Q1: First we need to check that if \(z \in \mathbb{D} \), then \(f(z) \in \mathbb{D} \).

With \(z = x + iy \). For \(z \in \mathbb{D} \), \(y > 0 \).

Then \(|z - i|^2 = x^2 + (y - 1)^2 = x^2 + y^2 + 1 - 2y \).

\(|z + i|^2 = x^2 + (y + 1)^2 = x^2 + y^2 + 1 + 2y \).

For \(y > 0 \), \(|z - i|^2 < |z + i|^2 \Rightarrow |z - i| < |z + i| \)

\(\Rightarrow \left\| \frac{z - i}{z + i} \right\| < 1 \) as required.

Injectivity of \(f \):

If \(f(z_1) = f(z_2) \):

\[
\frac{z_1 - i}{z_1 + i} = \frac{z_2 - i}{z_2 + i}
\]

\((z_1 - i)(z_2 + i) = (z_2 - i)(z_1 + i) \)

\(z_1 z_2 - i z_1 \bar{z}_2 + i + 1 = z_1 z_2 - i z_2 \bar{z}_1 + 1 \)

\(i(\bar{z}_1 - z_2) = -i(\bar{z}_2 - z_1) \)

\(\bar{z}_1 - z_2 = 0 \Rightarrow z_1 = z_2 \).

Surjectivity of \(f \):

Let \(w \in \mathbb{D} \). Let \(z = -i \frac{w + 1}{w - 1} = i \frac{1 + w}{1 - w} \).

Then \(f(z) = i \frac{1 + w}{1 - w} - i \frac{1 + w}{1 - w} = i \frac{1 + w}{1 - w} + i \frac{1 + w}{1 - w} = \frac{1 + w - (1 - w)}{1 + w + (1 - w)} = \frac{2w}{2} = w \).

So provided \(z \in \mathbb{D} \) we've shown \(f \) is surjective.

To show \(z \in \mathbb{D} \) we need to show \(\text{Re} \left(\frac{1 + w}{1 - w} \right) > 0 \), i.e. \(-\frac{\pi}{2} < \text{arg} \left(\frac{1 + w}{1 - w} \right) < \frac{\pi}{2} \).

The line segment between \(1 + w \) and \(1 - w \) has centre 1 and lies entirely within the circle centred at 1 with radius 1 as \(|w| < 1 \).

Thus the angle \(\triangle ABC \) is acute so it is smaller than the \(90 \)° angle subtended by the diameter.

\(\Rightarrow -\frac{\pi}{2} < \text{arg} \left(\frac{1 + w}{1 - w} \right) < \frac{\pi}{2} \) as required.
The previous computations show that the inverse of f is given by

$$f^{-1}(w) = i \cdot \frac{1+w}{1-w}.$$

\[i \cdot \frac{1+w}{1-w} \]

is a rational function with a pole at $\frac{1}{2}$, which is not in \mathbb{D}.

ii. f^{-1} is a holomorphic function on \mathbb{D}.
Q2 (a): Let r be a real number greater than 1 and \\
\[\sum_{i=0}^{n-1} |a_i| \]
\[\frac{1}{|a_0|} \]

Then for $|z| = r$, we have
\[|q(z)| \leq \sum_{i=0}^{n-1} |a_i| r^i \] (by the triangle inequality)
\[\leq r^{n-1} \sum_{i=0}^{n-1} |a_i| \] as $r > 1$
\[\leq |a_n| r^n \] as $r > \frac{\sum_{i=0}^{n-1} |a_i|}{|a_0|}$
\[= |a_n z^n| \] as required.

Q2 (b): In part (a) we showed that the functions $q(z)$ and $a_n z^n$ satisfy $|q(z)| \leq |a_n z^n|$ on the circle with $|z| = r$.

Both the functions $q(z)$ and $a_n z^n$ are polynomials, hence are entire.

Therefore, by Rouche's theorem, the functions $q(z) + a_n z^n$ and $a_n z^n$ have the same number of zeros inside the disc $\{ z \in \mathbb{C} : |z| < r \}$, counted with multiplicity.

