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Direct analytical methods for
determining quasistationary
distributions for continuous-time
Markov chains

A.G. Hart
P.K. Pollett

The University of Queensland

ABSTRACT We shall be concerned with the problem of determining the
quasistationary distributions of an absorbing continuous-time Markov chain
directly from the transition-rate matrix Q. We shall present conditions
which ensure that any finite µ-invariant probability measure for Q is a
quasistationary distribution. Our results will be illustrated with reference
to birth and death processes.

QUASISTATIONARY DISTRIBUTIONS; INVARIANT MEASURES;
MARKOV CHAINS

1 Introduction

The most useful conditions to date, which guarantee that a µ-invariant
probability distribution m be a quasistationary distribution, stipulate that
µ should be equal to the probability flux into the absorbing state; see for
example [2], [7], [12], [13] and [15]. However, although these conditions
have proved useful in practice (see for example [10], [11] and [14]), they are
deficient in so far as µ and m are interrelated; indeed, there is usually a one-
parameter family of quasistationary distributions indexed by µ. Here, we
address this problem by presenting conditions, solely in terms of the tran-
sition rates, which guarantee that any finite µ-invariant measure (or, more
generally, any which is finite with respect to the absorption probabilities)
can be normalized to produce a quasistationary distribution.
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We begin by reviewing existing work on the relationship between µ-
invariant measures and quasistationary distributions.

2 Quasistationary distributions

Let S = {0, 1, . . .} and let Q = (qij , i, j ∈ S) be a stable, conservative
and regular q-matrix of transition rates over S. Let (X(t), t ≥ 0) be the
unique Markov chain associated with Q and denote its transition function
by P (·) = (pij(·), i, j ∈ S).

Let C be a subset of S and µ some fixed non-negative real number. Then,
the measure m = (mj , j ∈ C) is called a µ-invariant measure for P if∑

i∈C

mipij(t) = e−µtmj , j ∈ C, t ≥ 0. (2.1)

In contrast, m is called a µ-invariant measure for Q if∑
i∈C

miqij = −µmj , j ∈ C. (2.2)

We shall take C = {1, 2, . . .} and for simplicity we shall suppose that C
is irreducible; this guarantees that all non-trivial µ-invariant measures m
satisfy mj > 0 for all j ∈ C. We shall also assume that 0 is an absorbing
state, that is q00 = 0, and, that qi0 > 0 for at least one i ∈ C, a condition
which guarantees a positive probability of absorption starting in i.

We shall use van Doorn’s [18] definition of a quasistationary distribution.
Definition 1. Let m = (mj , j ∈ C) be a probability distribution over C

and define h(·) = (hj(·), j ∈ S) by

hj(t) =
∑
i∈C

mipij(t), j ∈ S, t ≥ 0. (2.3)

Then, m is a quasistationary distribution if, for all t > 0 and j ∈ C,

hj(t)∑
i∈C hi(t)

= mj .

That is, if the chain has m as its initial distribution, then m is a quasista-
tionary distribution if the state probabilities at time t, conditional on the
chain being in C at t, are the same for all t.

The relationship between quasistationary distributions and the transi-
tion probabilities of the chain is made more precise in the following propo-
sition [7]:

Proposition 1. Let m = (mj , j ∈ C) be a probability measure over C.
Then, m is a quasistationary distribution if and only if, for some µ > 0, m
is a µ-invariant measure for P .
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Thus, in a way which mirrors the theory of stationary distributions, one
can interpret quasistationary distributions as eigenvectors of the transition
function. However, the transition function is available explicitly in only a
few simple cases, and so one requires a means of determining quasistation-
ary distributions directly from transition rates of the chain. Since qij is
the right-hand derivative of pij(·) near 0, an obvious first step is to rewrite
(2.1) as∑

i∈C: i 6=j

mipij(t) =
(
(1− pjj(t))− (1− e−µt)

)
mj , j ∈ C, t ≥ 0.

Then, proceeding formally, dividing this expression by t and letting t ↓ 0, we
arrive at (2.2). This argument can be justified rigorously (see Proposition 2
of [17]), and so, in view of Proposition 1, we have the following simple result:

Proposition 2. If m is a quasistationary distribution then, for some
µ > 0, m is a µ-invariant measure for Q.

