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I. INTRODUCTION

Consider the affine algebrasl(n)̂ l , where~n21! is the rank andl is the level.1–3 Following
Refs. 4 and 5, the branching functions of the coset

C n,l 1 ,l 2
5sl~n!̂ l 1^sl~n!̂ l 2 /sl~n!̂ l 11l 2

~1!

are characters of the highest weight modules~HWMs! of Wn algebras,
6 whereW2 is the Virasoro

algebra.7 We are interested in computing these branching functions.

A. q -series identities

An important observation, made independently in Ref. 8 in the context of affine algebras and
in Ref. 9 in the context of branching functions, is that different approaches to computing the
characters lead to completely different expressions for them. Equating different expressions of the
same character leads to generalizations of the Rogers–Ramanujan identities. In the present work,
we are interested in the identities related to the branching functions.

1. Boson –fermion identities

Because one side of these identities is generated using operators that obey bosonic commu-
tation relations, while the other is generated using operators that obey fermionlike exclusion
principles, these identities are also known as boson–fermion identities.

In Ref. 5, the branching functions of the cosetC n,l 1 ,l 2
were obtained by counting certain

configurations, known asweighted paths. These paths appear naturally in using the corner transfer
matrix method to solve statistical mechanical models.10 The expressions obtained are of the
bosonic type. In the present work, we restrict our attention to the cosetC n,1,1, and obtain expres-
sions for the branching functions by counting the Ferrers graphs that appear in the crystal base
description of the HWM’s ofsl(n)̂1. The expressions obtained are of the fermionic type, and
finitize the Lepowsky and Primc character formulas.8
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2. Polynomial identities

In fact, we do not work directly in terms of the characters, which are formal infinite series.
Instead, we work in terms of polynomials which depend on a parameterL, and reduce to the
characters in the limitL→`. In that sense, the identities we obtain are stronger than identities
between characters.

Equating the expressions of Ref. 5, and those obtained in the present work, we obtain poly-
nomial identities, one for each branching function ofC n,1,1. For fixedn, there areO ~n2! such
functions, and corresponding identities. These polynomial identities are generalizations of those
considered by Schur in his approach to provingq-series identities.11

B. Two ways to count

Though the Ferrers graphs that we count are in one-to-one correspondence with the weighted
paths, the expressions that we obtain are different from those of Ref. 5 because our approach to
counting these objects is inherently different. We wish to outline the usual method of counting, in
order to emphasize the contrast to ours.

1. Indirect counting: Sieving

In Ref. 5, the counting was achieved using asieving methodto obtain recurrence relations
which can solved. The main idea of the sieving approach can be summarized as follows:12

Suppose one wishes to count the number of objects in a certain classP0 which satisfy certain
conditions.13 This is typically a difficult problem, since the conditions satisfied byP0 can be quite
complicated. However, one can approach itindirectly as follows:

As a first step, one considers a larger class of objectsQ0, that includesP0, but satisfies weaker
conditions, and hence is easier to evaluate. Suppose one manages to do that. The next step would
be to evaluate the differenceP15Q02P0 , and subtract it to obtainP05Q02P1 ~hence the name
sieving!. However, evaluatingP1 directly is once again typically just as hard as the initial problem
of evaluatingP0. Hence, it should also be evaluated in two steps: We consider a larger class of
objectsQ1 that is easier to evaluate, and subtract that of the differenceP25Q12P1 . We obtain
P05Q02Q11P2 . It is easy to see how the above procedure generalizes to give
P05Q02Q11•••1Qeven2Qodd1••• .

The objects we are interested in—Ferrers graphs and paths—have dimensions. For largeri , Pi

typically contains larger objects. If there are no restrictions on the dimensions of the objects being
counted, then the above sieving procedure continues indefinitely. If there are such restrictions, then
for sufficiently largei , the procedure terminates. Either way, the procedure amounts to writing a
recurrence relation for the set$P0 ,P1 ,...% and solving it.

2. Direct counting: Sectoring

In contrast to the above, the approach used in this paper relies on a direct counting of the
objects of interest. The main idea is to divide the set of all objects into sectors, each of which is
easier to compute, and then to sum over all sectors. An outline of this approach is given below.

C. Outline of proof

~1! Given the set of graphs we wish to count, we propose to distinguish a certain subset to be
calledparent graphs. The remaining graphs are callednon-parents.

~2! We propose a set of rules which reducesanynon-parent graph uniquely to a parent graph by
removing nodes from it. Using these rules we can decompose any non-parent graph into a
parent graph plus a set of objects calledg-components. The rules are such that a parent graph
cannot be further reduced to another parent graph.

966 Foda, Okado, and Warnaar: sl(n)̂1 ^ sl(n)̂1 /sl(n)̂2 polynomial identities

J. Math. Phys., Vol. 37, No. 2, February 1996



~3! We show that the above set of rules is invertible. Each non-parent can be uniquely obtained
from a parent by attaching g-components. Consequently, the set of non-parents which reduce
to a given parent may be regarded as thedescendantsof that parent.

~4! From the above, we classify the set of all graphs into sectors. Each sector contains precisely
one parent plus its descendants.

~5! We show that, given a parent graph, the set of all its descendants is generated by a product
over Gaussian polynomials.

~6! Since we know the explicit expression for the Gaussian polynomials in each sector, summing
over all sectors, with the proper weighting which follows from the weight of the parent graph,
we obtain the desired generating function of the graphs.

D. Plan of paper

In Sec. II, we outline a number of technical details related to weighted paths on the set of
dominant integral weights ofsl(n)̂2, and recall the bosonic generating function as evaluated in
Ref. 5. In Sec. III, we introduce the main objects of this paper, K-graphs, and discuss their
properties. In Sec. IV, we describe the special set of K-graphs called parents. In Sec. V, we
describe the graph components to be added to a parent to generate more general K-graphs, called
descendants. In Sec. VI, we describe how the descendants are obtained from their parent, and why
each graph is either a parent, or descends from a uniquely defined one. In Sec. VII, we evaluate the
number of descendants of a certain parent. In Sec. VIII, we obtain fermionic expressions for the
finite analogs of all branching functions of the cosetC n,1,1. In Sec. IX we summarize our results
to obtain the main theorem of this paper: polynomial identities for the finite analogs of the
branching functions. This section also contains a discussion of our results.

II. PATHS

In this section, we consider weighted paths on the set of level-2 dominant integral weights of
sl(n)̂ , and recall their generating function as computed in Ref. 5.

