Gaussian polynomials, we call hemmponents. Eventually,
we will show that those graphs which are related by addition and remogptofponents belong
to the samesector and we will use this observation to relate any non-parent graph to a parent
graph.

Definition 18:[(i,j)-componentFor alli=1,...n—1, and allj=1,..., we define ani(j)-
component as a connected configuratiomafodes, as shown in Fig. 3.

Some important characteristics of anjj-component are the following.

G1 It consists of nodes.

G2 It has total height.

G3 It has total widtm—i+1.

G4 It has(at mosj} two cliffs, one(the lowe) of heighti —j and one(the uppey of height;j.

We further note that for afi,i)-component the lower cliff vanishes, resulting in a configura-
tion with a single cliff.

Definition 19 (i-component)An (i,j)-component for arbitrary is called ani-component.

Definition 20 (g-componentfn (i,j)-component for arbitraryandj is called ag-component.

J. Math. Phys., Vol. 37, No. 2, February 1996

RIGHTS L



RIGHTS

Foda, Okado, and Warnaar: sﬂl ® smT)l /sﬁr?)2 polynomial identities 975

7

FIG. 4. Removing ani(i)-component is only allowed whem>2(n—i). The extra dotted lines in the resulting graph are
to indicate the nodes which are removed.

We are now interested in the addition/removagafomponents to/from a K-graph. Clearly, in
adding or removing @-component to or from a K-graph i (2A4,A,), we demand that the
resulting graph is again a graph #, (2A4,A,). However, on top of this we impose one addi-
tional condition, which basically defines our sectors.

A. Removing an j-component

The removal of ar(i,j)-component from a K-graph ¥, (2A4,A,) is allowed provided the
following two conditions are satisfied:

R1 The resulting graph is again a K-graphidn (2A4,A}).

R2 If j=i as in Fig. 4, we demand that>2(n—i).

Definition 21 (i-candidate)An i-component one is allowed to remove from a K-graph is
called ani-candidate.

Since for any K-graph ins (2A4,A) we haveh,_;+w;+h;=0, three kinds of candidates
can occur.

(1) bj_;+wj+h;=nandw;_,>1. In this case we can remove ah; (,+h;,h;)-component.
(2) hj_;+w;+h;=2n andw;>2(n—h;). In this case we can remove ah;(h;)-component.
(3) hj_;+w;+h;=3n. In this case we can remove ah; (h;)-component.

Scanning the profile of a non-parent graph, sevexandidates may occur.
Definition 22 (leading i-candidate)The leadingi-candidate is the down- and left-most
i-candidate(see Fig. 4.

B. Attaching an i-component to a graph

Attaching ani-component to a K-graph it (2A4,A,) is allowed provided the following
conditions are satisfied:

Al The resulting graph is again a K-graph i (2Aq,Ay).

A2 We do not generate arl-candidate, with ' >i.

Definition 23 (i-vacancy)An i-vacancy is a position on the profile such that one is allowed to
attach an-component.

An important statement aboirvacancies is the following. Given a sequefckf,plain,cliff }
of dimensiondh; _1,w; ,h; such thath;_,+w;+h;=n andh;_,+h;=i, then the following holds:
Lemma 2:If w;,;=n—1i, the above sequence is not iamacancy.

To prove this, assume the above sequence isi-sacancy. Hence we can attach an
(i,h;+1)-component as shown in Fig(éh. Note that in doing so the height of theh cliff
increases by 1 td1j’ = h; + 1, and the width of the j+1)-th plain decreases by 1 to
W/, 1=Wj;;—1=n—i—1. Thus we compute

0<h/+wj, +hj;;=hj+n—i+h;<i+(n—i)+(n—-1)=2n—-1. (27
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(b)

FIG. 5. (@) Attaching an §;_;+ h; ,h;+1)-component witth; # 1. (b) Attaching an(h; _;,1)-component. The extra dotted
lines in the resulting graphs are to indicate the profile before attaching the g-component.

Sincehj + wj,; + hj,;=n,weconcludethdt] + w;,; + h;, 1 =n,andh{ + h;,; =i+ 1.How-
ever, these are the characteristics of &t 1)-candidate. By the second condition for attaching
i-components this contradicts our assumption that the initial sequence wasaancy.

