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Abstract: We describe a class of one-dimensional chain binomial mod-
els of use in studying metapopulations (population networks). Limit theo-
rems are established for time-inhomogeneous Markov chains that share the
salient features of these models. We prove a law of large numbers, which
can be used to identify an approximating deterministic trajectory, and a
central limit theorem, which establishes that the scaled fluctuations about
this trajectory have an approximating autoregressive structure.
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1. Metapopulations

A metapopulation is a population confined to a network of geographically sep-
arated habitat patches that may suffer extinction locally and be recolonized
through dispersal of individuals from other patches. The term was coined by
Levins [41], but the idea goes back much further, to MacArthur and Wilson [42],
Andrewartha and Birch [4] and Wright [67], and has been refined more recently
by Hanski and others (see for example [26] and [27]). Levins [40] was the first
to provide a succinct mathematical description of a metapopulation, proposing
that the number nt of occupied patches at time t in a group of N patches should
follow the law of motion

dn

dt
=

c

N
n(N − n)− en, (1)

with c being the colonization rate and e being the local extinction rate. This
is Verhulst’s model [63] for population growth and Levins used Pearl’s ratio-
nale [51, 52, 53] to derive it. Furthermore, Levins was able to divine an explicit
solution to (1) in the case where both c and e are time dependent, and he
derived a diffusion approximation for nt (surprisingly, the time-inhomogeneous
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version of Levins’ model has had no traction in the ecology literature, despite
the obvious implications for biological control in varying environments).

The natural stochastic analogue of (1) is a birth-death process on S =
{0, 1, . . . , N} with birth rates λn = λn(N − n), where λ = c/N , and death
rates µn = en (in the usual notation); indeed (1) can be viewed as its large-
N mean field limit [54]. Known as the SIS (susceptible-infectious-susceptible)
model in the epidemiology literature [64], it is an example of Feller’s stochastic
logistic model [23], which includes variants of the SIS model which are also of
use in ecology, for example, models that account for colonisation from an exter-
nal source [2, 57]. A significant drawback of the SIS model is that patches are
assumed to be identical [50], although it does account for patch proximity (λ
is inversely proportional to N). A more immediate drawback is that seasonal
variation is not taken into account. Seasonal variation could certainly be ac-
commodated using a time-inhomogeneous version, allowing c and e to be time
dependent, but a simpler approach is to suppose that the number of occupied
patches follows a Markov chain in discrete time. Akçakaya and Ginzburg [1]
and Day and Possingham [22] developed a Markov chain model that assumes
colonisation and extinction events occur in distinct successive phases; one might
envisage an annual cycle, with local populations being susceptible to extinction
during winter, while new populations establish in empty patches during the
spring. It is assumed that a census takes place either at the end of successive
colonisation phases (EC model) or at the end of successive extinction phases
(CE model) and the state of the Markov chain is the state of the population at
a census time. This approach has become predominant in the applied metapop-
ulation literature, because it provides a vehicle for parameter estimation [46]
and permits control mechanisms to be investigated using simple optimisation
tools such as dynamic programming [60, 62]. Indeed, discrete-time Markov chain
models predominate in the ecology literature (even in cases where they are not
faithful to population dynamics), perhaps due in part to a widespread miscon-
ception that a discrete time model is needed if populations are observed (and
controlled) at discrete time points [59, 58]. Numerical methods and simulation
are generally used to analyse discrete time metapopulation models, typically
the EC case only [29, 34, 68], and until recently there have been few analytical
studies [18, 45].

Our purpose here is to present limit theorems that can be brought to bear in
the study of chain-binomial metapopulation models (and indeed any discrete-
time Markovian model that shares their salient features). We present a law
of large numbers, which is used to identify an approximating (discrete-time)
deterministic trajectory, and a central limit theorem, which establishes that
the scaled fluctuations about this trajectory have an approximating autoregres-
sive structure. Limit theorems of this kind are standard fare in the context
of continuous-time Markovian models (see Kurtz [35, 36, 37, 38, 39] and Bar-
bour [11, 12, 13, 14] and, more recently, Darling and Norris [20]); an approximat-
ing continuous-time deterministic trajectory is identified, and the fluctuations
about this trajectory are approximated by a Gaussian diffusion. These methods
have been exploited in the analysis of continuous-time metapopulation mod-
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els [2, 5, 6, 7, 15, 56, 57, 54]. Diffusion approximations can also be realised for
discrete-time Markovian models [49], but these approximations do not respect
the discrete-time structure.