A. Roots and weights

We start with some definitions from the theory of affine algebras.1 Let Li ,a i ( i50,...,n21),
and d be the fundamental weights, the simple roots, and the null root of the affine Lie algebra
sl(n)̂ , respectively. The subscripti of Li can be extended toiPZ by settingL i5L i 8 for
i[ i 8~modn!. Let î5L i112L i ( i50,...,n21) be the weights of the vector representation of
sl(n), andr5( i50

n21L i be the Weyl vector.
Remark 1:For the rest of this work, we will simply usea[b to indicatea[b ~modn!.
Let P5ZL0%•••%ZLn21%Zd be the weight lattice.1,2 There is an invariant bilinear form~•u•!

on P defined by

~L i uL j !5min~ i , j !2
i j

n
, ~L i ud!51, ~dud!50, ~2!

for 0< i , j<n21.
We are not interested in the full weight lattice, but in certain restrictions of it:
Definition 1: ~P2

1! P2
1 is the set of level-2 dominant integral weights, i.e.,

P2
15$L i1L j u0< i< j<n21%.
Examples ofP2

1 in the case ofn52, and 3 are shown in Fig. 1.
We can define paths onP2

1 as follows:
Definition 2 (paths):For LPZ>0, we define a pathp asp5(l0 ,...,lL) with all l iPP2

1 and
l i112l iP$0̂,1̂,...,n2 1̂%.

We are interested in particular sets of paths of lengthL defined by the following.
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Definition 3: @P L(L i1L j ,Lk)#.

P L~L i1L j ,Lk!5$p5~l0 ,...,lL!ul05L i1L j ,lL5Lk1L i1 j2k1L%. ~3!

For a pathpPP L(L i1L j ,Lk) we callL i1L j ,Lk , andL its initial point, boundary, and length,
respectively.

We note that P L(L i1L j ,Lk) is a finite analog ~length L! of the set of
(Lk ,L i1 j2k)-restricted paths of Ref. 14 and 15.

With the paths inP L(L i1L j ,Lk) we associate a special pathp̄ called the ground-state path,
as follows:

Definition 4 (ground-state path p)̄:

p̄5~Lk1L i1 j2k ,Lk1L i1 j2k11 ,...,Lk1L i1 j2k1L!PP L~Lk1L i1 j2k ,Lk!.

Note that the initial point of the ground-state path may be different from that of the paths in
P L(L i1L j ,Lk).

We can encode a path in terms of a sequence of integers as follows:
Definition 5 (sequence of integers):For a pathp5(l0 ,...,lL)PP L(L i1L j ,Lk) we define a

sequence of integersi(p)5(m0 ,...,mL), where m̂ l 5 l l 11 2 l l , and where we have used
lL115Lk1LL1 i1 j2k11. We denote the elementml of i(p) by i(p) l .
Note thati( p̄) of p̄ in Definition 4 is given byi( p̄) l [i1 j2k1l .

Example 1:The ground state pathp̄ associated toP 6(L i1L2 i ,L0) for n53:

p̄5~2L0 ,L01L1 ,L01L2,2L0 ,L01L1 ,L01L2,2L0!,

i~ p̄!5~0,1,2,0,1,2,0!.

Example 2:A path in p~1!PP 6~2L0,L1! for n53:

p~1!5~2L0 ,L01L1 ,L01L2 ,L11L2 ,L01L1 ,L01L2 ,L11L2!,

i~p~1!!5~0,1,0,2,1,0,2!.

Example 3:A path in p~2!PP 6~2L0,L0! for n54:

p~2!5~2L0 ,L01L1,2L1 ,L11L2,2L2 ,L21L3 ,L01L2!,

i~p~2!!5~0,0,1,1,2,3,2!.

FIG. 1. Examples of the setP2
1 . A directed bond froml to l8~l,l8PP2

1! indicates that a path can go froml to l8. ~a!
n52, ~b! n53.
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B. Weighted paths

Let p be a path andp̄ be the ground-state path associated top, with integer sequences
i(p)5(m0 ,...,mL) and i( p̄)5(m̄0 ,...,m̄L), respectively. We define an energy functionE by the
following.

Definition 6 (energy of a path):

E~p!5 (
l 51

L

l „u~m l 212m l !2u~m̄ l 212m̄ l !…, ~4!

with u the step function given by

u~m!5 H 0 ~m,0!

1 ~m>0!. ~5!

1. Connection with cosets of affine algebras

Consider the cosetC n,1,1. The branching functions corresponding to this coset can be defined
as follows. LetV~L! be ansl(n)̂ HWM with highest weightL, and letuL& be its highest weight
vector. Consider the tensor product decomposition

V~Lk! ^V~L i1 j2k!5 (
LPP2

1
VLk ,L i1 j2k ,L

^V~L!. ~6!

Among all vectors in the tensor product on the left-hand side,VLk ,L i1 j2k ,L
is the space of highest

weight vectors whose weights are equal toL modZd. The connection betweenVLk ,L i1 j2k ,L
, and

P L(L i1L j ,Lk) is as follows: It has been shown in Ref. 14 that in the limit ofL→`, there is a
bijection between the set of base vectors inVLk ,L i1 j2k ,L i1L j

, and the set of paths in
P L(L i1L j ,Lk). This implies that the paths ofP L(L i1L j ,Lk) are characterized by weights.
Under this bijection the ground-state path associated toP L(L i1L j ,Lk) is identified with uLk&
^ uL i1 j2k&PVLk ,L i1 j2k ,Lk1L i1 j2k

.
It turns out that the weight of a path can be expressed in terms of its energy function as
Definition 7: @weight of a pathpPP L(L i1L j ,Lk)#

wt~p!5L i1L j2E~p!d. ~7!

2. Finite analogs of branching functions

Given the above considerations, we define finite analogs of the branching functionsBL for the
cosetC n,1,1 as the generating function of the weighted paths inP L(L i1L j ,Lk):

BL~L i1L j ,Lk!5 (
pPP L~L i1L j ,Lk!

qE~p!. ~8!