With the above lemma we note that two kinds of vacancies may occur. The first occurs if we
have a sequencgliff,plain,cliff} of dimensionsh;_,;,w;,h; such thath;_,+w;+h;=n and
Wj,1>n—hj—h;, ;. In this case we can always attach am (;+h;,h;+1)-component, as
shown in Fig. %a). The second occurs if we have a sequefadf,plain,cliff} of dimensions
hj_1,w;,h; such that h;_;+w;+h;=2n. In this case we can always attach an
(h;~1,1)-componentsee Fig. &)].

VI. DESCENDANTS

In previous sections, we classified all admissible K-graphs into parents and non-parents. We
need to show that each non-parent degscendandf a unique parent. More precisely, we show the
following.

(1) Given a non-parent graph, there is a reduction procedure, such that one can reduce it to a
unigue parent graph.

(2) The reduction procedure is reversible: given a parent graph, there is a composition procedure
to recover the original non-parent graph.

Because the reduction procedure is reversible, any non-parent graph is a descendant of a
unigue parent graph. Thus the set of all admissible K-graphs can be divided into nonoverlapping
sectors. Each sector contains and is labelled by a parent graph. Any admissible K-graph belongs to
one and only one sector.

A. Reducing non-parent graphs

Given a non-parent K-graph, we can reduce it to a parent graph as follows.

Red0 Sei=n-1.

Red1 Search for the leadingcandidate and, if it exists, remove it.

Red2 Repeat the above step until no mieandidates are found.

Red3 Sei—i—1 and, ifi=1, repeat Red1-Red3.

To prove that a reduced graph is indeed a parent, we proceed as follows: Consider a profile
with a sequencécliff, plain,cliff } of dimensionsh;_,,w; ,h; , respectively. Suppose that the part of
the profile below the above sequence belongs to a parentyj.e.;+ w,+h,=2n andh,_;=h,
for k=1,...,)—1. We wish to show that if the above sequence does not represent a candidate, it
belongs to a parent. From Sec. V A we see that urtiess+w;+h;=2n andw;<2(n—h;) or
h;_1+w;+h;=n andw;_,=1, we always have a candidate.

In the first case we getr2=h;_;+w;+h;<h;_;—h;+2n and thush;_,=h;. This is pre-
cisely the right sequence for a parent and wehget, + w,+h,=2n andh,_,=h, for k=1,...,.
The second case can, in fact, never occur. Smcg+w;_;+h;_;=2n andh;_,,h;_;<n we
find thatw;_,>1.

j7
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B. Generating descendants from parents

Given the parent associatedrig each cliff of height plus the plain immediately to the right
of this cliff forms ani-vacancy. Hence we haws, i-vacancies. To obtain an arbitrary descendant
of the parent under consideration, we proceed as follows.

Gen0 Sei =1.

Genl Sefj=1.

Gen2 Attachkj(') i-components to th¢th i-vacancy counted from the right.

Gen3 Sej—j+1. If j<m;, go to Gen2. Ifj=m;+1, seti—i+1, and ifisn—1, go to
Genl.

To properly interpret these rules, some important remarks need to be made. First, when we say
“attach kJ(') i-components to th¢th i-vacancy,” this should be understood as follows. Attaching
ani-component to anvacancy has the effect of moving the vacancy to the right. Hence attaching
thekth i-component means attachingianomponent to the image of thievacancy after attaching
the (k—1)-thi-component. Second, it may occur that attaching-anmponent to am-vacancy
does not have the effect of moving theacancy to the right, but annihilates the vacancy. Hence,
there are bounds on the numbm,@. In the next section we will show that these bounds are as
follows:

O=kp'=---=<kj'sk{'=/, (28)
with /; fixed by (31).

C. Reversibility

There remains the proof that our rules for attaching and removing g-components are revers-
ible. This is true by construction.
VIl. PROOF OF GAUSSIANS

In this section we prove that for the case6f(2Aq,A), the generating function for attaching
the i-components to the parent graph associateth is given by the Gaussian polynomial

/i‘f'mi} (29)
m q'
where
(an
N —, 0=m=N\,
[m} = (q)m(Q)me (30)
q 0, otherwise,
and
/=C YLé, ,+86,—2m), (31)

ande; the (n—1)-dimensional unit vector with entriegj; =&, ; and with 0<r=<n fixed by

L—2k=r. (32
A. The r=n case

To prove the above result we first treat the simpler case=afi. In the next subsection we
then show how to modify this to obtai{31) for generalr.
We start with the following important fact, used extensively throughout this section:
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Lemma 3:For G e £ (2Aq,A,), let W be the number of nodes in the first row dmg be the
height of theNth (uppermost cliff [see Fig. 2a)]. Then

W—hy=2k. (33

We prove this by implementing the conditions K2 and K3 of Sec. Il B 3, defining the K-graphs
in % (2Aq,Ay). Recalling thatw is the number of nodes in the first row of a K-graph, we have

N N N
W= wi=—>, (hj_;+h)=hy—2>, hi=hy—2H=hy+ 2k, (34)
i=1 i=1 i=1

which proves our claim.

