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Abstract-we shall be concerned with the problem of determining quasi-stationary distributions 
for Markovian models directly from their transition rates Q. We shall present simple conditions for 
a p-invariant measure m for Q to be p-invariant for the transition function, so that if m is finite, 

it can be normalized to produce a quasi-stationary distribution. @ 2000 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

In a recent paper, Hart and Pollett [l] identified conditions, expressed solely in terms of the 

transition rates Q of a continuous-time Markov chain, which guarantee that any finite p-invariant 

measure for Q can be normalized to produce a quasi-stationary distribution. These Reuter 
FE conditions (so named because of their similarity to Reuter’s [2] conditions for the forward 

differential equations to have a unique solution) extended and complemented earlier work [3-81 

on the relationship between p-invariant measures and quasi-stationary distributions. The Reuter 

FE conditions involve testing for the nonexistence of a solution to an infinite system of linear 

equations, but, for a range of specific models, they can usually be expressed in quite simple 

terms. For example, in the case of birth-death processes, they are expressed in terms of the 

divergence of certain series [l]. Since the transition rates of a birth-death process are reversible 
with respect to a measure X, one might hope for a simplification of the Reuter FE conditions 

in the more general case of reversible Markov chains. This is indeed the case, and our main 

result, presented in Section 3, establishes that if Q is reversible with respect to a subinvariant 

measure n, then every p-invariant measure for Q which is bounded above by 7r is also p-invariant 

for the transition function. We shall illustrate this result with reference to some simple Markovian 

models, including the birth-death process. Further examples have appeared in [9]. Finally, in 

Section 4, we shall indicate how the reversibility assumption can be relaxed, thus providing a set 

of analogous conditions for general Markov chains. 
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Mathematics of the University of Queensland. 
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We begin by reviewing the existing theory of p-invariant measures and quasi-stationary distri- 

butions for continuous-time Markov chains. 

2. QUASI-STATIONARY DISTRIBUTIONS 

Let S = (0, 1, . . . } and let Q = (qij, i, j E S) b e a stable, conservative, and regular q-matrix 

of transition rates over S. Let (X(t), t 2 0) be the unique Markov chain associated with Q 

and denote its transition function by P(.) = (pij(.), i, j E S). Let C be a subset of S and p 

some fixed nonnegative real number. Then, the measure m = (mj, j E C) is called a ~-invariant 

measure for P if 

Cmipij(t) = e-@mj, j E C, t 2 0. (2.1) 
GC 

In contrast, m is called a p-invariant measure for Q if 

c Vliqij = -pmj, j E c. (2.2) 
iEC 

We shall take C = {1,2,... } and for simplicity we shall suppose that C is irreducible; this 

guarantees that all nontrivial b-invariant measures m satisfy rnj > 0 for all j E C. We shall also 

assume that 0 is an absorbing state, that is 400 = 0, and that qis > 0 for some i E C, a condition 

which guarantees a positive probability of absorption starting in i. We shall use van Doorn’s [lo] 

definition of a quasi-stationary distribution. 

DEFINITION. Let m = (mj, j E C) be a probability distribution over C and define h(.) = 

(U), j E S) by 

hj(t) = C mipij(t), jES, t>o. (2.3) 
SC 

Then, m is a quasi-stationary distribution if, for all t > 0 and j E C, 

hj (t) 
C h,(t) = m’* 
GzC 

That is, if the chain has m as its initial distribution, then m is a quasi-stationary distribution if 

the state probabilities at time t, conditional on the chain being in C at t, are the same for all t. 

The relationship between quasi-stationary distributions and the transition probabilities of 

the chain was identified by Nair and Pollett [4]. They showed that a probability measure 

m = (mj, j E C) over C is a quasi-stationary distribution if and only if, for some ~1 > 0, 

m is a p-invariant measure for P. Thus, in a way which mirrors the theory of stationanJ distribu- 

tions, quasi-stationary distributions can be interpreted as eigenvectors of the transition function. 

