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Abstract. We shall describe an acceptance-rejection method of sampling from the
equilibrium distribution of a finite-state, continuous-time Markov process. The method

applies to any process that can be viewed as a truncation of another Markov process

which exhibits partial balance. These include, for example, reversible and dynamically
reversible processes, and some quasireversible processes. We shall give particular atten-

tion to models of certain chemical processes, telecommunications networks and queueing
systems.

1. Introduction

A wide variety of Markov processes which are used in modelling stochastic systems
exhibit the property of partial balance. In most cases this simplifies their analysis. For
example, one usually finds that the equilibrium distribution admits a product form
(see, for example, Jansen and König [12]) and that this is insensitive to variations in
the values of certain parameters of the system (see, for example, Whittle [36], [37]).
The class of processes which exhibit partial balance include reversible processes (see,
for example, Kelly [15]), dynamically reversible processes (see Whittle [35]), symmetric
queues (see Kelly [14]) and networks of quasireversible nodes (see, for example, Kelly
[16] or Henderson, et al. [10]). In the sequel we shall be concerned with finite-state
processes. These are often used to model closed systems, for example queueing net-
works with no exogenous arrival or departure streams, or indeed any queueing system
with restrictions of the numbers of customers (see, for example, Kelly [15]), models for
simple chemical reactions (see, for example, McQuarrie [22]) and models for circuit-
switched telecommunications systems (see, for example, Burman et al. [1]). Although
the equilibrium distributions of the processes cited have a pleasingly simple product
form, it is usually impossible to write down an explicit expression for the normaliz-
ing constant, and, thus, it is of little comfort to the practitioner to know that many
quantities of interest, for example measures of performance, can be expressed in terms
of this constant. However, a good deal of attention has been given to finding efficient
numerical methods for evaluating the normalizing constant (see, for example, Buzen
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[2] and Reiser [30]) and these are used widely. Another approach has been to provide
approximations to the equilibrium distribution (see, for example, McKenna and Mitra
[21] in the context of queueing networks, Dunstan and Reynolds [8] in the context of
chemical kinetics and Kelly [17] in the context of telecommunications networks); the
accuracy of these methods often increases as the complexity or the size of the system
grows. They are particularly useful in cases when the normalizing constant can be
written down explicitly, but the state probabilities are difficult to handle from a com-
putational point of view. For example, the equilibrium distribution for the numbers
of molecules in simple chemical reactions are usually expressed in terms of hypergeo-
metric functions (see Darvey, Ninham and Staff [6]), which are very difficult to handle,
yet the Gaussian approximations thereof are simple to use and very accurate indeed
(see Pollett and Vassallo [29]). Yet another approach is to use computer simulation.
Of course simulation is an extremely useful tool for analysing models which are an-
alytically intractable. However, even when explicit formulae are available, there are
instances where it is quicker, and indeed far simpler, to obtain point estimates and
confidence limits, for quantities of interest, using simulation.

One important simulation method that has emerged in recent times is the regenera-
tive method (see, for example, Crane and Lemoine [5]). This is now used widely as an
alternative to methods which involve the use of warm-up time, because usually only
one simulation run is needed and measurements can be taken right from the beginning
of the run. However, if regeneration points are scarce, one has to seek an alternative
method. This is often the case when the system in question, or, more precisely, the
number of states is very large, for example if one is simulating models for chemical
processes, telecommunications systems, or queueing networks with moderately large
traffic intensities.

We shall describe an alternative simulation method which can be used in these
instances. It is ostensibly different from real-time simulation, of which the regenerative
method provides an example, in that it involves sampling directly from the equilibrium
distribution.