The function $a_n z^n$ has a zero at $z = 0$.

Therefore, the function $q(z) + a_n z^n$ must have a zero.

i.e. $q(z)$ has a zero, proving the fundamental theorem of algebra.
Q3: The set \(X = \{ z \in \mathbb{C} \mid 0 \leq \text{Re}(z) \leq 1, 0 \leq \text{Im}(z) \leq |\text{Im}(z)|^2 \} \)

is a closed and bounded subset of \(\mathbb{C} \), hence is compact.

As \(f \) is continuous, \(|f(z)| \) is bounded on \(X \).

i.e. \(\exists M \in \mathbb{R} \) such that \(|f(z)| < M \) for all \(z \in X \).

Now let \(z \in \mathbb{C} \) be arbitrary. As \(\text{Im}(z) \neq 0 \), there exists an integer \(n \) such that \(n \) \(z' = z - \frac{2\pi}{n} \mathbb{Z} \) satisfies

\[0 \leq \text{Im}(z') \leq |\text{Im}(z)|. \]

There exists an integer \(m \) such that \(z'' = z' - m \) satisfies

\[0 \leq \text{Re}(z'') \leq 1. \]

As \(m \in \mathbb{R} \), \(0 \leq \text{Im}(z'') \leq |\text{Im}(z)| \), so \(z'' \in X \).

We have

\[f(z) = f(z') = f(z'') \]

(iterating \(f(z + z) = f(z) \))

\[= f(z'') \]

(iterating \(f(z + z) = f(z) \))

\[|f(z)| = |f(z'')| < M \quad \text{as} \quad z'' \in X. \]

Thus \(f \) is an entire, bounded function. By Liouville's Theorem, \(f \) is constant.
Q4: Note that \(\cos(x) = \text{Re} \left(e^{ix} \right) \).

\[
\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \, dx = \text{Re} \int_{-\infty}^{\infty} \frac{e^{ix}}{1+x^2} \, dx = \text{Re} \lim_{R \to \infty} \int_{-R}^{R} \frac{e^{ix}}{1+x^2} \, dx.
\]

Consider the function \(f(z) = \frac{e^{iz}}{1+z^2} \). It has two poles at \(i \) and \(-i\). The residue at \(z = i \) is

\[
\text{Res}_{z=i} f(z) = \lim_{z \to i} \frac{e^{iz}}{1+z^2} (z-i) = \lim_{z \to i} \frac{e^{iz}}{z+i} = \frac{e^{-1}}{2i}.
\]

Let \(C_R \) be the semicircular arc \(\{ z \in \mathbb{C} \mid \, |z| = R, \, \text{Im}(z) \geq 0 \} \).

If \(z \in C_R \) then \(\text{Im}(z) > 0 \Rightarrow \text{Re}(iz) \leq 0 \Rightarrow |e^{iz}| \leq 1 \).

Also \(|z^2| \geq |z^2| - 1 = R^2 - 1 \) \((\text{triangle inequality}) \).

\[
\left| \frac{e^{iz}}{1+z^2} \right| \leq \frac{1}{R^2 - 1}.
\]

\[
\left| \int_{C_R} \frac{e^{iz}}{1+z^2} \, dz \right| \leq \pi R \cdot \frac{1}{R^2 - 1} \quad \text{as the length of } C_R \text{ is } \pi R.
\]

As \(\lim_{R \to \infty} \frac{1}{R^2 - 1} = 0 \) this implies \(\lim_{R \to \infty} \int_{C_R} \frac{e^{iz}}{1+z^2} \, dz = 0 \).

By the residue formula, for \(R > 1 \):

\[
\int_{C_R} \frac{e^{iz}}{1+z^2} \, dz + \int_{-R}^{R} \frac{e^{ix}}{1+x^2} \, dx = 2\pi i \text{Res}_{z=i} f(z) = \frac{\pi e^{-1}}{2}.
\]

Taking the limit as \(R \to \infty \) yields \(\lim_{R \to \infty} \int_{-R}^{R} \frac{e^{ix}}{1+x^2} \, dx = \frac{\pi}{2} \).