However, the transition function is available explicitly in only a few simple cases, and so one re- 

quires a means of determining quasi-stationary distributions directly from transition rates of the 

chain. Since qij is the right-hand derivative of pij(*) near 0, an obvious first step is to rewrite (2.1) 

as 

C mipij (t) = ((1 - pjj (t>> - (1 - e-““)) mj, jEC, t>o. 

iEC:i#j 

Then, proceeding formally, dividing this expression by t and letting t j, 0, we arrive at (2.2). This 

argument can be justified rigorously (see [ll, Proposition 2]), and so if m is a quasi-stationary 

distribution then, for some p > 0, m is a p-invariant measure for Q. 

The more interesting question of when a positive solution m to (2.2) is also a solution to (2.1) 

was answered in [12,13]. 

THEOREM 1. A p-invariant measure m for Q is ,u-invariant for P if and only if the equations 

c YiQij = VYjj, OIYj Lmj, j EC, (2.4) 
(EC 

have no nontrivial solution for some (and then for all) v > -p. 
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Thus, the problem of determining p-invariant measures, and hence, quasi-stationary distribu- 

tions, was ostensibly solved, but conditions (2.4) were found to be difficult to verify in practice. 

Consequently, a range of simpler sufficient conditions were sought. The first of these was based 

on the premise that the p-invariant measure m for Q be finite; [B] s h owed that a p-invariant prob- 

ability measure for Q is a quasi-stationary distribution if and only if p = Ciec miqio, a condition 

which stipulates that p be equal to the probability flux into the absorbing state under m. How- 

ever, although these conditions have proved useful in practice [14,15], they are deficient in so far 

as p and m are interrelated; indeed, there is usually a one-parameter family of quasi-stationary 

distributions indexed by p. This problem was addressed by Hart and Pollett [l], who presented 

a set of conditions solely in terms of the transition rates. 

THEOREM 2. THE REUTER FE CONDITIONS. If the equations 

c YiQij = uYj~ j E c, 
,iEC 

have no nontrivial, nonnegative solution such that CiGc yi < co, for some (and then all,) v > 0, 

then all yinvariant probability measures for Q are quasi-stationary distributions. 

The conditions we shall present here for a p-invariant measure for Q to be p-invariant for P 
do not require m to be finite, but rather involve comparing m with a subinvariant measure on C 

for Q, that is, a measure 7r = (7rj, j E C) which satisfies 

c niqij I 05 j E c. (2.5) 

iEC 

Our irreducibility assumption guarantees that all nontrivial subinvariant measures satisfy 7rj > 0 

for all j E C. 

We shall first deal with the case when Q is reversible with respect to r. 

3. THE REVERSIBLE CASE 

Suppose that there exists a collection of positive numbers n = (7ri, i E C) satisfying the 

detailed-balance conditions 

TiQij = TjjQji, i,j E C. (3.1) 

Then, summing (3.1) over i in C shows that 7~ satisfies (2.5). Thus, K is a subinvariant measure 

for Q; Q is said to be reversible with respect to TT. 

THEOREM 3. Suppose that Q is reversible with respect to the subinvariant measure n = (xi, 

i E C). Then, every p-invariant measure m = (mi, i E C) for Q which is bounded by r, that is, 

mi 
sup 

i > 
- <oo, 

iEC Ti 

is also ~-invariant for P. 

It should be emphasized that neither r nor m need be finite; we require only that m be bounded 

above by r. If m is finite, it can then be normalized to produce a quasi-stationary distribution. 

Our proof rests heavily on the assumption that Q be regular, a condition which cannot be relaxed 

under reversibiliy. 