2. Markov processes and partial balance

Full balance and detail balance. We shall consider a continuous-time Markov
process which takes values in a countable state space, S. We shall suppose that it has
a stable, conservative and regular q-matrix of transition rates, Q = [q(x, y), x, y ∈ S],
where, for convenience, q(x, x) is set to zero for each x ∈ S, and that it admits a
unique equilibrium distribution, that is, a collection, m = (m(x), x ∈ S), of positive
numbers which sum to unity and satisfy the full-balance equations

(1) m(x)q(x) =
∑
y∈S

m(y)q(y, x), x ∈ S,

where
q(x) =

∑
y∈S

q(x, y)



is the rate out of state x, for x ∈ S. If m satisfies the detail-balance equations

(2) m(x)q(x, y) = m(y)q(y, x), x, y ∈ S,

then the process is said to be reversible, for it then has the same finite dimensional
distributions under time reversal (see Kelly [15]). Indeed, if one can find a collection
of positive numbers, m = (m(x), x ∈ S), which sum to unity and which satisfy (2),
then, on summing (2) over y ∈ S, we see that m must be the equilibrium distribution.

Probability flux and partial balance. The notion of partial balance (or local bal-
ance) lies, as it were, part way between (1) and (2). Although it is possible to provide
a very general formulation of partial balance (see Pollett [27]), we shall restrict our
attention to the very specialized form used by Whittle [36] in his study of insensitivity.
We shall find it convenient to use Whittle’s notation: if A and B are subsets of S,
then let

[A,B] =
∑
x∈A

∑
y∈B

m(x)q(x, y);

this quantity is known as the probability flux from A toB underm. Using this notation,
(1) can be rewritten as

(1′) [S, x] = [x, S], x ∈ S,

and (2) can be rewritten as

(2′) [x, y] = [y, x], x, y ∈ S.

It is sometimes said that the detail-balance equations stipulate that the probability
fluxes between any two states be balanced, while the full-balance equations require
only that the probability flux out of x be balanced with that into x, for each state x.
If, for each state x, the probability flux from x to some subset, A, of S is balanced
with that from A into x, that is,

(3) [A, x] = [x,A],

then we say that m is partially balanced over (or with respect to) A. One should note
that, in view of (1′), equation (3) holds if and only if

[Ac, x] = [x,Ac], x ∈ A,

where Ac is used to denote the complement of A in S.

Truncation. A Markov process is said to be truncated to a set A ⊆ S if q(x, y) is
changed to zero for each x ∈ A and y ∈ Ac. The following result (Kelly [15], Exercise
1.6.2) provides the basis for the Monte Carlo technique which we shall describe in
Section 3:



Lemma 1. If the Markov process is truncated to a subset, A, of S, then the equilibrium
distribution, p = (p(x), x ∈ A), of the truncated process is given by

(4) p(x) =
m(x)∑
y∈Am(y)

, x ∈ A,

if and only if m is partially balanced over A.

Remarks. (i) If m is partially balanced over A, then the equilibrium probability
that the truncated process is in state x(∈ A) can be interpreted as the conditional
probability that the original process is in state x, given that it is somewhere in A.

(ii) The condition that m be partially balanced over A amounts to a requirement
that the measure (m(x), x ∈ A) be invariant for QA, the q-matrix defined to be the
restriction of Q to the set A.

(iii) A sufficient condition for the truncated process to have the equilibrium distri-
bution specified by (4) is that m be detail balanced, that is, the original process be
reversible; clearly the truncated process must then be reversible also.

3. The method

The idea is to imagine that the process, Y = (Y (t), t ≥ 0), which we wish to
simulate, is a truncation of another process, X = (X(t), t ≥ 0), the simulation of
which can be done simply. Suppose that Y has the finite state space A and that its
equilibrium distribution is p = (p(x), x ∈ A). If we were able to sample from p, we
could produce a sequence of independent observations, y1, y2, . . . , yn, of the state of
the process and, then, this could be used to provide estimates of any quantities of
interest. However, our premise is that one cannot easily sample from p.

