1. Find the greatest common divisor of 1112 and 1544.

\[
\begin{align*}
1544 & \quad -1 \times 1112 = 432 \\
1112 & \quad -2 \times 432 = 248 \\
432 & \quad -1 \times 248 = 184 \\
248 & \quad -1 \times 184 = 64 \\
184 & \quad -2 \times 64 = 56 \\
64 & \quad -1 \times 56 = 8 \\
56 & \quad -7 \times 8 = 0
\end{align*}
\]

so having run the Euclidean algorithm we find \(\gcd(1112, 1544) = 8 \).

2. For the value \(d \) of the greatest common divisor found in the

first question, find all integer solutions \((x, y)\) to the equation \(1112x + 1544y = d\).

We reuse the quotients in the first part of the algorithm, to get one solution:

\[
\begin{align*}
8 & = 64 - 56 \\
8 & = 64 - (184 - 2 \times 64) = 3 \times 64 - 184 \\
8 & = 3 \times 248 - 184 = 3 \times 248 - 4 \times 184 \\
8 & = 3 \times 248 - 4 \times (432 - 248) = 7 \times 248 - 4 \times 432 \\
8 & = 7 \times (1112 - 2 \times 432) - 4 \times 432 = 7 \times 1112 - 18 \times 432 \\
8 & = 7 \times 1112 - 18 \times (1544 - 1112) = 25 \times 1112 - 18 \times 1544.
\end{align*}
\]

Algebraic method to find more solutions: Then we note that \(1544/8 = 193\) and \(1112/8 = 139\), so in particular \(139 \times 1544 - 193 \times 1112 = 0\) which is the smallest pair of positive integers giving that solution, because it is the least common multiple minus itself.

Given two solutions, \(1112x + 1544y = 8\) and \(1112w + 1544z = 8\), we can subtract them to find \(1112(x - w) + 1544(y - z) = 0\), which is an integer solution to the equation above. Therefore \(x - w = 139n\) for some integer \(n\), and \(y - z = 193n\).
Thus, the set of all possible solutions is $8 = (25 + 193n) \times 1112 - (18 + 193n) \times 1544$, for all integers n.

Geometric method to find more solutions:

The set of points (x, y) where $1112x + 1544y = 8$ is a line, and we want to find points on that line whose coordinates are integers. We have one, the point $(25, -18)$. Now, the slope is $-1112/1544 = -139/193$. So if we change x by an integer amount m, y will be changed by $-139m/193$, which is an integer only if 193 divides m. Write $m = 193n$ for an integer n, and we see that again the set of all possible solutions is $8 = (25 + 193n) \times 1112 - (18 + 193n) \times 1544$.

3. Find all solutions of the congruences $12x \equiv 28 \mod 236$ and $12y \equiv 30 \mod 236$.

First note that 236 factors as 59×4. So we wish to find x that solves $12x \equiv 0 \mod 4$, and $12x \equiv 28 \mod 59$. The first equation is true for every x.

For the second, let us take a few multiples of 12, mod 59: 12, 24, 36, 48, 1, and stop because knowing that $12 \times 5 = 1$ allows us to solve everything else. Now $12 \times (5 \times 28) \equiv 28 \mod 59$, and so a solution is $x = 5 \times 28 = 140 \equiv 22 \mod 59$.

If we try this x as a solution we have $12 \times 22 = 264 \equiv 28 \mod 236$ as desired.

Now we wish to find y that solves $12y \equiv 2 \mod 4$ and $12y \equiv 30 \mod 59$.

Since the equation $12y \equiv 2 \mod 4$ is equivalent to $0y \equiv 2 \mod 4$ and has no solutions, we conclude that there are no solutions in this case.