And hence \(\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \, dx = \frac{\pi}{2} \).
Q5(a) Let \(K \) be a compact subset of \(D \).

Let \(r = \sup_{z \in K} |z| \).

As \(K \) is compact and the absolute value function is continuous, there exists \(w \in K \) with \(|w| = r \). \(\therefore r < 1 \) (as we \(D \)).

Choose \(R \) such that \(r < R < 1 \).

By Cauchy's inequality
\[
|f_n^{(k)}(0)| \leq \frac{\pi k! B}{R^k}.
\]

Let
\[
a_k = \lim_{n \to \infty} f_n^{(k)}(0).
\]

Taking the limit \(\infty \) in the above inequality implies
\[
|a_k| \leq \frac{k! B}{R^k}.
\]

Let \(f(z) = \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k \). We will show that \(\{f_n\} \) converges uniformly to \(f \) on \(K \).

We know
\[
f_n(z) = \sum_{k=0}^{\infty} \frac{f_n^{(k)}(0)}{k!} z^k.
\]

For \(z \in K \):
\[
|f_n(z) - f(z)| = \left| \sum_{k=0}^{\infty} \frac{f_n^{(k)}(0)}{k!} z^k - \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k \right|
\leq \sum_{k=0}^{N-1} \frac{|f_n^{(k)}(0) - a_k|}{k!} |z|^k + \sum_{k=N}^{\infty} \frac{|f_n^{(k)}(0)| + |a_k|}{k!} \frac{r^k}{k!}
\leq \sum_{k=0}^{N-1} \frac{|f_n^{(k)}(0) - a_k|}{k!} \frac{r^k}{k!} + \sum_{k=N}^{\infty} \frac{2^k}{k!} \frac{B}{R^k} \frac{r^k}{k!}
\leq \sum_{k=0}^{N-1} \frac{|f_n^{(k)}(0) - a_k|}{k!} \frac{r^k}{k!} + 2B \left(\frac{r^N}{R} \right) \frac{1}{1 - \frac{r}{R}}.
\]
Pick $\varepsilon > 0$. Then as $n \frac{f_n^k}{R^n} < 1$, there exists $N_0 \in \mathbb{N}$ such that

$$2B \left(\frac{R}{r} \right)^N \frac{1}{1 - \frac{r}{R}} < \frac{\varepsilon}{2}.$$ Fix this choice of N_0.

For each k with $0 \leq k < N_0$, let $\hat{\phi}_n^{(k)}(0)$ converges to a_k.

For each k with $0 \leq k < N_0$, there exists N_k such that for $n > N_k$,

$$\left| f_n^{(k)}(0) - a_k \right| < \frac{\varepsilon}{2N^k}.

Then for $n > \max \{ N_0, N_1, \ldots, N_{N-1} \}$ we have, from the inequality on the previous page:

$$\left| f_n^{(k)}(z) - \hat{\phi}_n^{(k)}(z) \right| \leq \left(\sum_{k=1}^{N_k} \varepsilon \frac{k!}{2N^k} \frac{r^k}{k!} \right) + \frac{\varepsilon}{2} = \varepsilon.$$

This is true for all $z \in K$, so we have shown the desired uniform convergence.

(b) Let $\hat{f}_n(z) = 3^n z^n$.

Then $\hat{f}_n^{(k)}(0) = \begin{cases} 0 & \text{if } k \neq n \\ 3^n n! & \text{if } k = n. \end{cases}$

For each k, $\{ f_n^{(k)}(0) \}_{n=0}^{\infty}$ is convergent, as it is eventually constant.

The sequence $\{ f_n \}$ does not converge as

$$f_n \left(\frac{3}{2} \right) = \left(\frac{3}{2} \right)^n$$

which tends to ∞ as $n \to \infty$ (which also shows condition (i) does not hold).