We shall assume (i) that there exists a process, X = (X(t), t ≥ 0), taking val-
ues in S ⊇ A, of which Y is a truncation, (ii) that its equilibrium distribution,
m = (m(x), x ∈ S), is partially balanced over A and (iii) that sampling from m
is a straightforward matter; of necessity, m(x) will be proportional to p(x), for x ∈ A.
If one repeatedly samples from m, thus producing a sequence of independent ob-
servations, x1, x2, . . . , of X , then, by virtue of Lemma 1, the first n observations,
y1, y2, . . . , yn, that lie in A will comprise a random sample from p. We therefore
propose the following algorithm:

{obtain sample points, y1, y2, . . . , yn, from p}
for i := 1 to n do

begin
repeat

obtain a sample point, x, from m
until x ∈ A;
yi := x

end.



The algorithm we have described is one of the class of acceptance-rejection algorithms,
known as such because, at each stage, sampling continues until a sample point is “ac-
cepted” according to some criterion (for an account of these methods, see Rubinstein
[31]).

The form chosen for m will depend on the particular process Y and the form of its
equilibrium distribution. It turns out that little ingenuity is required to obtainm in any
given instance, although it is not possible to provide a general method for determining
m which applies in all situations. There is, however, one important criterion that
should be met: m should be chosen so that the probability of “acceptance” (call it q)
is as large as possible. Clearly q is given by q =

∑
x∈Am(x) and the expected number

of sample points from m needed to produce one sample point from p is q−1; q is aptly
called the efficiency of the algorithm.

In the most common case, where p admits a product form, say

p(x) = B
N∏

r=1

pr(xr), x ∈ A,

where N ≥ 2, x = (x1, x2, . . . , xN ) and B is the normalizing constant, an obvious
choice for m is given by

m(x) =

N∏
r=1

mr(xr), x ∈ S,

where S is a product space with A ⊆ S and which can be written as S = S1 × S2 ×
· · ·×SN and, for each r, mr = (mr(xr), xr ∈ Sr) is a probability distribution over Sr.
Thus a sample point obtained from m will consist of independent observations from the
distributions m1,m2, . . .mN . In addition, it is commonly the case that there exists a
set I and a sequence, A1, A2, . . . , AN , with Ak ⊆ Ik, k = 1, 2, . . . , N , and AN = A,
such that x ∈ A if and only if x1 ∈ A1, (x1, x2) ∈ A2, . . . , (x1, x2, . . . , xN ) ∈ AN .
In these cases, the basic acceptance-rejection algorithm can be made computationally
more efficient:

{obtain sample points, y1, y2, . . . , yn, from p}
for i := 1 to n do

begin

for j := 1 to N do

repeat

obtain a sample point, xj , from mj

until (x1, x2, . . . , xj) ∈ Aj ;

yi := (x1, x2, . . . , xN )

end.



4. Applications

In this section we shall consider a number of applications of the method to stochastic
models of telecommunications networks, migration processes and queueing systems,
and chemical processes.

A telecommunications network. One important problem in teletraffic theory is
the determination of grades of service or blocking probabilities, as these provide a
good measure of performance of telecommunications networks. However, they are
usually very difficult to calculate for networks of reasonable size. We shall explain
how the method we have described can be used to estimate blocking probabilities in a
circuit-switched network.

Let us begin with a brief description of the model. Calls emanate from various
localities that are interconnected by groups of circuits, which we shall call links. If
there are J links, then any route in the network can be expressed as a subset of
{1, 2, . . . , J}. Let R = {1, 2, . . . , N} index the collection of all possible routes and
suppose that calls using route r ∈ R require ajr(≥ 0) circuits from link j and that
these are held for the duration of any such call; route r is then the collection of links,
j, for which ajr is positive. The blocking probability for route r is the probability that
a request for transmission on that route cannot be met owing to the unavailability of
sufficiently many circuits, that is, if there are fewer than ajr circuits free on link j, for
some j. We shall assume that requests for various routes form independent Poisson
processes with rates (cr, r ∈ R) and that call lengths have an arbitrary distribution
with mean 1. If we denote by n = (nr, r ∈ R) a typical state of the network, where
nr is the number of calls in progress on route r, then the set of all states is given by