1. j-strips

We are interested in the placement of theomponents. From the rules for placing the latter,
it is natural to definen; i-strips as follows:

S1 We define the-strip as consisting of two regions: a principal region and a tail. The
principal region is defined in terms of a top segment, a bottom segment, and a left and a right
segment. The left and right segments will be called left and right terminal. We start by defining the
principal region.

Consider the profile P; of the K-graph after attaching alli’-components, with
i'=1,2,...i—1, but before attaching any component of heiglt higher.

If the Nth (highesi cliff of P, has height, extend theceiling of P, by drawing a horizontal
line of width i —hy, starting from the top-right corner of the rightmost node of the top row of the
graph, and extending to the right. This line will serve as a ceiling to-t@mponents that we will
add shortly.

Consider the segment &, 2(n—i) columns to the right of the right-most cliff of height
This will be the top segment of thiestrip. Let us denote this segment BY.

Now we proceed to define the bottom segment ofits&ip. MoveP? to the left by 206—i)
columns, and downward byrows. Denote this shifted profile byt. This is the bottom segment
that we are looking for.

Finally, close the figure formed by the top and bottom segments as follows: draw a plain of
width 2(n—i) followed by a cliff of heighti to the right(left) of P%/P}), called the right(left)
terminal, respectively. As a result, we now have a region enclos&®f by and the left and right
terminals. This defines tharincipal regionof the firsti-strip.

Next, we define the tail of the firststrip as follows: Comput® =0 to be the largest integer
such thaW+i—hy+M=L. The talil of thei-strip is a rectangle, of widtM and heighi, that we
place to the right of the principal region in the first row.

The principal region plus the tail define the complete firstrip. An example of the first
3-strip in a typical K-graph fos[(4) is shown in Fig. €a).

S2 We draw the secondstrip by simply shifting the firsi-strip to the left and down by
2(n—i) columns and rows, respectively.

S3 We repeat the step &, —1) times. That is, we define thg+1)-th i-strip by translating
the jth i-strip to the left by 26—i) columns and downwards hiyrows. In Fig. §b) we have
shown the construction of the 3-strips for a typical example of a K-grapb@.

By construction, adding theccomponents corresponding to thi i-vacancy(counted from
the righ) corresponds to filling thgth i-strip from left to right. In constructing an arbitrary
descendant, we will not necessarily fill the complgtei-strip. Furthermore, we will show below
that the filling of the(j +1)-th strip is bound by the degree of filling of theh strip. In particular,
we will show that if thejth strip is filled with k](') i-components, then thg+1)-th strip cannot be
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(a) (b)

FIG. 6. (a) The construction of the first “3"-strip for a typical K-grapB. The part ofG corresponding to the parent graph
is drawn with open nodes/boxes and taeady placedi'-componentsi'=1,2) are shown in grey. The bold segments are
the left—right terminals of the principal regigmarked B. The tail of the strip is marked with Tb) The two “3"-strips

for the K-graph in(a).

filled with more thank{") i-components. Since eadhcomponent contains nodes, and thus
contributes a single factog, we obtain the following expression for the generating function
attaching thd-components:
i (i)
K K

m—1

/i o .
Gla= 3 X o X gl (35

_g (= (.
K'=0ky'=0 K=o

Here the numben//; is the ared=number of nodesof the firsti-strip.
As defined aboveG; can be interpreted as the generating function of all partitions with largest
part </ and number of partssm; . Therefore

Gi(q)= (36)

/|+m|}
m;
q

Before ending this subsection, let us return to Lemma 3. We have stated above that attaching
i-components corresponding to the right-moesticancy corresponds to filling the firststrip.
However, some caution needs to be taken, since in constructing the principal region of the first
i-strip we have extended the profile of the K-graph by drawing a plain of width, in the first

row to the right of theNth cliff. This clearly can only be done for all=1,...n—1, if
L-W=n—-1-hy. If L is the smallest possible value bffor which a K-graph of widthW is
possible, i.e.,

L&=W+x, 0=x=n-1, (37)
with x fixed by (32), we have
X=L—W=(Ls—2k)—(W-2k)=r—hy, (38

where we have used Lemma 3 and the definitid®) of r. Since we requirex to be at least
n—1—hy we should thus have that=n or n—1. For simplicity we now assume=n.