C. Bosonic expressions

We are interested in expressions for the generating functionBL(L i1L j ,Lk). In Ref. 5, the
following bosonicexpression forBL(L i1L j ,Lk) was obtained using recurrence relations based
on the sieving method explained in Sec. I:

Theorem 1: Let l5( i50
n21l2̂i1ZdPP, with all li>0 and( i50

n21l i5N. For suchl set

F FNl G G
q

5
~q!N

~q!l0
•••~q!ln21

, ~9!
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with (q)m5Pk51
m (12qk)(m>1) and (q)051. Also, letW denote the Weyl group ofsl(n)̂ ~see,

e.g., Ref. 5, p. 91!. Then

BL~L i1L j ,Lk!5q2uL i1 j2ku
2/2 (

wPW
~detw!bL,i1 j2k„Lk1L i1 j2k1L1r2w~L i1L j1r!…,

~10!

where

bL,i~l!5qul2L i1Lu2/2 F FLl G G
q

. ~11!

For proof we refer the reader to Ref. 5.

III. K-GRAPHS

Using matrices as intermediate structures, we give an alternative representation of the
weighted paths onP2

1 in terms of Ferrers graphs~or, equivalently, Young diagrams! which satisfy
certain restrictions. We refer to these Ferrers graphs, which were introduced and extensively
studied by the Kyoto school~see Refs. 14 and 16 and references therein!, as K-graphs.

A. Interpolating matrices

In this subsection, we associate a matrixM (p) with two rows to each path
pPP L(L i1L j ,Lk).

Definition 8 (domain wall): Let i(p)5(m0 ,...,mL) be the integer sequence of
pPP L(L i1L j ,Lk). If m l −ml 21[hl 11~0,hl ,n!, we say that there is a domain wall in the
sequencei(p) of heighthl at positionl .

Given a pathp with N domain walls of heightsh1 ,...,hN at the positionsx1 ,...,xN , respec-
tively, we define the interpolating matrixM (p) as follows:

Definition 9 (interpolating matrix):

M ~p!5S x1 ~x22x1! ••• ~xN2xN21!

h1 h2 ••• hN
D . ~12!

Example 4:The interpolating matrix ofp~2! in Example 3 is

M ~p~2!!5S 1 2 3

3 3 2D .
B. K-graph representation of a path

Let p be a path andM (p) its interpolating matrix of the form

M ~p!5Sw1 w2 ••• wN

h1 h2 ••• hN
D . ~13!

Consider a two-dimensional square lattice with an (x,y)-coordinate system. Set
W5w11•••1wN , H5h11•••1hN . Starting from~0,2H!, we draw a polygon by movingw1
steps to the right, thenh1 steps up, thenw2 steps to the right, etc., until we reach the point~W,0!.
Connecting~0,2H! and~W,0! with the origin by straight line-segments, the resulting graph isthe
Ferrers graphor Young diagramcorresponding to the original path@see Fig. 2~a!#.

Definition 10 (K-graph):A Ferrers graph obtained from a pathp on P2
1 , as described above,

is called a K-graph.
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Definition 11: ~G L(L i1L j ,Lk)! G L(L i1L j ,Lk) is defined as the set of K-graphs corre-
sponding to the set of pathP L(L i1L j ,Lk).

Definition 12 (profile of a graph):The set of horizontal and vertical line segments used to
construct a K-graph form the profile of a graph.

Example 5:The K-graph corresponding to the interpolating matrix of Example 4 is shown in
Fig. 2~b!.

Definition 13 (concave corner):A corner of the formd.
Definition 14 (convex corner):A corner of the formc.
Definition 15 (plain of width w):A horizontal line segment ofw nodes~or boxes! marked by

a concave corner to its left and convex corner to its right.
Definition 16 (cliff of height h):A vertical line segment ofh nodes~or boxes! marked by a

convex corner at its bottom and a concave corner at its top.
Notice that a cliff on a K-graph corresponds to a domain wall in the corresponding integer

sequence.
Remark 2:From now on, we concentrate on K-graphs inG L(2L0 ,Lk), unless otherwise

stated.

1. From a graph to its sequence of integers

For a graphGPG L(2L0 ,Lk), we can recover the corresponding integer sequencei(p) as
follows. Let

M5Sw1 w2 ••• wN

h1 h2 ••• hN
D ~14!

be the interpolating matrix corresponding toG. SetH5h11•••1hN , and take the integer se-
quence (0,1,2,...,n21,0,1,...,n21,0,1,...) of lengthH1L11. Starting from the left moving to
the right, we now keep the firstw1 integers, then remove the nexth1 integers, then keep the next
w2 integers, remove the nexth2 integers, etc. The remaining sequence of exactlyL11 integers
corresponds toi(p).

2. From a graph to a path

To go from a graphGPG L(2L0 ,Lk) to its corresponding pathp5(l0 ,...,lL) on P2
1 we

simply first construct the sequence of integersi(p)5(m0 ,...,mL) as described above. We then
computell +15ll 1m̂l usingl052L0.

FIG. 2. ~a! The general form of a K-graph.~b! A K-graph inG 6~2L0,L0! for n54.
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3. Conditions on G L(2L0 ,Lk)

Among all K-graphs, those inG L(2L0 ,Lk) are characterized by the following conditions:
K1: W<L, with W the number of nodes in the first row.
K2: H1k[0, with H the number of nodes in the first column.
K3: hi211wi1hi[0 and 0,hi,n for 1< i<N, with h05n.
K1 is obvious.K2 is obtained by considering theLth component ofi(p) and the boundary

condition. To obtainK3, suppose thei th cliff occurs at ther th position. We can assumel r 5 la

1 Lb ,l r2wi
5 La1 Lb2wi

forsomea,b.Nowwehavei(p) r21[ b2 1, i(p) r2wi
[ b2wi . Since

there are cliffs at the r th and (r2wi)-th position, we should havei(p) r[a and
i(p) r2wi21[a21. Thus we gethi[a2b, hi21[b2wi2a, which givesK3.

C. Fermionic expressions

We now wish to calculate the following sum.

FL~L i1L jLk!5 (
GPG L~L i1L j ,Lk!

quGu/n, ~15!

where uGu denotes the number of nodes inG. Regarding the above, we have the following
theorem.14,16

Theorem 2:Let p be a path inP L(L i1L j ,Lk) andG(p) be the corresponding K-graph. The
number of nodes ofG(p) is given by

uGu5 (
l 50

n21

ml , ~16!

whereml is determined from

~Lk1L i1 j2k!2wt~p!5 (
l 50

n21

ml a l . ~17!

Using

~L i ua j !5d i j ~ i , j50,...,n21!,

we obtain

ml5„L l u~Lk1L i1 j2k!2wt~p!… ~ l50,...,n21!.