The more interesting question of when a positive solution m to (2.2) is
also a solution to (2.1) was answered in [8, 9]:

Proposition 3. A µ-invariant measure m for Q is µ-invariant for P if
and only if the equations∑

i∈C

yiqij = νyj , 0 ≤ yj ≤ mj , j ∈ C, (2.4)

have no non-trivial solution for some (and then for all) ν > −µ.
If we seek a quasistationary distribution then the µ-invariant measure m

for Q can be taken to be finite, in which case simpler conditions obtain.
The following result can be deduced from Theorems 3.2, 3.4 and 4.1 of [7]:

Proposition 4. Let m be a probability measure over C and suppose
that m is µ-invariant for Q. Then, m is a quasistationary distribution if
and only if µ =

∑
i∈C miqi0.

3 The Reuter FE Conditions

Our main result gives conditions on Q which guarantee that any proba-
bility distribution over C which is µ-invariant for Q is a quasistationary
distribution:

Theorem 1. If the equations∑
i∈C

yiqij = νyj , j ∈ C, (3.5)

have no non-trivial, non-negative solution such that
∑

i∈C yi < ∞, for some
(and then all) ν > 0, then all µ-invariant probability measures for Q are
µ-invariant for P .
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Remarks. (1) Many of the assumptions we have made can be relaxed.
First, Q need not be regular or even conservative; the conclusions of the
theorem are valid taking P to be the minimal transition function. Next,
C need not be irreducible. For example, we can take C to be the whole of
the state space S, which itself need not be of any particular form. More
generally, C can be the union of irreducible classes (that is, irreducible with
respect to the minimal chain), provided we impose some extra conditions,
as follows. If C1 and C2 are two such classes with C1 ≺ C2, that is, C2 is
accessible from C1 (again, for the minimal chain), then we require that there
be no class C ′ of states outside C with C1 ≺ C ′ ≺ C2: all paths leading
from i ∈ C1 to j ∈ C2 must be wholly contained in C. (See Theorem 2
of [8] and the remarks at the end of Section 5 of that paper.)

(2) We call our invariance conditions the Reuter FE conditions, because
they are G.E.H. Reuter’s familiar necessary and sufficient conditions for
the minimal transition function to be the unique solution to the forward
equations when Q is not regular (see Section 6 of [16]); under our assump-
tion that Q be regular, the Reuter FE conditions have no bearing on the
forward equations.

Proof. Let m be a µ-invariant probability measure for Q. If the Reuter
FE conditions hold, then any non-trivial, non-negative solution y to (2.4),
for say ν = 1, must satisfy

∑
i∈C yi = ∞. However, since

∑
i∈C mi < ∞,

such a solution cannot satisfy yi ≤ mi for all i. Thus, by Proposition 3, m
is µ-invariant for P .

4 When absorption is not certain

When the absorption probabilities are less than 1 we cannot use Theorem 1
because, under the conditions we have imposed (specifically, the regularity
of Q), the µ-invariant measure cannot be finite. To see this, first observe
that if m is a finite µ-invariant measure for P with µ > 0 then, for all
i ∈ C,

lim
t→∞

∑
j∈C

pij(t) = 0,

since from (2.1) we have that

mipij(t) ≤ e−µtmj , j ∈ S.

But P is honest, and so the probability of absorption starting in i, given
by

ai = lim
t→∞

pi0(t),

is equal to 1 for all i ∈ C.
When the absorption probabilities are less than 1, the natural premise

is that the µ-invariant measure m be finite with respect to a = (ai, i ∈ S),
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that is,
∑

i∈C miai < ∞, and, as we shall see, the conditions of Theorem 1
can be relaxed accordingly. (Since m is the subject of our attention, we
prefer this to the measure-theoretic statement that a is an m-measurable
function.) The premise arises in connection with the more general definition
of a quasistationary distribution:

Definition 2. Let m = (mj , j ∈ C) be a measure over C such that∑
j∈C mjaj < ∞ and define h(·) = (hj(·), j ∈ S) by (2.3) and p = (pj , j ∈

C) by
pj =

mjaj∑
i∈C miai

, j ∈ C.

Then, p is a quasistationary distribution if, for all t > 0 and j ∈ C,

hj(t)aj∑
i∈C hi(t)ai

= pj .

Our next result, which is a generalization of Theorem 1, provides a means
of determining quasistationary distributions directly from the q-matrix in
cases where absorption occurs with probability less than 1.

Theorem 2. If the equations∑
i∈C

yiqij = νyj , j ∈ C, (4.6)

have no non-trivial, non-negative solution such that
∑

i∈C yiai < ∞, for
some (and then all) ν > 0, then all µ-invariant measures for Q which are
finite with respect to a are also µ-invariant for P .

Proof. Suppose that the Reuter FE conditions (4.6) hold. Then, any
non-trivial, non-negative solution to (2.4) satisfies

∑
i∈C yiai = ∞. But,

since
∑

i∈C miai < ∞, we cannot have yi ≤ mi for every i and so, again
by Proposition 3, m must be µ-invariant for P .

