Corrections to Steinbach's Posets of Graphs (Orders 5, 6, 7)

Peter Adams
Centre for Discrete Mathematics and Computing
Department of Mathematics
The University of Queensland
Brisbane 4072 Australia
Roger Eggleton
Department of Mathematics
Illinois State University
Normal IL 61790 USA
James MacDougall
School of Mathematical and Physical Sciences
University of Newcastle
Newcastle 2308 Australia
E.S. Mahmoodian
Department of Mathematics
Sharif University of Technology
P.O. Box 11365-9415
Tehran Iran

Abstract

Steinbach's useful tabulations of the posets of graphs of orders 5, 6 and 7 (in his Field Guide to Simple Graphs) are marred by a sparse scattering of errors. We list all corrections needed, and for convenience provide the full, corrected data at

http://www.maths.uq.edu.au/~pa/research/steinbach.html.

1 Introduction

How many unlabelled simple graphs have degree sequence 1222333, and what do they all look like? How many unlabelled simple graphs with 7 vertices and 10 edges (order 7 , size 10) are connected, and which among them are hamiltonian?

Peter Steinbach's Field Guide to Simple Graphs $[\mathbf{2 , 3}]$ is a very handy tool that enables the practitioner of graph theory to answer such questions quickly and conveniently. However, in the course of recent work we became aware of a number of errors in Steinbach's subgraph tabulations. Subsequently we independently recalculated the corresponding tables, identified all the discrepancies, and verified that each discrepancy was a genuine correction. Our purpose in the present note is to report these corrections so that all who wish to make full use of Steinbach's tables can confidently do so. In a private communication, Peter Steinbach has indicated to us that the corrections will be incorporated in future printings of the Field Guide.

We note that Read and Wilson's Atlas [1] is also handy for answering questions like those in our opening paragraph. However, Steinbach's organisation and numbering system make $[\mathbf{2 , 3}]$ more convenient for some applications, especially those in which subgraphs and complementation are relevant.

2 Posets of Graphs (Orders 5, 6, 7)

To introduce the corrections in their proper context, we need some notation and terminology. Let G and H be any unlabelled simple graphs of order n. If adding a suitable finite set E of edges to G produces a graph $G+E$ which is isomorphic to H, then H is an extension (spanning supergraph) of G, or equally, G is a reduction (spanning subgraph) of H, and we write $G \leq H$. If $|E|=1$, then H is a 1-extension of G, and G is a 1-reduction of H. If $G \leq H$, the complements satisfy $H^{c} \leq G^{c}$. Let $\mathcal{G}(n)$ be the partially ordered set of all unlabelled simple graphs of order n, with this partial ordering. The poset $\mathcal{G}(n)$ has the complete graph K_{n} as maximum element, and its complement the empty graph K_{n}^{c} as minimum element. The m th level set $\mathcal{G}(n, m)$, comprising all unlabelled simple graphs of order n and size m, is a maximal independent subset in $\mathcal{G}(n)$. Every maximal ascending chain in $\mathcal{G}(n)$ begins with K_{n}^{c} and ends with K_{n} and contains exactly one graph from each level set.
Steinbach specifies the posets $\mathcal{G}(n), n \leq 7$ on pp. 90-107 of $[\mathbf{2 , 3}]$. Below we
report corrections for $\mathcal{G}(5), \mathcal{G}(6)$ and $\mathcal{G}(7)$. Steinbach assigns numbers to the graphs in each of these posets so that the 1-reductions of any graph G have smaller numbers than G, and the 1-extensions have larger numbers. Moreover, in $\mathcal{G}(6)$ any graph and its complement have numbers x and x^{c} satisfying $x+x^{c}=157$ (since $|\mathcal{G}(6)|=156$); in $\mathcal{G}(7)$ the corresponding identity is $x+x^{c}=1045$. In $\mathcal{G}(5)$ most complementary pairs satisfy $x+$ $x^{c}=35$, but here the situation is complicated by the presence of two selfcomplementary graphs (numbered 17 and 19); the graphs numbered 16, 17 and 18 satisfy $x+x^{c}=34$. Steinbach specifies $\mathcal{G}(5)$ and $\mathcal{G}(6)$ by listing all 1 -reductions and 1 -extensions of each graph. For $\mathcal{G}(7)$, the corresponding lists are given explicitly only for graphs with numbers $x \leq 522$, thereby saving 11 pages; the lists for $x \geq 523$ can be readily deduced by using complementation.