Since we define the sum~15! in the ‘‘principal picture,’’ i.e., each node has equal weight 1/n,
it is invariant under the Dynkin diagram automorphisms. Thus we can reduce the calculation of
~15! to that ofFL(L01L j ,Lk). From now on, we hence assumei50.

Setting (Lk 1 L j2k) 2 (L0 1 L j ) 5 ( l 50
n21m̄l a l , we have( l 50

n21m̄l 5 k( j 2 k) for j>k,5(k
2 j )(n2k) for j,k. CalculatinguLku

21uL j2ku
22uL j u

2 and comparing~15! with the bosonic
expression, we obtain

FL~L01L j ,Lk!5q~ uLku
21uL j2ku

22uL j u
2!/2BL~L01L j ,Lk!. ~18!

In the remainder of this paper we will compute a fermionic type of expression forFL . Given
~18! and the bosonic expression~10! for BL , this gives rise to polynomial identities for the finite
analogs of the branching functions of the cosetC n,1,1.
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IV. PARENTS

From the set of all K-graphs inG L(2L0 ,Lk) we select a subset of graphs to be called parent
graphs, or simply parents. LetmW t5(m1 ,...,mn21)P~Z>0!

n21, such that

k1 (
i51

n21

imi[0, ~19!

and letM be the interpolating matrix of a graphGPG L(2L0 ,Lk), with entries

M ~p!5Sw1 w2 ••• wN

h1 h2 ••• hN
D . ~20!

Definition 17~parent associated to mW !: G is the parent associated tomW if

h1 ,...,hmn21
5n21

hmn21
11,...,bmn211mn22

5n22

~21!
A

hN2m111 ,...,hN51,

with N5( i51
n21mi , and

hi211wi1hi52n, 1< i<N, ~22!

where we recall thath05n.
Example 6:The K-graph ofp~2! shown in Fig. 2~b! is the parent associated tomW t5~0,1,2!.

A. The number of nodes of a parent graph

Let C be the Cartan matrix ofsl(n), i.e., Ci j52d i , j2d i , j212d i , j11( i , j51,...,n21). The
inverse ofC is then given by the following formula:

~C21! i j5H i ~n2 j !

n
~ i< j !

j ~n2 i !

n
~ i. j !.

, ~23!

With this definition we have the following lemma:
Lemma 1:The number of nodes of the parent associated tomW is given bynmW tC21mW .
Though the proof of this statement is rather elementary, we need to take some care as some of

the entries ofmW can actually be zero. In the following we use the notation^ i & to denote
(j51
i mn2 j . Clearly,^ i &2^ i21&5mn2 i . We now compute the number of nodes of a parentN(mW )

as follows:

N~mW !5(
i51

N

(
j51

i

hiwj5 (
k51

n21

(
i511^k21&

^k& S (
l 51

k21

(
j511^l 21&

^l &

1 (
j511^k21&

i D hiwj . ~24!

Now use~22! andh11^ i21&5•••5h^ i &5n2 i to get
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N~mW !5 (
k51

n21

(
i511^k21&

^k&

~n2k!S (
l 51

k21

(
j511^l 21&

^l &

$2l 2~h^l 21&2~n2l !!d j ,^l 21&11%

1 (
j511^k21&

i

$2k2~h^k21&2~n2k!!d j ,^k21&11% D . ~25!

Finally, after some changes of variables, we obtain

N~mW !52(
k51

n21

(
l 51

k21

l ~n2k!mkml 1 (
k51

n21

~n2k! (
i51

mn2k S 2ik2 (
l 51

k

(
j51

mn2l

~h^l 21&2~n2l !!d j ,1D
52(

k51

n21

(
l 51

k21

l ~n2k!mkml 1 (
k51

n21

(
i51

mn2k

k~n2k!~2i21!. ~26!

Summing overj and i this results innmW tC21mW .

V. g-COMPONENTS

Now that we have distinguished a subset of all K-graphs as parents, we wish to describe the
minimal connected configuration of nodes that can be removed or added to a K-graph in
G L(2L0 ,Lk) to obtain another K-graph inG L(2L0 ,Lk). Since, as we will see in Sec. VII, these
configurations are generated by Gaussian polynomials, we call themg-components. Eventually,
we will show that those graphs which are related by addition and removal ofg-components belong
to the samesector, and we will use this observation to relate any non-parent graph to a parent
graph.

Definition 18: @~i,j!-component# For all i51,...,n21, and all j51,...,i , we define an (i , j )-
component as a connected configuration ofn nodes, as shown in Fig. 3.
Some important characteristics of an (i , j )-component are the following.

G1 It consists ofn nodes.
G2 It has total heighti .
G3 It has total widthn2 i11.
G4 It has~at most! two cliffs, one~the lower! of height i2 j and one~the upper! of height j .
We further note that for an~i,i!-component the lower cliff vanishes, resulting in a configura-

tion with a single cliff.
Definition 19 (i-component):An ~i,j!-component for arbitraryj is called ani-component.
Definition 20 (g-component):An ~i,j!-component for arbitraryi andj is called ag-component.

FIG. 3. An (i , j )-component.
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We are now interested in the addition/removal ofg-components to/from a K-graph. Clearly, in
adding or removing ag-component to or from a K-graph inG L(2L0 ,Lk), we demand that the
resulting graph is again a graph inG L(2L0 ,Lk). However, on top of this we impose one addi-
tional condition, which basically defines our sectors.

A. Removing an i-component

The removal of an~i,j!-component from a K-graph inG L(2L0 ,Lk) is allowed provided the
following two conditions are satisfied:

R1 The resulting graph is again a K-graph inG L(2L0 ,Lk).
R2 If j5 i as in Fig. 4, we demand thatw.2(n2 i ).
Definition 21 (i-candidate):An i-component one is allowed to remove from a K-graph is

called ani-candidate.
Since for any K-graph inG L(2L0 ,Lk) we havehj211wj1hj[0, three kinds of candidates

can occur.

~1! bj211wj1hj5n andwj21.1. In this case we can remove an (hj211hj ,hj )-component.
~2! hj211wj1hj52n andwj.2(n2hj ). In this case we can remove an (hj ,hj )-component.
~3! hj211wj1hj>3n. In this case we can remove an (hj ,hj )-component.

Scanning the profile of a non-parent graph, severali -candidates may occur.
Definition 22 (leading i-candidate):The leading i -candidate is the down- and left-most

i -candidate.~see Fig. 4.!