PROOF. Let m be a p-invariant measure which satisfies (3.2) and suppose that m is not 

p-invariant for P. Then, by Theorem 1, equations (2.4) have a nontrivial solution y, certainly 

for v > 0. On substituting (3.1) into (2.4), we find that z = (.~j, j E C), given by zj = yj /rj, 

satisfies 

c qji.Zi = VZj, (3.3) 
IEC 
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with 0 < zj 5 mj/rj for all j E C. But, m is bounded above by r and so we have found 
a bounded, nontrivial, nonnegative solution to (3.3). Thus, by Theorem 2.2.7 of [16], we have 

contradicted our assumption that Q is regular. I 

EXAMPLE 1. We shall illustrate Theorem 3 with reference to the absorbing birth-death process 

on S = (0, 1, . . , }. This has transition rates given by 

( Xi, ifj=i+l, 

1 -(Xi + pi), if j = i, 
Qij = 

cLi7 ifj=i-1, 

I 0, otherwise, 

where the birth rates (Xi, i > 0) and the death rates (I_L~, i 2 0) satisfy Ai, pi > 0, for i > 1, and 
X0 = ~0 = 0. Thus, 0 is an absorbing state and C = {1,2, . . . } is an irreducible class Define 

series A and C by 

where 7r = (ri, i E C), given by “1 = 

measure on C with respect to which Q 

1 and ni = ~&Xj_rl~j, for i 2 2, is a subinvariant 

is reversible. We shall assume that C = 03, a condition 

which is necessary and sufficient for Q to be regular (see [16]). The classical Karlin and McGregor 
Theory of the birth-death process involves the recursive construction of a sequence of orthogonal 

polynomials using the equations for an z-invariant vector (see [lo]): define (&(.), i E C), where 

& : R -+ R, by $1(z) = 1, X1&(z) = Xi + ~1 - 2, and 

and let 

It can be shown 

&&+1(z) - (Xi + Pi)&(") + k4i-l(z) = -di(~>, i 2 2, 

mi = ~i+i(~:), i E c, 2 E R. (3.4) 

[lo] that #i(z) > 0 for II: in the range 0 5 2 5 A, where X (2 0) is the decay 

parameter of C (see [17]). S ince Q is reversible with respect to X, it follows, from [13, Theorem 4.1 
b(ii)], that, for each fixed z in the above range, m = (mi, i E C) is an z-invariant measure for Q; 
specifically, m satisfies (2.2) with p = z. Moreover, m is uniquely determined up to constant 

multiples. We can use Theorem 3 to obtain conditions under which m is p-invariant for P. In view 
of (3.4) we need simply to determine whether &(X) is bounded in i. This is not straightforward, 

and we thank van Doorn for providing the argument: using Theorems 3.1, 3.4(i), 3.6, and 3.8 

of [18], one can show that, for every z in the range 0 2 5 5 A, &(x) is bounded in i if and only if 
A < 00. Thus, the given m is h-invariant for P if A < 00. This complements the “classical case” 

A = 00 dealt with by van Doorn. Theorem 3.2(i) of [lo] establishes that under this condition 
also, m is p-invariant for P. Hence, (3.2) is not a necessary condition for m to be p-invariant 
for P. These results are now well known; for a detailed analysis see [19]. 

EXAMPLE 2. Our second example is taken from Jacka and Roberts [20], who used it to show that 
conditioned Markov chains do not always converge weakly. The q-matrix of the chain is given by 

410 = 911 = -41 = -1, qil = -Qii = qi, for all i > 2, 

9lj > 07 for all j > 2, qij = 0 otherwise, 

where the constants qi are all positive. Clearly, 0 is an absorbing state accessible via State 1 

from the irreducible class C = {1,2,. . . }; on leaving State 1 the chain is either absorbed with 
probability l/2, or jumps to a higher state j with probability qij (note that &2qlk = l/2) 
and then returns to State 1 after an exponential holding time with mean l/e, and so forth. It 
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is elementary to show that Q is regular and that x = (rj, j E C), given by 7rj = qlj/qj, is a 
subinvariant measure on C with respect to which Q is reversible. 

Next, a simple calculation based on (2.2) reveals that nontrivial p-invariant measures m exist 
for Q if and only if CL satisfies 

c qHcQk =1--p, (3.5) 
k>2 qk - I-1 

in which case m is given, unique up to constant multiples, by 

mi = 2.x 
G-P’ 

i E C. P-6) 

Note, that of necessity p 5 q := infjEc qj (I 1) [17], and that clearly 

mi Qi -=- y&- 
=i Qi - CL 4-P 

Now, the right-hand and left-hand sides of (3.5) are monotonically increasing and decreasing, 

respectively, from l/2 and 1, respectively, at I_L = 0. So, there is at most one p which satisfies (3.5). 