We begin by describing a class of one-dimensional discrete-time metapopula-
tion models, called homogeneous SPOMs (stochastic patch occupancy models)
in the ecology literature—homogeneous because patches are assumed to be iden-
tical. Section 3 contains the basic limit theorems. Our major source is the work
of Klebaner and Nerman [33] (see also Klebaner [32]), who studied a generalisa-
tion of the Galton-Watson process where the offspring distribution was allowed
to depend on the current population size measured as a proportion of some
threshold. We explain how their results can be extended to accommodate time-
inhomogeneous discrete-time Markov chains with density dependent transition
probabilities. These results are applied to our metapopulation models in Sec-
tions 4 and 5. We conclude by exploring the relationship between discrete-time
metapopulation models and their counterparts in continuous time.

2. Discrete-time metapopulation models

Extinction and colonisation are assumed to occur in alternating Markovian
phases. In the extinction phase occupied patches are assumed to go extinct
independently, each with the same probability e (0 < e < 1), while in the coloni-
sation phase empty patches are colonised independently, each with a probability
c(x) that depends on the proportion x of occupied patches at the start of this
phase. For example, we might have c(x) = cx, where c (0 < c ≤ 1) is the (hy-
pothetical) probability that a single unoccupied patch would be colonised by
the fully occupied network, or c(x) = c0 + cx (c ≥ 0, c0 > 0, c0 + c ≤ 1) if
we wish to account for an external source of colonisation. Or, we might have
c(x) = 1 − exp(−βx) (β > 0), which effectively assumes (see [34, 29]) that
colonising individuals propagate from each occupied patch at rate β. However,
we will assume only that c is continuous, increasing and concave, with c(0) ≥ 0
and c(x) ≤ 1.

A census is assumed to take place either at the end of successive colonisation
phases (the EC model) or at the end of successive extinction phases (the CE
model); we consider both scenarios. If N is the total number of patches and nt

the number occupied at census t ∈ {0, 1, . . .}, then (nt, t ≥ 0) is a Markov chain
taking values in S

N
= {0, 1, . . . , N} with the following chain-binomial structure:

nt+1 = ñt + Bin(N − ñt, c(ñt/N)) ñt = nt − Bin(nt, e) (EC model)

nt+1 = ñt − Bin(ñt, e) ñt = nt +Bin(N − nt, c(nt/N)). (CE model)

(We adopt the convention that Ber(p), Bin(n, p), Poi(µ) and N(µ, σ2) denote
random variables with the corresponding Bernoulli, Binomial, Poisson and Gaus-
sian distribution.) Under the conditions we have imposed, S

N
is irreducible un-

less c(0) = 0, in which case there is a single absorbing state 0, corresponding
to total extinction of the population, with the remaining states forming an ir-
reducible transient class E

N
= {1, 2, . . . , N} from which 0 is accessible.
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Models with a state-independent colonisation probability c(x) = c0 (> 0)
have appeared in different guise in the epidemiology literature (see Section 4.4
of [19]). They were studied by us in detail in [18]. We found that nt has
the same distribution as the sum of two independent binomial random vari-
ables, Bin(n0, pt) and Bin(N − n0, qt), whose success probabilities (pt) and (qt)
could be exhibited explicitly. Indeed n

.
is equivalent (in law) to the urn model

nt+1 = Bin(nt, p1) + Bin(N − nt, q1), so that p1 and q1 can be interpreted
as ‘effective’ survival and colonisation probabilities. This special property of
equivalent independent phases carries over to some extent in the general case:
for the CE model (only) it is easy to show that nt+1 has the same distribution
as the sum of two independent binomial random variables, Bin(nt, 1 − e) and
Bin(N−nt, (1−e)c(nt/N)), so that (1−e)c(x) is the effective colonisation prob-
ability when the proportion of occupied patches is x. In [18] we also examined
the proportion XN

t = nt/N of occupied patches and considered what happens
for fixed t as N gets large, assumingXN

0 → x0. We proved a law of large numbers
that established existence of a limiting deterministic trajectory x

.
with initial

value x0, which could be exhibited explicitly. The corresponding central limit
law for the scaled fluctuations ZN

t =
√
N(XN

t − xt) about this trajectory was
also proved, assuming ZN

0 → z0, the limiting Gaussian distribution having a
variance that could be exhibited explicitly, and we mooted that the process Z

N

.

might converge (in the sense of finite-dimensional distributions) to a Gaussian
Markov chain Z

.
with initial value z0.