B. Attaching an i -component to a graph

Attaching ani -component to a K-graph inG L~2L0,Lk! is allowed provided the following
conditions are satisfied:

A1 The resulting graph is again a K-graph inG L~2L0,Lk!.
A2 We do not generate ani 8-candidate, withi 8. i .
Definition 23 (i-vacancy):An i -vacancy is a position on the profile such that one is allowed to

attach ani -component.
An important statement abouti -vacancies is the following. Given a sequence$cliff,plain,cliff %

of dimensionshj21,wj ,hj such thathj211wj1hj5n andhj211hj5 i , then the following holds:
Lemma 2:If wj115n2 i , the above sequence is not ani -vacancy.

To prove this, assume the above sequence is ani -vacancy. Hence we can attach an
( i ,hj11)-component as shown in Fig. 5~a!. Note that in doing so the height of thej th cliff
increases by 1 tohj8 5 hj 1 1, and the width of the (j11)-th plain decreases by 1 to
wj118 5wj11215n2 i21. Thus we compute

0,hj81wj118 1hj115hj1n2 i1hj11< i1~n2 i !1~n21!52n21. ~27!

FIG. 4. Removing an (i ,i )-component is only allowed whenw.2(n2 i ). The extra dotted lines in the resulting graph are
to indicate the nodes which are removed.
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Sincehj8 1 wj118 1 hj11[ n,weconclude thathj8 1 wj118 1 hj115 n, andhj8 1 hj115 i 1 1.How-
ever, these are the characteristics of an (i11)-candidate. By the second condition for attaching
i -components this contradicts our assumption that the initial sequence was ani -vacancy.

With the above lemma we note that two kinds of vacancies may occur. The first occurs if we
have a sequence$cliff,plain,cliff % of dimensionshj21,wj ,hj such thathj211wj1hj5n and
wj11.n2hj2hj11. In this case we can always attach an (hj211hj ,hj11)-component, as
shown in Fig. 5~a!. The second occurs if we have a sequence$cliff,plain,cliff % of dimensions
hj21,wj ,hj such that hj211wj1hj>2n. In this case we can always attach an
(hj21,1)-component@see Fig. 5~b!#.

VI. DESCENDANTS

In previous sections, we classified all admissible K-graphs into parents and non-parents. We
need to show that each non-parent is adescendantof a unique parent. More precisely, we show the
following.

~1! Given a non-parent graph, there is a reduction procedure, such that one can reduce it to a
unique parent graph.

~2! The reduction procedure is reversible: given a parent graph, there is a composition procedure
to recover the original non-parent graph.

Because the reduction procedure is reversible, any non-parent graph is a descendant of a
unique parent graph. Thus the set of all admissible K-graphs can be divided into nonoverlapping
sectors. Each sector contains and is labelled by a parent graph. Any admissible K-graph belongs to
one and only one sector.

A. Reducing non-parent graphs

Given a non-parent K-graph, we can reduce it to a parent graph as follows.
Red0 Seti5n21.
Red1 Search for the leadingi -candidate and, if it exists, remove it.
Red2 Repeat the above step until no morei -candidates are found.
Red3 Seti→ i21 and, if i>1, repeat Red1–Red3.
To prove that a reduced graph is indeed a parent, we proceed as follows: Consider a profile

with a sequence$cliff,plain,cliff % of dimensionshj21,wj ,hj , respectively. Suppose that the part of
the profile below the above sequence belongs to a parent, i.e.,hk211wk1hk52n andhk21>hk
for k51,...,j21. We wish to show that if the above sequence does not represent a candidate, it
belongs to a parent. From Sec. V A we see that unlesshj211wj1hj52n andwj<2(n2hj ) or
hj211wj1hj5n andwj2151, we always have a candidate.

In the first case we get 2n5hj211wj1hj<hj212hj12n and thushj21>hj . This is pre-
cisely the right sequence for a parent and we gethk211wk1hk52n andhk21>hk for k51,...,j .
The second case can, in fact, never occur. Sincehj221wj211hj2152n andhj22,hj21,n we
find thatwj21.1.

FIG. 5. ~a! Attaching an (hj211hj ,hj11)-component withhjÞ1. ~b! Attaching an~hj21,1!-component. The extra dotted
lines in the resulting graphs are to indicate the profile before attaching the g-component.
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B. Generating descendants from parents

Given the parent associated tomW , each cliff of heighti plus the plain immediately to the right
of this cliff forms ani -vacancy. Hence we havemi i -vacancies. To obtain an arbitrary descendant
of the parent under consideration, we proceed as follows.

Gen0 Seti51.
Gen1 Setj51.
Gen2 Attachkj

( i ) i -components to thej th i -vacancy counted from the right.
Gen3 Setj→ j11. If j<mi , go to Gen2. Ifj5mj11, set i→ i11, and if i<n21, go to

Gen1.
To properly interpret these rules, some important remarks need to be made. First, when we say

‘‘attach kj
( i ) i -components to thej th i -vacancy,’’ this should be understood as follows. Attaching

an i -component to ani -vacancy has the effect of moving the vacancy to the right. Hence attaching
thekth i -component means attaching ani -component to the image of thei -vacancy after attaching
the (k21)-th i -component. Second, it may occur that attaching ani -component to ani -vacancy
does not have the effect of moving thei -vacancy to the right, but annihilates the vacancy. Hence,
there are bounds on the numberskj

( i ). In the next section we will show that these bounds are as
follows:

0<kmi

~ i !<•••<k2
~ i !<k1

~ i !<l i , ~28!

with l i fixed by ~31!.

C. Reversibility

There remains the proof that our rules for attaching and removing g-components are revers-
ible. This is true by construction.

VII. PROOF OF GAUSSIANS

In this section we prove that for the case ofG L~2L0,Lk!, the generating function for attaching
the i -components to the parent graph associated tomW is given by the Gaussian polynomial

F l i1mi

mi
G
q

, ~29!

where

FNmG
q

5H ~q!N
~q!m~q!N2m

, 0<m<N,

0, otherwise,
~30!

and

lW 5C21~LeWn211eW r22mW !, ~31!

andeW i the (n21)-dimensional unit vector with entries (eW i) j5d i , j and with 0,r<n fixed by

L22k[r . ~32!

A. The r5n case

To prove the above result we first treat the simpler case ofr5n. In the next subsection we
then show how to modify this to obtain~31! for generalr .