Thus, we have proved that a p-invariant m exists for Q if and only if 

c !?lkQk 21-q. 
k>2 qk - 4 

When this condition holds, m is given by (3.6), with p being the unique solution to (3.5), and m 

is b-invariant for P. 

4. A MORE GENERAL RESULT 

Theorem 3 can be generalized in a number of ways, but we shall content ourselves with the 
following result, which requires neither the reversibility of Q with respect to 7r, nor the regularity 

of Q. When Q is not regular, there is no longer a unique process with transition rates Q, but in 

such cases we can take P to be the transition function of the minimal process [16]. We may also 

relax the condition that 7r be a subinvariant measure for Q. 

THEOREM 4. Let 7r = (ri, i E C) be a collection of positive numbers such that the equations 

c Xiqij = UXj, O<Xj<Tj, jEC, (4.1) 

have no nontrivial solution for some (and then all) u > 0. Then, every p-invariant measure 
m = (mi, i E C) for Q which is bounded above by 7r is also p-invariant for P. 

PROOF. Let m be a p-invariant measure which satisfies (3.2), but is not p-invariant for P. Then, 

as before, (2.4) has a nontrivial solution Y for v > 0. Now, Y is bounded above by 7r because m 

is. Therefore, by setting 
Yi 

xi = SUpj~C{~j/Tj}' 

we obtain a nontrivial solution x = (xi,i E C) to (4.1), thus contradicting the conditions of the 
theorem. I 

A convenient choice of r is any subinvariant measure on C for Q. Using this, we can explain 
why Theorem 3 is a corollary of Theorem 4, and in particular, how the regularity condition of 
Theorem 3 can be realized as a consequence of Theorem 4. To achieve this, we must define a 
reverse q-matrix Q* = (qt, i, j E C) by setting 

q;j = TfE, i,j E C. 
2 

(4.2) 
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Clearly Q* is a stable q-matrix over C. If Q* were conservative over C, that is, if K were invariant 

on C for Q, then the invariance condition (4.1) would be necessary and sufficient for Q* to be 

regular. This can be seen on substituting (4.2) into (2.4). If y is a nontrivial solution to (2.4), 

then z = (zi, i E C), given by zi = yi/~i, provides a nontrivial solution to 

But, m is bounded above by 7~, implying that z must be bounded, and hence, that Q’ is not 

regular. Conversely, if Q* is not regular, then, for any choice of v > 0, there exists a nontrivial 

z = ( zj, j E C) satisfying 

c 
* 

QijZj = VZi, O<ZiIl, iEC. (4.3) 
jCC 

Once again, substituting (4.2) into (4.3) yields y = (yi, i E C), where yi = ri-zi as a solution 

to (4.1). Thus, we have shown that if x is an invariant measure on C for Q and equations (4.1) 

have no nontrivial solution for some (and then all) u > 0, then every p-invariant measure on C 

for Q which is bounded above by rr is also p-invariant for P. This extends Theorem l(ii) of [21], 

who showed that condition (4.1) is sufficient for an invariant measure for Q to be invariant for P 

(the p = 0 case). 

However, Q* is usually nonconservative, since 7r will usually be strictly subinvariant for Q, 

and so it is not yet entirely satisfactory to say that Q* is playing the role which Q played in 

Theorem 3. However, if we were to extend the definition of Q* to S by setting q~j = 0 for 

j E S and q,‘o = - CjecXjqJt .,/ni for i E C, then Q* would be conservative over S. Now, by 

Theorem 2.2.7 of [16], Q * is regular if and only if the equations 

c q:jZj = VZi, O<Zi<l, iES, (4.4) 
jES 

have only the trivial solution for some (and then all) v > 0. But, for i = 0, v > 0 implies that 

zo = 0 and so (4.4) reduces to (4.3). Thus, as before, (4.1) and (4.3) are equivalent, and so Q* 

plays the role which Q played in Theorem 3. Moreover, in the reversible case, Q* = Q (even for 

Q* extended to S), condition (4.1) is necessary and sufficient for Q to be regular. Thus, we see 

that Theorem 3 is a corollary of Theorem 4. 