2. Calculation of 7

To calculate the area of the firststrip, we use the simple property that the area remains
unchanged by deforming the strip by removing nodes from below and adding them from above.

We now choose to deform thestrip such that its upper side corresponds to the profile of its
parent graph, being labelled ny. For the example of Fig. 6 this is shown in Fig. 7.

From this particular choice of deformation we can simply compute the areanoasr
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FIG. 7. The deformation of the first “3"-strip of the K-graph of Fig. 6, yielding the first “3"-strip of its parent graph.

L+n—|—22 jmn_; /J (39

with | x| denoting the integer part of Here the first term corresponds to the area of the principal
region of thedeformed istrip and the second term to the area of the tail of the deformed strip. In
particular, to compute the former we use the fact that it takesl) i-components to move an
i-vacancy|of the type shown in Fig. ®)] upwards across a plain of widtm2-2i+j (j=1). To
compute the latter, we compute- (W+i—hy), using the result33).

Recasting the definitiof23) of the inverse Cartan matrix as

i—-1

/i(r=n)= 22 jmi_j+i

i(n—j)
n

i—1
(C Y= -2 (i-p)dj, (40)
p=1

and using the mod properti€$9) and (32) we thus obtain

. n-1 . i—1
Ar=m=meal 5 S e mLe b mze iy @

This proves(31) for r=n

3. Proof of Gaussian form

It remains for us to prove that the filling of tH¢+1)-th i-strip is bound by that of th¢th
i-strip. _ _

Let us assume that we have plad€tl i-components in thgth i-strip, and that thex{’-th
component is ai-component of the form depicted in Figed Let us further assume that we have
already filled thg(j +1)-th strip with k](') i-componentgthis is of course always possipleéSince

(@) (b) (c)

1T 1T

N}

(d) 0

1

11T

TTTT

| NN
|

n-i+1

FIG. 8. (a) A typical i-component. The bold lines indicate part of the boundary of tseip. (b) The k(') th i-component
in both thejth and the(j +1)-th i-strip. (c) and(d) The two forbidden placements of an addmoﬂélﬂl) th i-component
(shown in grey in the (j +1)-th strip.

J. Math. Phys., Vol. 37, No. 2, February 1996

RIGHTS L



RIGHTS

Foda, Okado, and Warnaar: sﬂl ® smT)l /sﬁr?)2 polynomial identities 981

the (j +1)-th strip has identical shape as thth strip, but is translated to the left and down by
2(n—i) columns and rows, we have the configuration shown in Figb8

Our claim is now that upon attaching tlké)—th i-component in thej +1)-th strip we have
annihilated the correspondirigvacancy. To see this we consider two cases. Either the boundary
separating the strips extends at least one more entry to the right, segdfjgpr&he boundary
progresses upwards as in FigdB In the first case the lowest sequerckEff,plain,cliff } could be
ani-vacancy, but since the plain immediately above has widtti, this is not the case thanks to
Lemma 2. Hence placing thecomponent in Fig. &) as shown in grey is not allowed. In the
second case, the middle sequercHff,plain,cliff} could be ani-vacancy, but again the plain
immediately above has width—i and we can once more apply Lemma 2. Hence also the
placement as shown in Fig(d8 is forbidden.

B. The general r case

As remarked at the end of Sec. VII A 1, only fo=n andn—1 can we always draw a plain
of width i —hy to the right of theNth cliff without violating the conditionV+i—hy=<L, for any
i. If L—2k=r, we can still do so for all<r. Hence for these cases the principal region of the
i-strips can still be defined as in Sec. VII A 1. However, iferr +a (a>0), we have to reduce the
principal regionP by removing the part oP which would be occupied by the laatcomponents
to be attached, iP were to be completely filled from left to right. Of, course, in this case the tail
no longer is a rectangle, but has a profile of two plains and two cliffs. An example of this reduction
is shown in Fig. 9.