We start with the following important fact, used extensively throughout this section:
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Lemma 3:ForGPG L~2L0,Lk!, letW be the number of nodes in the first row andhN be the
height of theNth ~uppermost! cliff @see Fig. 2~a!#. Then

W2hN[2k. ~33!

We prove this by implementing the conditions K2 and K3 of Sec. III B 3, defining the K-graphs
in G L~2L0,Lk!. Recalling thatW is the number of nodes in the first row of a K-graph, we have

W5(
i51

N

wi[2(
i51

N

~hi211hi ![hN22(
i51

N

hi5hN22H[hN12k, ~34!

which proves our claim.

1. i-strips

We are interested in the placement of thei -components. From the rules for placing the latter,
it is natural to definemi i-stripsas follows:

S1 We define thei -strip as consisting of two regions: a principal region and a tail. The
principal region is defined in terms of a top segment, a bottom segment, and a left and a right
segment. The left and right segments will be called left and right terminal. We start by defining the
principal region.

Consider the profile Pi of the K-graph after attaching alli 8-components, with
i 851,2,...,i21, but before attaching any component of heighti or higher.

If the Nth ~highest! cliff of Pi has heighthN , extend theceilingof Pi by drawing a horizontal
line of width i2hN starting from the top-right corner of the rightmost node of the top row of the
graph, and extending to the right. This line will serve as a ceiling to thei -components that we will
add shortly.

Consider the segment ofPi 2(n2 i ) columns to the right of the right-most cliff of heighti .
This will be the top segment of thei -strip. Let us denote this segment byPi

0.
Now we proceed to define the bottom segment of thei -strip. MovePi

0 to the left by 2(n2 i )
columns, and downward byi rows. Denote this shifted profile byPi

1. This is the bottom segment
that we are looking for.

Finally, close the figure formed by the top and bottom segments as follows: draw a plain of
width 2(n2 i ) followed by a cliff of heighti to the right~left! of Pi

0/Pi
1), called the right~left!

terminal, respectively. As a result, we now have a region enclosed byPi
0 ,Pi

1 and the left and right
terminals. This defines theprincipal regionof the first i -strip.

Next, we define the tail of the firsti -strip as follows: ComputeM[0 to be the largest integer
such thatW1 i2hN1M<L. The tail of thei -strip is a rectangle, of widthM and heighti , that we
place to the right of the principal region in the first row.

The principal region plus the tail define the complete firsti -strip. An example of the first
3-strip in a typical K-graph forsl(4)̂ is shown in Fig. 6~a!.

S2 We draw the secondi -strip by simply shifting the firsti -strip to the left and down by
2(n2 i ) columns andi rows, respectively.

S3 We repeat the step S2~mi21! times. That is, we define the~j11!-th i -strip by translating
the j th i -strip to the left by 2(n2 i ) columns and downwards byi rows. In Fig. 6~b! we have
shown the construction of the 3-strips for a typical example of a K-graph forsl(4)̂.

By construction, adding thei -components corresponding to thej th i-vacancy~counted from
the right! corresponds to filling thej th i -strip from left to right. In constructing an arbitrary
descendant, we will not necessarily fill the completej th i -strip. Furthermore, we will show below
that the filling of the~j11!-th strip is bound by the degree of filling of thej th strip. In particular,
we will show that if thej th strip is filled withkj

( i ) i -components, then the~j11!-th strip cannot be
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filled with more thankj
( i ) i -components. Since eachi -component containsn nodes, and thus

contributes a single factorq, we obtain the following expression for the generating function
attaching thei -components:

Gi~q!5 (
k1

~ i !
50

l i

(
k2

~ i !
50

k1
~ i !

••• (
kmi

~ i !
50

kmi21
~ i !

qk1
~ i !

1k2
~ i !

1•••1kmi

~ i !
. ~35!

Here the numbernl i is the area~5number of nodes! of the first i -strip.
As defined above,Gi can be interpreted as the generating function of all partitions with largest

part<l i and number of parts<mi . Therefore

Gi~q!5F l i1mi

mi
G
q

. ~36!

Before ending this subsection, let us return to Lemma 3. We have stated above that attaching
i -components corresponding to the right-mosti-vacancy corresponds to filling the firsti -strip.
However, some caution needs to be taken, since in constructing the principal region of the first
i -strip we have extended the profile of the K-graph by drawing a plain of widthi2hN in the first
row to the right of theNth cliff. This clearly can only be done for alli51,...,n21, if
L2W>n212hN . If Ls is the smallest possible value ofL for which a K-graph of widthW is
possible, i.e.,

Ls5W1x, 0<x<n21, ~37!

with x fixed by ~32!, we have

x5Ls2W5~Ls22k!2~W22k![r2hN , ~38!

where we have used Lemma 3 and the definition~32! of r . Since we requirex to be at least
n212hN we should thus have thatr5n or n21. For simplicity we now assumer5n.

2. Calculation of l i

To calculate the area of the firsti -strip, we use the simple property that the area remains
unchanged by deforming the strip by removing nodes from below and adding them from above.

We now choose to deform thei -strip such that its upper side corresponds to the profile of its
parent graph, being labelled bymW . For the example of Fig. 6 this is shown in Fig. 7.

From this particular choice of deformation we can simply compute the area overn as

FIG. 6. ~a! The construction of the first ‘‘3’’-strip for a typical K-graphG. The part ofG corresponding to the parent graph
is drawn with open nodes/boxes and the~already! placedi 8-components~i 851,2! are shown in grey. The bold segments are
the left–right terminals of the principal region~marked P!. The tail of the strip is marked with T.~b! The two ‘‘3’’-strips
for the K-graph in~a!.
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l i~r5n!52(
j51

i21

jmi2 j1 i bS L1n2 i22(
j51

n21

jmn2 j D Ync, ~39!

with bxc denoting the integer part ofx. Here the first term corresponds to the area of the principal
region of thedeformed i-strip and the second term to the area of the tail of the deformed strip. In
particular, to compute the former we use the fact that it takes~j11! i -components to move an
i-vacancy@of the type shown in Fig. 5~b!# upwards across a plain of width 2n22i1 j ~j>1!. To
compute the latter, we computeL2(W1 i2hN), using the result~33!.

Recasting the definition~23! of the inverse Cartan matrix as

~C21! i , j5
i ~n2 j !

n
2 (

p51

i21

~ i2p!d j ,p ~40!

and using the mod properties~19! and ~32! we thus obtain

l i~r5n!5
iL

n
22S (

j51

n21
i ~n2 j !

n
2(

j51

i21

~ i2 j !Dmj5L~C21!n21,i22~C21mW ! i . ~41!