These results can be extended to accommodate general discrete-time meta-
population models with state-dependent colonization probabilities. We will see

that, under mild conditions, XN

t
P→ xt for all t ≥ 0, where x

.
is determined

by xt+1 = f(xt) (t ≥ 0) with f specific to the model. It is also possible to

identify conditions which ensure that if ZN

0
D→ z0, then ZN

.

converges weakly
(in the usual product topology) to the Gaussian Markov chain Z

.
defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0), with the ‘errors’ (Et) being independent with
Et ∼ N(0, v(xt)), where v is specific to the model.

We will also examine the following infinite-patch models, with nt ∈ S =
{0, 1, . . .}:

nt+1 = ñt + Poi(m(ñt)) ñt = nt − Bin(nt, e) (EC model)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m(nt)), (CE model)

where m(n) (> 0) is the expected number of patches colonised during any
one colonisation phase when the number occupied at the start of that phase
is n. Even though there is now no ceiling on the number of occupied patches,
the dependence of m on nt allows for regulation of the colonisation process.
The case m(n) = mn (where the constant m > 0 is the expected number of
colonisations by any one occupied patch) is a natural analogue of the N -patch
models described above, for if c(0) = 0 and c has a continuous second derivative

near 0, then, for fixed n, Bin(N − n, c(n/N))
D→ Poi(mn) as N → ∞, where

m = c ′(0).
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3. General structure: Density dependence

Let (nN

t , t ≥ 0) be a family of Markov chains indexed by N , each taking val-
ues in a subset set S

N
of Z+. Suppose that the family is density dependent

in that there are sequences of non-negative functions (ft) and (vt) such that
E(nN

t+1|nN

t ) = Nft(nN

t /N) and Var(nN

t+1|nN

t ) = Nvt(nN

t /N). Then, the ‘density
process’ (XN

t , t ≥ 0), defined by XN

t = nN

t /N , will have E(XN

t+1|XN

t ) = ft(X
N

t )
and N Var(XN

t+1|XN

t ) = vt(X
N

t ). Our first result is a law of large numbers that
establishes convergence of the density process to a deterministic trajectory.

Theorem 1. Suppose that, for all t ≥ 0, ft(x) and vt(x) are continuous in x

and such that ft(X
N

t ) and vt(X
N

t ) are a.s. uniformly bounded. Then, if XN

0
P→ x0

(a constant), XN

t
P→ xt for all t ≥ 1, where x

.
is determined by xt+1 = ft(xt)

(t ≥ 0).

Proof. We will use mathematical induction. Suppose X
N

t
P→ xt for some t ≥ 0.

Then, since ft is continuous, E(XN

t+1|XN

t ) = ft(X
N

t )
P→ ft(xt). But, ft(X

N

t ) is

a.s. uniformly bounded, and so ft(X
N

t )
r→ ft(xt) (convergence in r-th mean)

for all r ≥ 1, which entails, in particular, that EXN

t+1 = Eft(X
N

t ) → ft(xt)
and Varft(X

N

t ) → 0. Similarly, Evt(X
N

t ) → vt(xt) because vt is continuous and
vt(X

N

t ) is a.s. uniformly bounded. Therefore,

VarX
N

t+1 = EVar(X
N

t+1|X
N

t ) + Var E(X
N

t+1|X
N

t )

=
1

N
E vt(X

N

t ) + Varft(X
N

t ) → 0.

But, for all ǫ > 0,

Pr(|XN

t+1 − ft(xt)| ≥ ǫ) ≤ 1

ǫ2
E(X

N

t+1 − ft(xt))
2

=
1

ǫ2
(

VarX
N

t+1 + (EX
N

t+1 − ft(xt))
2
)

→ 0,

that is, XN

t+1
P→ xt+1, and the proof is complete.

We anticipate applying Theorem 1 in cases where X
N

t itself is bounded, for
example, when XN

t is a proportion (as it is in our N -patch models). To ac-
commodated cases where XN

t is unbounded (as it can be in our infinite-patch
models) we relax uniform boundedness in favour of a Lipschitz condition, but at
the expense of requiring a more stringent initial condition, that XN

0 converges
to x0 in mean square.

Theorem 2. Suppose that, for all t ≥ 0, ft(x) and vt(x) are Lipschitz contin-

uous in x. If XN

0
2→ x0 (a constant), then XN

t
2→ xt (and hence XN

t
P→ xt) for

all t ≥ 1, where x
.
is determined by xt+1 = ft(xt) (t ≥ 0).