The above considerations lead to the following simple modificatio(89):

i—1 n-r—1

/=22 imis= 2 (N=T=p)dn-ip
j=1 p=1

n-r—1
L+n—i+ pzl N—r—p)énip 22 jmp / J

n-r—1

:zjzljmi—j E (N=r—p)dn- ipt

L+n—r—22 im,_ ,)

o n-r—1
=/i(r=m+ ((”n e LT S P s MR

which proves the claing31). Here we note that to obtain the first line @?2) one not only has to
subtract the ternx ,(n—r—p)é,_; , to account for the reduction of the principal region, but also
to add this same term within thd. This occurs since the effective length available for the tail of
thei-strips has of course increased by the decrease of the principal regierFig. 9.

C. Fermionic form for F;(2Aq,Ay)

We now have computed the number of nodes of the parent associatecasowell as the
generating function for adding the g-components to this parent. Collecting these two results, we
obtain the following expression for the generating functibp(2A,,A,) of K-graphs in
C(2A,Ay):

Proposition 1:

i+ m
Fu2Ag A= q'c mH[ m}

(43
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T | s

P
]

I L

FIG. 9. Reduction of the 3-strips of Fig. 6. Recalling thatr +a, we need fori=3 andn=4 to consider the cases
a=0,1,2.

with / given by (31) and (32) and with the sum taken over aiﬁe(ZZO)(”’l) satisfying
k+=""lim;=0.

VIIl. THE GENERAL CHARACTER

In this section we calculaté (Ay+ AjAy) for arbitraryj(0<j<n—1). As we have already
mentioned in Sec. Il, we count the weights in the principal picture, so that any fermionic form can
be reduced to one of the above form.

First consider the following injection;

LA+ A A= +§(2M0,Ay),

(44
p:(}\o,...,)\L)Hp,,
wherep’=(2Aq,Ao+Aq,....Ag+Aj_1,0g,...,A ). In terms of K-graphs, we have
S Ao+ Aj A — 14 (2h0,Ay),
(45)

G—G'.
HereG' is obtained fronG by placing the rectangle of widthand heighH ' in the left-hand side
of G (see Fig. 10 where,H being the height ofG, H' is determined byH' —H=0 or n—j,
H'enZ—k. It is clear that the image under the injectigd5) is the set of K-graphs in

Z1+j(2A,Ay) having the lowest plain of width at leajt
Now let us recall that we have established the following bijection in the preceding sections:

| . e
G: H| 7 N N -

1 |

<j>

FIG. 10. Embedding of a K-graph iy (Ag+Aj,A)) into % ;(2A0,A)).
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PL2Ao, A ) ={(M,(Fy,... Fro1))}. (46)

Here m'=(m,,...,m,_,), satisfying(19), characterizes the parent graph, @rdis the Ferrers
graph of a partition with largest past/; and number of partssm; . Regarding the image of the
injection (45), the following question arises: How can we characterize K-graphs having the lowest
plain of width at leasf as elements in the right-hand side of the bijectidf)? The answer is
given by the following.

Proposition 2:A K-graph in & (2A4,A,) has a lowest plain of widthv,=]|, iff, for n—]j
+1<i=<n-1, the smallest part in the Ferrers grdphhas at leasi+j—n nodes.

To prove this, letG be such a K-graphP its parent graph, and1(G) and M(P) the
corresponding interpolating matrices. We wif§ G) as in(14) and M (P) as

M(P)_ Co+C1 e Ci,l-l-Ci A CNfl+CN (C 0)
n-c; -+ Nn—¢ - N—Cy o

After removing g-components such that the firgiolumns ofM (G) equalM(P), we must have
thatw; ;=] +c;.

We wish to prove the above assertion by inductioni oRor i =0, the assertion is clear from
the assumption of the proposition. Next, let us assume the assertion foiLet us also assume
that we have arrived at the minimal gap corresponding 1q+c; . In order to prove the assertion
for i, we have to show that we can remove an-(c;)-componeni — c;_, times strictly horizon-
tally. This can indeed be shown through straightforward, though tedious, consideration of the
profile, and the conditions on its various segments. Proposition 2 follows from the above state-
ment.