Ac = {n ∈ {0, 1, . . .}R : An ≤ c},
where A is the matrix [ajr, j = 1, 2, . . . , J, r ∈ R] and c is the vector (cj , j =
1, 2, . . . , J), where cj specifies the total number of circuits of link j. The transition
rates of the process (n(t), t ≥ 0) have an extraordinarily simple form, since the only
possible transitions involve either an upward or a downward jump of size 1 in one, and
only one, component of n. It can be shown (see Burman et al. [1]) that the unique
equilibrium distribution, p = (p(n), n ∈ Ac), is given by

p(n) = Bc

N∏
r=1

cnr
r

nr!
, n ∈ Ac,

where Bc is a normalizing constant, and that p is detail balanced. It is easy to see that
the process is a truncation of a process for which there is no upper limit on the number
of circuits on each of the links. This process has the property that the equilibrium
numbers of calls, nr, r ∈ R, are independent Poisson random variables with nr having
mean cr. Thus, in order to generate a random state of the network, one can simply
generate values, nr, r ∈ R, of these random variables until n = (nr, r ∈ R) lies in Ac.
We can therefore use the following algorithm to obtain a random sample of the state
of the network:



begin {obtain sample points, n1,n2, . . . ,nn, from p}
i := 0;
repeat

i := i+ 1;
repeat

{generate a value of n := (nr, r = 1, 2, . . . , N)}
r := 0;
repeat

r := r + 1;
{generate the value of a Poisson random variable with mean cr;
see Devroy [7] for details}
nr := Poisson(cr)

until r = N
until n ∈ Ac;
ni := n

until i = n
end.

If, as is usually the case, M , given by

M = max
1≤j≤J

cj

is quite small, the method can be made somewhat more efficient by replacing the Pois-
son random variables by ones with the truncated Poisson distribution, (pr(nr), nr =
0, 1, . . . ,M), given by

pr(nr) =
cnr
r

nr!

(
M∑
l=0

clr
l!

)−1

, nr = 0, 1, . . .M.

It is known as the individual state selection method (see Harvey and Hills in [9] or
Pollett [26], [28]).

Once we have obtained the sample n1,n2, . . . ,nn, we can estimate the blocking prob-
ability, gr, for route r, using the usual sample-mean estimator

ĝr =
1

n

n∑
i=1

1ri,

where

1ri =

{
0, if Ani ≤ c−Aer,

1, otherwise;

here er is the unit vector with a 1 in the rth position. Confidence intervals for gr can
then be obtained in the usual way (for details see Pollett [28]).



Migration processes and queueing networks. The sampling method we have
described can also be used to estimate quantities of interest in a variety of systems
which involve the flow and the interaction of units and where there are constraints
on the numbers of those units. These include, for example, models for describing the
migration of birds (see Whittle [33] and [34]), machine interference (Cox and Smith [4])
and road traffic (see Kelly [15]), models for computer networks (see Kelly [15]) and
message/packet-switched communications networks (see, for example, Pollett [25]),
and compartmental models (see Matis and Hartley [20]). The model we shall consider
encapsulates those cited. We shall provide only a brief description and refer the reader
to Kingman [18] or Pollett [24] for details.

We shall suppose that there are N colonies (queues) labelled 1, 2, . . . , N . For sim-
plicity we shall suppose that a typical state of the process is n = (n1, n2, . . . , nN),
where nr is the number of individuals in colony (queue) r, although a richer definition
of the state of the process is sometimes required. The state space, A, of the process
will depend on the precise functional relationship between the numbers of individuals
in each of the colonies. When the state of the process is n, the rate at which a migra-
tion occurs from colony r to colony s is λrsφr(nr)ψs(ns), where λrs ≥ 0, φr(nr) > 0
if nr > 0 and φr(0) = 0, and ψs(ns) > 0 for all ns ≥ 0; the rate of immigration to
colony s from outside the system is νsψs(ns), where νs ≥ 0, and the rate of emigration
from colony r to the outside is μrφr(nr), where μr ≥ 0. It is usually convenient to
assume that the parameters λrs, μr and νs, r, s = 1, 2, . . . , N are chosen so that A is
irreducible.