This proves~31! for r5n.

3. Proof of Gaussian form

It remains for us to prove that the filling of the~j11!-th i -strip is bound by that of thej th
i -strip.

Let us assume that we have placedkj
( i ) i -components in thej th i -strip, and that thekj

( i )-th
component is ani -component of the form depicted in Fig. 8~a!. Let us further assume that we have
already filled the~j11!-th strip with kj

( i ) i -components~this is of course always possible!. Since

FIG. 7. The deformation of the first ‘‘3’’-strip of the K-graph of Fig. 6, yielding the first ‘‘3’’-strip of its parent graph.

FIG. 8. ~a! A typical i -component. The bold lines indicate part of the boundary of thei -strip. ~b! Thekj
( i )-th i -component

in both thej th and the~j11!-th i -strip. ~c! and~d! The two forbidden placements of an additional~kj
( i )11!-th i -component

~shown in grey! in the ~j11!-th strip.
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the ~j11!-th strip has identical shape as thej th strip, but is translated to the left and down by
2(n2 i ) columns andi rows, we have the configuration shown in Fig. 8~b!.

Our claim is now that upon attaching thekj
( i )-th i -component in the~j11!-th strip we have

annihilated the correspondingi-vacancy. To see this we consider two cases. Either the boundary
separating the strips extends at least one more entry to the right, see Fig. 8~c!, or the boundary
progresses upwards as in Fig. 8~d!. In the first case the lowest sequence$cliff,plain,cliff % could be
an i-vacancy, but since the plain immediately above has widthn2 i , this is not the case thanks to
Lemma 2. Hence placing thei -component in Fig. 8~c! as shown in grey is not allowed. In the
second case, the middle sequence$cliff,plain,cliff % could be ani-vacancy, but again the plain
immediately above has widthn2 i and we can once more apply Lemma 2. Hence also the
placement as shown in Fig. 8~d! is forbidden.

B. The general r case

As remarked at the end of Sec. VII A 1, only forr5n andn21 can we always draw a plain
of width i2hN to the right of theNth cliff without violating the conditionW1 i2hN<L, for any
i . If L22k[r , we can still do so for alli<r . Hence for these cases the principal region of the
i -strips can still be defined as in Sec. VII A 1. However, fori5r1a ~a.0!, we have to reduce the
principal regionP by removing the part ofP which would be occupied by the lasta components
to be attached, ifP were to be completely filled from left to right. Of, course, in this case the tail
no longer is a rectangle, but has a profile of two plains and two cliffs. An example of this reduction
is shown in Fig. 9.

The above considerations lead to the following simple modification of~39!:

l i52(
j51

i21

jmi2 j2 (
p51

n2r21

~n2r2p!dn2 i ,p

1 i bS L1n2 i1 (
p51

n2r21

~n2r2p!dn2 i ,p22(
j51

n21

jmn2 j D Ync
52(

j51

i21

jmi2 j2 (
p51

n2r21

~n2r2p!dn2 i ,p1
i

n S L1n2r22(
j51

n21

jmn2 j D
5l i~r5n!1S i ~n2r !

n
2 (

p51

n2r21

~n2r2p!dn2 i ,pD 5l i~r5n!1~C21!r ,i , ~42!

which proves the claim~31!. Here we note that to obtain the first line of~42! one not only has to
subtract the term(p(n2r2p)dn2 i ,p to account for the reduction of the principal region, but also
to add this same term within theb.c. This occurs since the effective length available for the tail of
the i -strips has of course increased by the decrease of the principal region~see Fig. 9!.

C. Fermionic form for FL(2L0 ,Lk)

We now have computed the number of nodes of the parent associated tomW as well as the
generating function for adding the g-components to this parent. Collecting these two results, we
obtain the following expression for the generating functionFL(2L0 ,Lk) of K-graphs in
G ~2L0,Lk!:

Proposition 1:

FL~2L0 ,Lk!5( qmW
tC21mW )

i51

n21 F l i1mi

mi
G , ~43!
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with lW given by ~31! and ~32! and with the sum taken over allmW P~Z>0!
(n21) satisfying

k1( i51
n21imi[0.

VIII. THE GENERAL CHARACTER

In this section we calculateFL(L01L jLk) for arbitrary j (0< j<n21). As we have already
mentioned in Sec. II, we count the weights in the principal picture, so that any fermionic form can
be reduced to one of the above form.

First consider the following injection:

P L~L01L j ,Lk!→P L1 j~2L0 ,Lk!,
~44!

p5~l0 ,...,lL!°p8,

wherep85(2L0 ,L01L1 ,...,L01L j21,l0 ,...,lL). In terms of K-graphs, we have

G L~L01L j ,Lk!→G L1 j~2L0 ,Lk!,
~45!

G°G8.

HereG8 is obtained fromG by placing the rectangle of widthj and heightH8 in the left-hand side
of G ~see Fig. 10!, where,H being the height ofG, H8 is determined byH82H50 or n2 j ,
H8PnZ2k. It is clear that the image under the injection~45! is the set of K-graphs in
G L1 j (2L0 ,Lk) having the lowest plain of width at leastj .

Now let us recall that we have established the following bijection in the preceding sections:

FIG. 9. Reduction of the 3-strips of Fig. 6. Recalling thati5r1a, we need fori53 andn54 to consider the cases
a50,1,2.

FIG. 10. Embedding of a K-graph inG L(L01L j ,Lk) into G L1 j (2L0 ,Lk).
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P L~2L0 ,Lk!↔$„mW ,~F1 ,...,Fn21!…%. ~46!

HeremW t5(m1 ,...,mn21), satisfying ~19!, characterizes the parent graph, andFi is the Ferrers
graph of a partition with largest part<l i and number of parts<mi . Regarding the image of the
injection ~45!, the following question arises: How can we characterize K-graphs having the lowest
plain of width at leastj as elements in the right-hand side of the bijection~46!? The answer is
given by the following.

Proposition 2:A K-graph in G L(2L0 ,Lk) has a lowest plain of widthw1> j , iff, for n2 j
11< i<n21, the smallest part in the Ferrers graphFi has at leasti1 j2n nodes.