An alternative proof, which also provides a useful way of interpreting
Theorem 2, is based on the dual of Q, namely the q-matrix Q̄ = (q̄ij , i, j ∈
S) given by

q̄ij = qijaj/ai, i, j ∈ S.

This dual q-matrix is conservative because a = (aj , j ∈ S) is an invariant
vector for Q, and, by Lemma 3.3 (ii) of [9], the corresponding minimal
transition function P̄ bears the same duality relationship with P :

P̄ij(t) = Pij(t)aj/ai, i, j ∈ S, t ≥ 0.

Since a is an invariant vector for P , P̄ is honest (Q̄ regular) and is hence
the unique Q̄-transition function. Now, on setting m̄j = mjaj , j ∈ C, we
see that m is µ-invariant for Q if and only if m̄ is µ-invariant for Q̄, and,
that m is µ-invariant for P if and only if m̄ is µ-invariant for P̄ . It is then
a simple matter to check that Theorem 2 follows by applying Theorem 1
to Q̄.



1. Direct methods for determining quasistationary distributions 6

In applications involving chains for which absorption occurs with prob-
ability less than 1, it is frequently easier to construct the dual transition
rates from the absorption probabilities and then apply Theorem 1. We shall
use this approach in Section 5.

5 Birth and death processes

We shall illustrate the results of the previous section with reference to ab-
sorbing birth and death processes. Some further applications are described
in [4].

Van Doorn [18] has given a complete treatment of questions concerning
the existence of quasistationary distributions for absorbing birth and death
processes in cases where the probability of absorption is 1. We shall explain
how his conditions for the existence of quasistationary distributions arise
in the context of Theorem 1 and then extend these results to cases where
absorption occurs with probability less than 1.

An absorbing birth and death process on S = {0, 1, . . .} has transition
rates given by

qij =


λi, if j = i + 1,
−(λi + µi), if j = i,
µi, if j = i− 1,
0, otherwise,

where the birth rates (λi, i ≥ 0) and the death rates (µi, i ≥ 0) satisfy
λi, µi > 0, for i ≥ 1, and λ0 = µ0 = 0. Thus, 0 is an absorbing state and
C = {1, 2, . . .} is an irreducible class. We shall assume that

∞∑
i=1

1
λiπi

i∑
j=1

πj = ∞, (5.7)

where π1 = 1 and

πi =
i∏

j=2

λj−1

µj
, i ≥ 2,

a condition which is necessary and sufficient for Q to be regular (see Sec-
tion 3.2 of [1]).

The classical Karlin and McGregor theory of birth and death processes
involves the recursive construction of a sequence of orthogonal polynomials
using the equations for an x-invariant vector (see [18]): define (φi(·), i ∈ C),
where φi : R → R, by φ1(x) = 1,

λ1φ2(x) = λ1 + µ1 − x,

λiφi+1(x)− (λi + µi)φi(x) + µiφi−1(x) = −xφi(x), i ≥ 2,
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and let
mi = πiφi(x), i ∈ C, x ∈ R. (5.8)

It can be shown [18] that φi(x) > 0 for x in the range 0 ≤ x ≤ λ, where
λ (≥ 0) is the decay parameter of C (see [5]). Since Q is reversible with
respect to π, that is,

πiqij = πjqji, i, j ∈ C, (5.9)

it follows, from Theorem 4.1 b(ii) of [9], that, for each fixed x in the above
range, m = (mi, i ∈ C) is an x-invariant measure for Q; specifically,
m satisfies (2.2) with µ = x. Moreover, m is uniquely determined up to
constant multiples. Something which is not at all obvious, is that when the
probability of absorption is 1, that is

A :=
∞∑

i=1

1
λiπi

= ∞, (5.10)

as well as λ > 0, we have that
∑∞

i=1 πiφi(x) < ∞ for all x in the range
0 < x ≤ λ (see [3] and the proof of Theorem 3.2 of [18]). Thus, when A = ∞,
each x-invariant measure for x in this range is finite, and so in order to apply
Theorem 1 it remains only to check the Reuter FE conditions. (Note that
A = ∞ implies (5.7) and hence the regularity of Q). It is well known (see
Section 3.2 of [1]) that the Reuter FE conditions hold whenever

D :=
∞∑

i=1

1
λiπi

∞∑
j=i+1

πj = ∞. (5.11)