4. Find a multiplicative inverse of 7 mod 30.

There are several ways to do this, straightforward ones being multiples of 7 and powers of 7. I’ll go with powers of 7.

$$7^2 = 49 \equiv 19 \mod 30$$
$$7^3 \equiv 19 \times 7 \equiv 133 \equiv 13 \mod 30$$
$$7^4 \equiv 13 \times 7 \equiv 91 \equiv 1 \mod 30.$$

So we find that 13 is a multiplicative inverse of 7, modulo 30.

5. Let p be a prime number and n a positive integer. Show that the largest power of p which divides $n!$ is given by

$$\sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

Since $n!$ is the product of the integers from 1 to n, let’s first count how many of those integers are divisible by p. That is the multiples of p; there
are \(n/p\) of them rounded down to the nearest integer, which is to say, \(k_1 = \lfloor n/p \rfloor\).

Next, let’s count how many of those integers are divisible by \(p^2\). Again that is the multiples of \(p^2\), and there are \(k_2 = \lfloor n/p^2 \rfloor\).

Similarly counting the number of integers that are divisible by \(p^3\) and calling that number \(k_3\), and so on, eventually \(k_i = 0\) for all \(i\) after some number. So we have a sequence \(k_1, k_2, \ldots\) of which all but finitely many terms are 0. Let \(K\) be the sum \(\sum_{i=1}^{\infty} k_i\), which is the sum in the problem statement, and which is a finite number.

Therefore, considering all the powers of \(p\) contributed to \(n!\) by multiples of \(p\), they sum up to \(K\), which means the number \(p^K\) divides \(n!\). The question is, is \(K\) the largest possible exponent here?

At this point it becomes important that \(p\) is prime: for any two numbers \(b, c\), if \(p|bc\) then \(p|b\) or \(p|c\). From that statement one may deduce that if \(p^m|bc\), then \(p^i|b\) and \(p^j|c\) for nonnegative integers \(i, j\) such that \(i + j \geq m\). Also, both statements apply not only to two integers \(b, c\) but to any product of finitely many integers.

Thus if \(p^{K+1}\) divides \(n!\), then among the integers from 1 to \(n\) there are exponents of \(p\) which sum up to at least \(K+1\). Since this is false, we know \(p^{K+1}\) does not divide \(n!\), so \(K\) is the largest exponent for which \(p^K|n!\), q.e.d.

6. Prove that the binomial coefficient \(\binom{2n}{n(m)}\) divides the product

\[
\prod_p p^{\lfloor \log_p(2n) \rfloor}
\]

where the product is taken over all primes \(p\).

First, note that \(\lfloor \log_p(2n) \rfloor\) is the exponent of the largest possible power of \(p\) that is \(\leq 2n\). So the expression in the product, \(p^{\lfloor \log_p(2n) \rfloor}\), is just the largest possible power of \(p\) that is \(\leq 2n\).

For a given \(p\), suppose \(p^k \leq 2n\) and \(p^{k+1} > 2n\). Then let us see how many powers of \(p\) divide \(n! * n!\), which would be given by

\[
S_1 = 2 \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.
\]

The number of powers of \(p\) that divide \((2n)!\) is

\[
S_2 = \sum_{i=1}^{\infty} \left\lfloor \frac{2n}{p^i} \right\rfloor.
\]

and the problem statement is equivalent to proving that \(S_2 \leq S_1 + k\).
The last nonzero number in the second sum is \(a = \lfloor \frac{2n}{p^i} \rfloor \) and in the first sum we have the corresponding term \(2\lfloor \frac{n}{p^i} \rfloor = 2\lfloor \frac{n}{q} \rfloor \). We can see that \(a - 2\lfloor \frac{n}{2} \rfloor \) is equal to 0 or 1 depending on whether \(a \) is even or odd. But this argument holds true also for the comparison of \(\lfloor \frac{2n}{p^i} \rfloor \) and \(2\lfloor \frac{n}{p^i} \rfloor \) for \(i = 1, \ldots k - 1 \).

Each of these comparisons differs by 0 or 1, thus we have \(S_2 \leq S_1 + k \).