If, for all s, ψs(ns) = 1, ns > 0, then the migration rates depend only on the
state of the colony from which migration occurs, and immigration from outside the
system occurs as independent Poisson processes; thus we obtain the migration process
of Whittle [34] (see also Jackson [11]). The process always has an invariant measure,
m = (m(n), n ∈ A), and, provided that there exist positive quantities c1, c2, . . . , cN ,
such that

cr

(
μr +

N∑
s=1

λrs

)
= νr +

N∑
s=1

csλsr, r = 1, 2, . . . , N,

m(n) is proportional to
N∏

r=1

cnr
r∏nr

l=1 φr(l)
,

for n ∈ A. If there is no restriction on the numbers of individuals in the various
colonies, then an equilibrium distribution exists if and only if, for each r,

b−1
r =

∞∑
n=0

cnr∏n
l=1 φr(l)

is finite. When this condition is satisfied, the equilibrium distribution, m = (m(n), n ∈



S), is given by

(5) m(n) =
N∏

r=1

mr(nr), n ∈ S,

where S = {0, 1, . . .}N and mr = (mr(nr), nr = 0, 1, . . . ) is the probability distribu-
tion given by

mr(n) = br
cnr∏n

l=1 φr(l)
, n = 0, 1, . . .

Thus, in equilibrium, the numbers, n1, n2, . . . , nN , in the various colonies are indepen-
dent random variables.

If we were to impose a constraint on the total number of individuals in the system,
for example, if the process were truncated to the set AM , given by

AM =

{
n = (n1, n2, . . . , nN) :

N∑
r=1

nr ≤M

}
,

thus stipulating an upper limit,M , on the total number of individuals, then the equilib-
rium numbers would fail to be independent. However, m is partially balanced over AM

and so p = (p(n), n ∈ AM ), the equilibrium distribution of the truncated process, is
obtained simply by renormalizing (5) over AM . It follows that the acceptance-rejection
method described above can be used to sample from p. If φr(nr) = nr, r = 1, 2, . . . , N ,
then the algorithm specified above can be used without any alteration, except that the
“acceptance” condition, n ∈ Ac, should be replaced by n ∈ AN . If, as is commonly
the case,

φr(nr) =

{
0, if nr = 0,

1, if nr > 0,

then the Poisson/truncated Poisson sampling method, which forms the core of the
algorithm, should be replaced by a method of sampling from a geometric/truncated
geometric distribution with parameter cr, (see, for example, Devroy [7]).

The procedure which we have outlined can be adapted to deal with a variety of net-
works consisting of quasireversible nodes, for example, networks of symmetric queues.
Indeed, in the latter case, the method can be used without any alteration, provided
that the quantities to be estimated are functions only of the numbers of individuals
n1, n2, . . . , nN .

An example of a process which is not quasireversible is obtained on retaining the
general form for the functions ψr, r = 1, 2, . . . , N . However, in order to guarantee the
existence of a simple product-form equilibrium distribution, one needs to assume that
the quantities c1, c2, . . . , cN satisfy

crμr = νr, r = 1, 2, . . . , N



and
crλrs = csλsr, r, s = 1, 2, . . . , N.

In this case, m(n) is proportional to

(6)

N∏
r=1

cnr
r

nr∏
l=1

ψr(l − 1)

φr(l)
,

for all n, and an equilibrium distribution exists if and only if the invariant measure
m can be normalized. If there is no restriction on the numbers of individuals in the
various colonies, then, in equilibrium, n1, n2, . . . , nN are independent with nr having
the distribution mr = (mr(nr), nr = 0, 1, . . . ), given by

mr(n) = brc
n
r

n∏
l=1

ψr(l − 1)

φr(l)
, n = 0, 1, . . . ,

where br is a normalizing constant. In fact, we find that the process is reversible, for
m is detail balanced. This reversible form of the migration process was first studied
by Kingman [18]. It allows for no net circulation of individuals among the colonies.
For this reason it is suitable for use as a model for social grouping behaviour (see, for
example, Kelly [15], Section 6.2).