So, in the case where absorption occurs with probability 1, D = ∞ is suf-
ficient to ensure that for every x in the range 0 < x ≤ λ, m = (mi, i ∈ C),
given by mi = πiφi(x), is a (finite) x-invariant measure for P and, hence,
can be normalized to produce a quasistationary distribution. Thus, we have
proved the following result, which is encapsulated by Theorem 3.2 (i) of [18]
(see also Theorem 3.5 (i) of [6]):

Theorem 3. Consider a birth and death process with A = ∞ (which
of necessity is regular). Then, for every µ in the range 0 < µ ≤ λ, the
essentially unique µ-invariant measure m for Q is finite. Furthermore, if
D = ∞, then m is always µ-invariant for P and p = (pj , j ∈ C), given by

pj =
πjφj(µ)∑
i∈C πiφi(µ)

, j ∈ C,

is a quasistationary distribution.
Let us now deal with the case where absorption occurs with probability

less than 1, that is, A < ∞. The absorption probabilities are given by
a0 = 1 and

aj =
µ1

1 + µ1A

∞∑
i=j

1
λiπi

, j ∈ C. (5.12)
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As suggested at the end of Section 4 we shall construct Q̄, the dual of Q,
and apply Theorem 1 to Q̄. This is clearly the q-matrix of an absorbing
birth and death process on S whose birth rates and death rates are given
(in an obvious notation) by

λ̄j = λjaj+1/aj and µ̄j = µjaj−1/aj , j ∈ C,

with λ̄0 = µ̄0 = 0. The corresponding potential coefficients are given by
π̄j = πja

2
j/a2

1, j ∈ C, and the polynomials by φ̄j = φja1/aj , j ∈ C. It
follows that m̄ = (m̄j , j ∈ C), the essentially unique µ-invariant measure
for Q̄, is given by m̄j = mjaj/a1, j ∈ C. It is easily shown that the counter-
parts, Ā and D̄, of the series in (5.10) and (5.11) are both divergent. Hence
m̄ is finite and, by Theorem 1, m̄ is µ-invariant for P̄ . We have therefore
proved the following result, which can be compared with Theorem 3.5 (ii)
of [6]:

Theorem 4. Consider a regular birth and death process with A < ∞.
Then, for every µ in the range 0 < µ ≤ λ, the essentially unique µ-invariant
measure m for Q is finite with respect to a. Furthermore, m is always µ-
invariant for P and p = (pj , j ∈ C), given by

pj =
πjφj(µ)aj∑
i∈C πiφi(µ)ai

, j ∈ C,

is a quasistationary distribution.
Remark . What has happened to the invariance condition D = ∞? This

condition is not needed when A < ∞, for it is the regularity of Q which is
making the result work. Indeed, in a more general setting, where Q is not
regular and our attention is focused on the minimal transition function, we
can show that if A < ∞, then D̄ = ∞ if and only if the series in (5.7)
diverges. It is also worth remarking that, in this more general context,
Theorem 3 remains valid with P being interpreted as the minimal process.

6 Some concluding remarks

We have already noted that the transition rates of a birth and death process
are reversible with respect to a measure π. Since the Reuter FE conditions
are expressed simply and explicitly in terms of the divergence of certain
series, one might expect a simplification of the Reuter FE conditions in the
general case of reversible Markov chains. We shall content ourselves with
the following simple result:

Theorem 5. Suppose that there exists a collection of positive numbers
π = (πi, i ∈ S) satisfying (5.9). Then, every µ-invariant measure m =
(mi, i ∈ C) for Q satisfying supi∈C{mi/πi} < ∞ is µ-invariant for P .

Remarks. (1) Neither π nor m need be finite. We require only that m be
bounded above by π.
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(2) Our assumption that Q be regular cannot be relaxed.
Proof. Let m be a µ-invariant measure which is bounded above by π

and suppose that m is not µ-invariant for P . Then, by Proposition 3,
the equations (2.4) have a non-trivial solution y, certainly for ν > 0. On
substituting (5.9) into (2.4) we find that z = (zj , j ∈ C), given by zj =
yj/πj , satisfies ∑

i∈C

qjizi = νzj , (6.13)

with 0 < zj ≤ mj/πj , j ∈ C. But, supi∈C{mi/πi} < ∞, and so we have
found a bounded, non-trivial, non-negative solution to (6.13), which, by
Theorem 2.2.7 of [1], contradicts our assumption that Q is regular.