To prove this, letG be such a K-graph,P its parent graph, andM (G) and M (P) the
corresponding interpolating matrices. We writeM (G) as in ~14! andM (P) as

M ~P!5S c01c1 ••• ci211ci ••• cN211cN

n2c1 ••• n2ci ••• n2cN
D ~c050!.

After removing g-components such that the firsti columns ofM (G) equalM (P), we must have
thatwi11> j1ci .

We wish to prove the above assertion by induction oni . For i50, the assertion is clear from
the assumption of the proposition. Next, let us assume the assertion fori21. Let us also assume
that we have arrived at the minimal gap corresponding toci211ci . In order to prove the assertion
for i , we have to show that we can remove an (n2ci)-componentj2ci21 times strictly horizon-
tally. This can indeed be shown through straightforward, though tedious, consideration of the
profile, and the conditions on its various segments. Proposition 2 follows from the above state-
ment.

Applying Proposition 2, we immediately obtain

FL~L01L j ,Lk!5( qmW
tC21mW 1Q)

i51

n21 F l i81mi

mi
G
q

, ~47!

where

Q5 (
i5n2 j11

n21

~ i1 j2n!mi2
j

n (
i51

n21

imi52mW tC21eWn2 j ,

l i85l i uL→L1 j2~ i1 j2n!u~ i1 j2n!,

5@C21~LeWn211eW r1eWn2 j22mW !# i . ~48!

Here l i is defined in~31!, andu in ~5!.
In conclusion, we have the general form of the fermionic sum:
Theorem 3:

FL~L01L j ,Lk!5( qmW
tC21mW 2mW tC21eWn2 j)

i51

n21 F l i1mi

mi
G
q

,

~49!

lW 5C21~LeWn211eW r1eWn2 j22mW !,

where the sum is taken over allmW P~Z>0!
n21 satisfyingk1( i51

n21imi[0, and withr determined
from L1 j22k[r , 0,r<n.
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IX. SUMMARY AND DISCUSSION

In this paper we have presented a method to compute finite analogs of the branching functions
of the coset

sl~n!̂1^sl~n!̂1 /sl~n!̂2 . ~50!

Our approach, based on a direct counting of Ferrers graphs related to the crystal base formulation
of the HWMs of sl(n)̂ , leads to what are known asfermionic polynomials. This complements
earlier results of Ref. 5 where the same finite analogs of branching functions were computed, and
the result was expressed in terms ofbosonic polynomials.

Equating these two results, as formulated in the Theorems 1 and 3, using Eq.~18!, we obtain
the main result of this paper:

Theorem 4: Let mW and eW i be ~n21!-dimensional vectors with entries (mW ) i5mi and
(eW i) j5d i , j , respectively. Also, letC be the Cartan matrix ofsl(n) andW the Weyl group of

sl(n)̂ . Defining the functionbL,i as in ~11!, the following polynomial identity holds for allj ,k
50,...,n21:

(
mW P~Z>0!n21

qmW
tC21mW 2mW tC21eWn2 j)

i51

n21 F ~mW 1C21~LeWn211eW r1eWn2 j22mW !! i
mi

G
q

5q~ uLku
22uL j8u2!/2 (

wPW
~detw!bL, j2k„Lk1L j2k1L1r2w~L01L j1r!…, ~51!

with 0,r<n fixed byL1 j22k[r and with the sum overmW restricted by

k

n
1~C21mW !n21PZ. ~52!

Letting L→` we obtain the followingq-series identities for the branching functions of the
coset~50!.

Corollary 1: Let Q be the root lattice andW̄ be the Weyl group ofsl(n). Then

q~ uL j u
22uLku

2!/2 (
mW P~Z>0!n21

qmW
tC21mW 2mW tC21eWn2 j

P i51
n21~q!mi

5
quL j1ru2/2~n12!2uLk1ru2/2~n11!

~q!`
n21 (

wPW̄

~detw!U~n12!~L̄k1 r̄ !2~n11!w~L̄ j1 r̄ !,~n11!~n12!~q!,

~53!

with the sum overmW again restricted by~52!, and withUl,l defined by

Ul,l ~q!5 (
aPQ

ql ua2l/l u2/2, ~54!

for lP(i51
n21CL̄i .

We note that the left-hand side of~53! coincides with the character expressions of Lepowsky
and Primc8 for theZn-parafermion conformal field theory.

The polynomial identities~51! proven in this work are, strictly speaking, not new, since under
level–rank duality they map onto identities related to the coset
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sl~2!̂n21^sl~2!̂1 /sl~2!̂n . ~55!

The latter were conjectured in Refs. 9 and 17, and proven in Refs. 18–20. However, the proof
presented here isintrinsically of sl(n)̂ type, and we expect it admits generalization to the more
general coset

sl~n!̂ l ^sl~n!̂m /sl~n!̂ l 1m . ~56!

Results related to generalsl(2)̂-type cosets were discussed in Ref. 21. The fermionic character
form for certain sectors of the higher-rank parafermions were proven in Ref. 22.

For the case ofsl(2)̂, the paths considered in this paper admit yet another representation in
terms of Ferrers graphs. These graphs, obeying entirely different conditions than our K-graphs,
were introduced in Ref. 23. They are also more general, in the sense that they lead to character
expressions for allsl(2)̂ cosets of typeC 2,l ,1 , including rational values ofl . Results for this type
of coset have been discussed in Refs. 24 and 25.

NOTES ADDED:

After this work was completed, it was brought to our attention that the main concepts intro-
duced in this work are analogous to, though intriguingly different from, concepts that are essential
to the theory of modular representations of the symmetric group.~For the precise definition of
some of the following terminology, see for example, the book by James and Kerber.26! In particu-
lar, our K-graphs of the cosetC n,1,1 are known asn-regular Young diagrams, ourparent graphs
are analogous ton-cores, our Gaussian polynomials generate the analogs ofn-quotients, our
g-components are analogous tohook–ribbons, and our counting procedure is very much related to
the evaluation of Kostka–Green–Foulkes polynomials. However, there are differences, due to the
fact that our K-graphs obey additional conditions.

Now, to make things even more intriguing, we also learned that the conditions obeyed by our
K-graphs are almost identical to, though stronger than, those obeyed by Young diagrams that
parametrize irreducible representations ofsl(n) which remain irreducible under restriction to
sl(n21). We hope to report on these interesting relationships in future publications.

In a recent preprint A. Schilling has given a recursive proof of fermionic forms for the cosets
referred to in Eq.~56!.27
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