An interesting modification of the reversible migration process is obtained on setting

ψr(nr) =

{
1, if nr = 0, 1, . . . , kr − 1,

0, if nr = kr, kr + 1, . . . ,

for suitable constants k = (k1, k2, . . . kN ). Thus colony r can hold at most kr individ-
uals. Whilst colony r is “full”, transitions that would have brought an individual to
that colony are forbidden; thus migration from other colonies is “blocked”. Perhaps
surprisingly, the equilibrium distribution is obtained by simply normalizing (6) over
Ak, given by

Ak = {n = (n1, n2, . . . , nN ) : nr ≤ kr, r = 1, 2, . . . , N} .

Therefore, the sampling algorithm needs no modification, only that the “acceptance”
condition should be replaced by n ∈ Ak.

A clustering process. Clustering processes have been used as stochastic models in
a variety of diverse contexts including the study of social grouping behaviour (see, for
example, Coleman and James [3]), of aggregation of slime mould (see, for example,
Keller and Segel [13]) and of chemical processes (see, for example, Whittle [32]). The
version we shall consider is described, in detail, in Pollett [27]. It is a generalization
of Whittle’s [32] reversible clustering process. As we shall only be dealing with the
equilibrium distribution, we shall provide only a brief description of the model here.



Let R be a countable collection of cluster types and denote by nr the number of
clusters of type r. Thus, a typical state, n = (nr, r ∈ R), of the process, indicating
the numbers of clusters of each type, will be an element of S, the subset of {0, 1, . . .}R
whose elements have only finitely many non-zero entries. The parameters of the process
are non-negative constants λrsu(= λsru), μrsu(= μsru) and γru, where r, s, u ∈ R and
non-negative, real-valued functions φr, r ∈ R. The quantity μrsu is the rate at which
a given type u cluster divides into one of type r and one of type s, and λrsu is the
rate at which a given type r cluster and a given type s cluster join to form a type
u cluster. The parameter γru is the rate at which a type r cluster transmutes into
a type u cluster and the function φr(= φr(nr)) measures the extent to which the
overall dissociation, association and transmutation rates are affected by the numbers
of clusters of the types involved.

It can be shown (Kelly [15], Exercise 8.5.2) that if there exist positive quantities,
(cr, r ∈ R), satisfying

crcs
∑
u∈R

λrsu =
∑
u∈R

cuμrsu, r, s ∈ R

and

∑
r∈R

∑
s∈R

crcsλrsu +
∑
r∈R

crγru = cu

(∑
r∈R

∑
s∈R

μrsu +
∑
s∈R

γus

)
, u ∈ R,

then, when an equilibrium distribution exists, the equilibrium probability, p(n), that
the state of the process is n, is proportional to

∏
r∈R

cnr
r∏nr

l=1 φr(l)
.

Conditions for the existence of an equilibrium distribution, and the precise form of
that distribution, will depend on the functional relationship between the numbers of
clusters of the various types. For example, if, as is the case in models for social grouping
behaviour and for polymerization processes, clusters are comprised of a number of
immutable units and the type of a cluster determines the number of units in that
cluster, that is, R = {1, 2, . . . , N}, then the state space of the process will be given by

AN =

{
n = (n1, n2, . . . , nN ) :

N∑
r=1

rnr = N

}

and so an equilibrium distribution, p = (p(n), n ∈ AN ), always exists and it is given
by

p(n) = BN

N∏
r=1

cnr
r∏nr

l=1 φr(l)
, n ∈ AN ,



where BN is the normalizing constant. Further, if, as is commonly the case, the rates of
dissociation, association and transmutation depend linearly on the numbers of clusters
of the types involved, that is, φr(nr) = nr, then

p(n) = BN

N∏
r=1

cnr
r

nr!
, n ∈ AN .