We shall conclude with a tantalizing conjecture. For a birth and death
process with absorption probability 1, Theorem 3 identifies a one-parameter
family of quasistationary distributions under the condition that D = ∞. As
mentioned earlier, this result is contained in the first part of Theorem 3.2
of [18]. The second part of van Doorn’s result states that if D < ∞, then
there is only one quasistationary distribution: in the notation of Theorem 3,
if D < ∞, then m is µ-invariant for P only when µ = λ, and p = (pj , j ∈
C), given by

pj =
πjφj(λ)∑
i∈C πiφi(λ)

, j ∈ C,

is the only quasistationary distribution.
Since, for birth and death processes, the Reuter FE conditions hold when-

ever the D series (5.11) diverges, we arrive at the following conjecture,
which would extend Theorems 1 and 2:

Conjecture. If the Reuter FE conditions fail, that is, the equations∑
i∈C

yiqij = νyj , j ∈ C, (6.14)

have a non-trivial, non-negative solution satisfying
∑

i∈C yiai < ∞, for
some (and then all) ν > 0, then µ-invariant probability measures for Q
which are finite with respect to a are µ-invariant for P only when µ is the
decay parameter of C.

7 Acknowledgments

The authors are grateful to Laird Breyer and David Walker for valuable
conversations on this work. The work of the first author was carried out
during the period he spent as a Ph.D. student in the Department of Math-
ematics of the University of Queensland.



1. Direct methods for determining quasistationary distributions 10

8 References
[1] W.J. Anderson. Continuous-time Markov chains: an applications ori-

ented approach. Springer-Verlag, New York, 1991.

[2] S. Elmes, P.K. Pollett, and D. Walker. Further results on the relation-
ship between µ-invariant measures and quasistationary distributions
for continuous-time Markov chains. Submitted for publication, 1995.

[3] P. Good. The limiting behaviour of transient birth and death processes
conditioned on survival. J. Austral. Math. Soc., 8:716–722, 1968.

[4] A.G. Hart. Quasistationary distributions for continuous-time Markov
chains. Ph.D. Thesis, The University of Queensland, 1996.

[5] J.F.C. Kingman. The exponential decay of Markov transition proba-
bilities. Proc. London Math. Soc., 13:337–358, 1963.

[6] M. Kijima, M.G. Nair, P.K. Pollett, and E. van Doorn. Limiting con-
ditional distributions for birth-death processes. Submitted for publi-
cation, 1995.

[7] M.G. Nair and P.K. Pollett. On the relationship between µ-
invariant measures and quasistationary distributions for continuous-
time Markov chains. Adv. Appl. Probab., 25:82–102, 1993.

[8] P.K. Pollett. On the equivalence of µ-invariant measures for the min-
imal process and its q-matrix. Stochastic Process. Appl., 22:203–221,
1986.

[9] P.K. Pollett. Reversibility, invariance and µ-invariance. Adv. Appl.
Probab., 20:600–621, 1988.

[10] P.K. Pollett. Analytical and computational methods for modelling the
long-term behaviour of evanescent random processes. In D.J. Sutton,
C.E.M. Pearce, and E.A. Cousins, editors, Decision Sciences: Tools for
Today, Proceedings of the 12th National Conference of the Australian
Society for Operations Research, pages 514–535, Adelaide, 1993. Aus-
tralian Society for Operations Research.

[11] P.K. Pollett. Modelling the long-term behaviour of evanescent eco-
logical systems. In M. McAleer, editor, Proceedings of the Interna-
tional Congress on Modelling and Simulation, volume 1, pages 157–
162, Perth, 1993. Modelling and Simulation Society of Australia.

[12] P.K. Pollett. Recent advances in the theory and application of qua-
sistationary distributions. In S. Osaki and D.N.P. Murthy, editors,
Proceedings of the Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 477–486, Singapore,
1993. World Scientific.



1. Direct methods for determining quasistationary distributions 11

[13] P.K. Pollett. The determination of quasistationary distributions di-
rectly from the transition rates of an absorbing Markov chain. Math.
Computer Modelling, 1995. To appear.

[14] P.K. Pollett. Modelling the long-term behaviour of evanescent ecolog-
ical systems. Ecological Modelling, 75, 1995. To appear.

[15] P.K. Pollett and D. Vere-Jones. A note on evanescent processes. Aus-
tral. J. Statist., 34:531–536, 1992.

[16] G.E.H. Reuter. Denumerable Markov processes and the associated
contraction semigroups on l. Acta Math., 97:1–46, 1957.

[17] R.L. Tweedie. Some ergodic properties of the Feller minimal process.
Quart. J. Math. Oxford, 25:485–495, 1974.

[18] E.A. van Doorn. Quasi-stationary distributions and convergence
to quasi-stationarity of birth-death processes. Adv. Appl. Probab.,
23:683–700, 1991.