The errors in Steinbach's tables occur in the lists of 1-reductions and/or 1extensions of certain graphs. For each such graph we specify the corrections needed simply by giving the correct list of all 1-reductions and 1-extensions. The reader will easily be able to apply these corrections to any copy of $[\mathbf{2 , 3}]$.
A few errors present in [2] are corrected in [3]. For example, graph 6 has graph 10 as a 1 -extension in $\mathcal{G}(6)$. This fact is omitted from the lists of 1-reductions and 1-extensions of both graph 6 and graph 10 on p. 94 of [2], but is corrected in [3]. Again, the graphs with numbers 513-532 had their numbers omitted from p. 89 of [2], but this is corrected in [3].

3 Corrections

The following corrections all apply to pp. 93-107 of [2]. With the exception of the lines for graphs 6 and 10 of $\mathcal{G}(6)$, every correction also applies to [3]. Table 1 gives corrections to $\mathcal{G}(5)$, Table 2 gives corrections to $\mathcal{G}(6)$ and Table 3 (at the end of this note) gives corrections to $\mathcal{G}(7)$.

Table 1: Corrections to $\mathcal{G}(5)$

	18	$\mathbf{2 2}$	27	30	
15	16	18	19	$\mathbf{2 3}$	27
16	28	29			
16	20	$\mathbf{2 5}$	28		
15	18	19	20	$\mathbf{2 6}$	28

Table 2: Corrections to $\mathcal{G}(6)$

3	6	10121316
567	10	1920212228
35404144	59	99100101102
364649	64	79899097
3645465051	70	798384858889
3842465152	71	80858991
38464748495052	72	8081838687899096
727577	81	103106109
55606164	97	108116122
56596069	102	121122123
129135136137138	147	150151152
141144145147	151	154

4 Website Availability

As a public service, we have placed correct tables for $\mathcal{G}(5), \mathcal{G}(6)$ and $\mathcal{G}(7)$ on the website
http://www.maths.uq.edu.au/~pa/research/steinbach.html.
These tables retain the numbering scheme used by Steinbach. They list the 1 -reductions and 1 -extensions of each graph of order 5,6 or 7 . To make the website relatively self-contained, we have also specified the Steinbach reference number, the degree sequence and the edge set of each graph of order 5 or 6 , and of each graph of order 7 and size at most 10 . (Complementation and the identity $x+x^{c}=1045$ readily yield the corresponding information for any order 7 graph of size greater than 10 .)

References

[1] Ronald C. Read and Robin J. Wilson, An Atlas of Graphs, Oxford University Press (1998).
[2] Peter Steinbach, Field Guide to Simple Graphs, second edition (1995), published by Design Lab, Albuquerque Technical-Vocational Institute, Albuquerque, NM.
[3] — ibid., second revised edition (1999).
Table 3: Corrections to $\mathcal{G}(7)$

Table 3: Corrections to $\mathcal{G}(7)$ (continued)		
9599113118121122124139	201	272283287294306312314316323325327334361
96100117122126136	203	273286293306315316317331332358
94112124128131142	215	300309314320321323344349351359
134137141142145	239	351352354357365366368
157159163165166167170	260	381383387388434441442443455
152153172173175176181188201	272	391393398405406408409412413414421467
153155178179187192194201208	283	393401403413415420424425428438454498
162184189	299	404423461470
164173182183194199212220222	304	410412419420422436437466467476477480
162203221	317	407431449470491
165191192199208219227230231	326	425429432442444454455477484496509517
166200203209210218219227233	331	416429442445449451456481490492506510
199219226235240	356	476483487488510515517
193194215222225230236240241	359	476477483484493495498499503512514518
216217222223232234242	362	468473480494497508511512513
207224225237238239	365	482501502503505522
255257260261262264	388	568569581582613635
245246266267272273274276283286	393	617624632636637639652653654666
248283287294	403	545578583626627654
257272276278286298305310315334	421	603607613618621628629632644652664
260279293302305306325336	434	589597599601610613629663
299	461	646670
300301304305324326345355359360	477	588589590591592593601603616621657
334341356361363370	515	524527533534547607
290320359360372373	518	530535537548555588