Applying Proposition 2, we immediately obtain

/’+m
FL(Ag+AjAY=2 qmC “”QH ! (47
q
where
n-1 J n-1
Q= > (i+j-n) -——Elm——m‘C En-j
i=n—j+1
A=l s~ (i+j—me(i+j—n),
:[C_l(Lén,1+ér+én,j_Zrﬁ)]i . (48)
Here/; is defined in(31), and @ in (5).
In conclusion, we have the general form of the fermionic sum:
Theorem 3:
‘1071*7 ‘tc - / +m|
FL(AgtAj,A Q=2 gme ™ [[
= q
(49)

/=C Y L&, 1+6+6, ;,—2m),

where the sum is taken over afie (Z-o)" ! satisfyingk+ ='_im;=0, and withr determined
from L+ —2k=r, 0<r<n.
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IX. SUMMARY AND DISCUSSION

In this paper we have presented a method to compute finite analogs of the branching functions
of the coset

sl(n),®sl(n); /sl(n),. (50)

Our approach, based on a direct counting of Ferrers graphs related to the crystal base formulation
of the HWMs of s]fﬁ), leads to what are known dsrmionic polynomialsThis complements
earlier results of Ref. 5 where the same finite analogs of branching functions were computed, and
the result was expressed in termshafsonic polynomials

Equating these two results, as formulated in the Theorems 1 and 3, usifg8Egve obtain
the main result of this paper:

Theorem 4: Let m and € be (n—1)-dimensional vectors with entriesmj;=m; and
() =i j, respectively. Also, leC be the Cartan matrix o$l(n) and 77" the Weyl group of
sI(n). Defining the functiorb_; as in(11), the following polynomial identity holds for alj,k
=0,...n—1:

Nl o g = L. .
g tm-me e, T (Mm+C 7 (Ley_1+e+e,j—2m));
=1

e (Z=g)" 1 m; q

2_1A"12
=qATINDE 3, (detw)by (At Aj i tp—W(AgT A +p), (5D
with 0<r=n fixed by L+ j—2k=r and with the sum ovem restricted by
k R
ﬁ+(C‘1m)nfleZ- (52)

Letting L—oc we obtain the followingg-series identities for the branching functions of the
coset(50). _
Corollary 1: Let Q be the root lattice and”” be the Weyl group o&l(n). Then

qrﬁtc_lrﬁfrﬁtc_lén,j

12 0A 12
q(‘AJ‘ |Ak‘ )2 E Hn—l
e (7)1 i—1(Dm,

q\Aj+p\2/2(n+2)—\Ak+p|2/2(n+1)

2_ (detW)9(n+2)(Xk+,3)—(n+1)w(Xj+E),<n+1)(n+2)(Q),

() * =
(53
with the sum ovem again restricted by52), and with©, , defined by
O Q)= 2 gl P, (54)
aeQ

for AeS'1CA,.

We note that the left-hand side 83) coincides with the character expressions of Lepowsky
and Primé for the Z,-parafermion conformal field theory.

The polynomial identitie$51) proven in this work are, strictly speaking, not new, since under
level-rank duality they map onto identities related to the coset
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s1(2),-1®51(2)1/s1(2),,. (55)

The latter were conjectured in Refs. 9 and 17, and proven in Refs. 18—20. However, the proof

presented here igtrinsically of sT(n) type, and we expect it admits generalization to the more
general coset

Sm/®smmlsm/+m- (56)

Results related to general(2)-type cosets were discussed in Ref. 21. The fermionic character
form for certain sectors of the higher-rank parafermions were proven in Ref. 22.

For the case o!’;@, the paths considered in this paper admit yet another representation in
terms of Ferrers graphs. These graphs, obeying entirely different conditions than our K-graphs,
were introduced in Ref. 23. They are also more general, in the sense that they lead to character
expressions for abl(2) cosets of types, , 1, including rational values of . Results for this type
of coset have been discussed in Refs. 24 and 25.

NOTES ADDED:

After this work was completed, it was brought to our attention that the main concepts intro-
duced in this work are analogous to, though intriguingly different from, concepts that are essential
to the theory of modular representations of the symmetric gréfegr. the precise definition of
some of the following terminology, see for example, the book by James and K8&rbeparticu-
lar, our K-graphs of the cosef,, ; ; are known asi-regular Young diagrams, oyrarent graphs
are analogous tm-cores our Gaussian polynomials generate the analogs-gfiotients our
g-components are analogousitmok-ribbons and our counting procedure is very much related to
the evaluation of Kostka—Green—Foulkes polynomials. However, there are differences, due to the
fact that our K-graphs obey additional conditions.

Now, to make things even more intriguing, we also learned that the conditions obeyed by our
K-graphs are almost identical to, though stronger than, those obeyed by Young diagrams that
parametrize irreducible representationssdfn) which remain irreducible under restriction to
sl(n—1). We hope to report on these interesting relationships in future publications.

In a recent preprint A. Schilling has given a recursive proof of fermionic forms for the cosets
referred to in Eq(56).%”
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