It is easy to show that the process is a truncation of an open clustering process, that
is, one altered by allowing the immigration and the emigration of clusters; to obtain
the transition rates of this process, one simply sets all the emigration parameters to
1 and the immigration parameter for type r clusters equal to cr, for each r ∈ R
(for details see Pollett [23]). The open process has the property that the equilibrium
numbers of clusters, nr, r ∈ R, are independent random variables, in the “linear”
case, independent Poisson random variables with nr having mean cr. Thus, in order
to generate a random state of the process, one can simply generate values of these
random variables, thus producing n, a state of the open process, until one finds a
value of n which lies in AN . We can therefore use the algorithm specified above in
order to obtain a random sample of the state of the linear clustering process.

As a final remark, we note that the method remains unchanged if the state space
AN is replaced by

AN =

{
n = (n1, n2, . . . , nN ) :

N∑
r=1

rnr ≤ N

}
.

This might be appropriate if, in a model for social grouping behaviour which allows
the immigration and the emigration of individuals, an upper limit, N , is placed on the
population size.

5. Variance reduction

The sampling algorithm which we have described can be improved, sometimes dra-
matically, by employing any one of a number of standard variance reduction techniques
(for a review of these methods see Kleijnen [19] or Devroy [7]). With each of these, one
replaces the existing estimator of a given quantity of interest with another estimator,
based on a sample of no greater size, which has a smaller variance. Thus one can
obtain a tighter confidence interval without having to increase the number of sample
points, or, equivalently, one can achieve the desired level of precision using a smaller
sample.

In the context of estimating blocking probabilities in a circuit-switched network, the
method of antithetic variates and the method of stratified sampling have been used with
some success. The method of antithetic variates involves performing two simulation
runs, the second of which uses a complementary sequence of random numbers. In
particular, if u1, u2, . . . is the sequence of uniform(0,1) random numbers used in the



first run, then 1−u1, 1−u2, . . . are used in the second. If we denote by ĝ1r and ĝ2r the
sample-mean estimators for the blocking probability gr, each based on a sample of size
n, in, respectively, the first and the second run, then the average of these, 1

2 (ĝ
1
r + ĝ2r),

has a variance which is less than that of the original sample-mean estimator based on
a sample of size 2n, and so is used in preference. The method works because ĝ1r and ĝ2r
are negatively correlated; this is difficult to establish in any other way but empirically.
Indeed, the more negatively correlated, the greater the reduction in variance. The
author has demonstrated between a 30 and a 40 percent improvement in estimating
blocking probabilities in moderately large circuit-switched networks (see Pollett [28]).

The method of stratified sampling is a well-known statistical technique. It was used
by Harvey and Hills [9] to estimate blocking probabilities in circuit-switched networks,
and they have reported that a specified precision can be achieved 30 times faster than
with the individual state selection method. They divide the collection of routes into
two classes, “short” routes and “long” routes. The state space is then partitioned into
classes which consist of states that indicate the same number of calls on the “long”
routes. Members of the partition are selected at random using an individual state
selection and then individual states in that class are selected in order to provide an
estimate for gr. A weighted average of these is then used, for this provides an estimate
with a reduced variance (for details see [9]).

Another variance reduction technique which has been widely used, particularly in
the context of queueing networks, is the method of control variates. This involves
estimating a quantity whose precise numerical value is known in advance. For example,
if one is simulating a single server queue, a suitable control is the probability that the
server is busy, for this is known to be equal to the traffic intensity. The method has
been used with varying degrees of success in simulating a wide variety of systems (see
Rubinstein [31] and the references contained therein) and we expect it to be of some
use in the situations considered above. However, it is difficult to see how the method
could be applied to circuit-switched networks, for simple explicit formulae for any of
the quantities of interest are unavailable.
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