EXAMPLE 3. Let Q be the q-matrix of a linear birth-death and catastrophe process on S = 

(0, I, *. .l 

I 

0, ifj-l>i>Oori=O, 

pifi-j, ifl<jli--lori+l=j>O, 

Qij = -pi(l - fo), if j = i > 0, 

Pi c 50 ifi>j=O, 
k>i 

where (fk, k = -l,O,l,. . . ) is the left-shifted offspring distribution for the process and p > 0 

is the rate parameter. Assume that fc = 0, f-i > 0, and fk > 0 for some k > 0. Under these 

conditions, 0 is the sole absorbing state and C = {1,2, . . . } is an irreducible, transient class. 

We shall make the following definitions: 

f(s) := 2 fk-lSk, 
k=O 

b(s) := f(s) - s, 

e:=f’(l-) = Fkfk_1, 
k=l 
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D:= 1 - e = 1 - f’(l-) = -b’(l-), 

q := inf{s E (0, l] : f(s) = s}, and 

CL:= 1 - f’(q-) = -b’(q-). 

The process is classified as subcritical, critical, or supercritical according as the drift parameter D 

is negative, zero, or positive. 

Let 7ri = l/i for i E C. It is easy to check that r = (ni, i E C) is a subinvariant measure on C 

for Q. Now, m = (mi, i E C), where mi = qi is known to be X-invariant for Q, where X = pd is. 

the decay parameter of C for P (see, for example, [22, Theorem 6.31). If D 2 0, then q = 1 and 

so {mi/ri} is unbounded. On the other hand, if D < 0, then q < 1 and 

for all i E C. Thus, if the birth-death and catastrophe process is subcritical, the measure m is 

bounded above by 7r. In addition, m is finite and so, provided that it is X-invariant for P, it can 

be normalized to obtain a quasi-stationary distribution for the process. 

Let y = (yi, i E C) satisfy (4.1) and consider Q*, the reverse of Q with respect to 7~ on C. 

Extend the definition of Q* to S according to the discussion immediately following the proof of 

Theorem 4. Then, 

qTj = 

{ 

0, ifOIj<i-lorj=O, 

-pi(l - fo), if j = i 2 1, 

Pifj-i, ifjzi-landjfi. 

Note that Q* is the q-matrix of a Markov branching process P* which, by Theorem 2.1 of [23], 

satisfies jpij (t) = i&(t), i, j E C. We have already seen that y satisfies (4.1) if and only if 

z = (zi, i E C) satisfies (4.3), where Zi = yi/ri = iyi, i E C. Thus, the invariance condition 

of Theorem 4 will be satisfied if and only if Q* is regular, that is, P* is honest. Theorem 3.3.3 

of [16] gives necessary and sufficient conditions for this to be so, namely, that either e < co, or 

e = 00 and, for some (and then all) e E (q,l), ~“(l/b(u))& = -co. Since m is only bounded 

by x when P is subcritical, the first of these conditions may be refined to 1 < e < 00, since D < 0 

ifandonlyife>l. 

We have proved, for a subcritical birth-death and catastrophe process, that m, given by mi = qi 

for i E C, is a X-invariant measure on C for P, where X = pd, if either 

(1) 1 < e < 00, or 

(2) e = 00 and for some (and then all) E E (q, l), S:(l/b(u)) du = -w. 

While this example serves to illustrate Theorem 3 and the role played by Q*, it should be 

noted that the given m is always X-invariant for P in the subcritical case. By Corollary 1 of [24], 

the birth-death and catastrophe process is always regular, and since 
03 

c miqi = P c 
iqi < 00, 

IEC i=l 

(where qi = -qii), Fubini’s Theorem implies that ciec miqio = X ciGc mi. Thus, by Corollary 1 

of [B], m is X-invariant for P. For further details, see [5] or the proof of Theorem 5.1 of [23]; for 

details of the supercritical case, see [25]. 
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