Homework 4

Due: Thursday May 2, 2013

1. Let $f(z)$ be a meromorphic function. Find all residues of the function $F(z) = f'(z)/f(z)$ (in terms of the zeros and poles of f).

2. The ordered Bell numbers b_n (which count the number of weak orderings (ties allowed) of a set of n elements) have exponential generating function

$$\sum_{n=0}^{\infty} \frac{b_n}{n!} z^n = \frac{1}{2 - e^z}.$$

Use this to derive an asymptotic formula for b_n.

3. Let t_n denote the number of involutions in the symmetric group S_n. This has exponential generating function

$$\sum_{n=0}^{\infty} \frac{t_n}{n!} z^n = e^{z + z^2/2}.$$

Prove the asymptotic formula

$$t_n \sim \sqrt{\frac{n^2}{2}} \exp\left(-\frac{n}{2} + \sqrt{n} - 1/4\right)$$

4. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of complex numbers with $\sum_{i=1}^{\infty} |z_i|$ convergent. Prove that the infinite product $\prod_{i=1}^{\infty} (1 + z_i)$ converges and is nonzero if and only if $z_i \neq -1$ for all i.