Proof. We will again use mathematical induction. Suppose XN

t
2→ xt for some

t ≥ 0. Since ft(x) is Lipschitz continuous, |ft(XN

t )− ft(xt)| ≤ κt|XN

t − xt|, and



F.M. Buckley and P.K. Pollett/Discrete-time metapopulation models 58

hence (ft(X
N

t ) − ft(xt))
2 ≤ κ2

t (X
N

t − xt)
2, for some positive constant κt. On

taking expectations, we see that ft(X
N

t )
2→ ft(xt), which implies in particular

that (i) Varft(X
N

t ) → 0 and (ii) Eft(X
N

t ) → ft(xt), that is, EXN

t+1 → xt+1.
Similarly, since vt(x) is Lipschitz continuous, Evt(X

N

t ) → vt(xt). We deduce
that VarXN

t+1 → 0, for, as noted earlier, VarXN

t+1 = E vt(X
N

t )/N +Varft(X
N

t ).
But,

E(X
N

t+1 − xt+1)
2 = VarX

N

t+1 + (EX
N

t+1 − xt+1)
2,

and so XN

t+1
2→ xt+1.

Having established convergence in probability to a limiting deterministic tra-
jectory x

.
, we next consider the ‘fluctuations process’ (ZN

t ) defined by ZN

t =√
N(XN

t − xt). Assuming now that ZN

0
D→ z0, we aim to identify conditions

under which ZN

.

converges weakly to a Gaussian Markov chain Z
.
. Additional

structure is needed. We will assume that

nN

t+1 = gN

t +
∑rNt

j=1 ξ
N

jt (t ≥ 0), (2)

where rN

t = Nrt(nN

t /N) and gN

t = Ngt(nN

t /N) with rt(x) and gt(x) being
continuous in x, and ξN

jt (j = 1, . . . , rN

t ) are iid having a distribution that
depends only on t and on nN

t /N , and which has bounded third moment. In
particular, we assume that there are functionsmt(x) and σ2

t (x) such that E ξN

jt =

mt(nN

t /N) and Var(ξN

jt ) = σ2
t (n

N

t /N), and a function bt(x) such that E(ξN

jt −
mt(x))3 = bt(nN

t /N), which is bounded in x. Of course all of our ingredients
must be such that rN

t and gN

t are positive integers and, then, that nN

t+1 ∈ S
N
.

Notice that E(nN

t+1|nN

t ) = Nft(nN

t /N), where ft(x) = gt(x) + rt(x)mt(x), and
Var(nN

t+1|nN

t ) = Nvt(nN

t /N), where vt(x) = rt(x)σ
2
t (x).

This setup is similar to that of Klebaner and Nerman [33] (see also Kle-
baner [32]) who studied a generalisation of the Galton-Watson process where
the offspring distribution was allowed to depend on the current population size
measured as a proportion of some threshold N . Their model was time homo-
geneous and had gt ≡ 0 and rt(x) = x. None the less, many of the results in
Section 3 of their paper carry over to the present case with only minor changes.
We content ourselves with the following central limit law.

Theorem 3. Suppose that, for all t ≥ 0, ft(x) is twice continuously differen-

tiable in x with bounded second derivative and that XN

t
P→ xt, where x

.
satisfies

xt+1 = ft(xt) (t ≥ 0). If ZN

0
D→ z0 (a constant), then ZN

.

converges weakly to
the Gaussian Markov chain Z

.
defined by

Zt+1 = f ′
t (xt)Zt + Et (Z0 = z0), (3)

where (Et) are independent with Et ∼ N(0, vt(xt)).

Proof. First observe that we may rewrite (2) as

X
N

t+1 = ft(X
N

t ) +
1√
N

ηN

t (X
N

t ), where ηN

t (x) =
1√
N

[Nrt(x)]
∑

j=1

(ξ
N

jt −mt(x)) (4)
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([ · ] denotes integer part), noting that, for fixed x, ηN

t (x) is independent of

XN

t . Next, for fixed t and x, ηN

t (x)
D→ N(0, vt(x)) as N → ∞. To see this,

apply the Feller-Lindeberg Theorem (see for example Theorems 27.2 and 27.3
of Billingsley [16]) to the zero-mean triangular array (WNj , j = 1, . . . , r

N
),

where WNj = ξN

jt −mt(x) and r
N
= [Nrt(x)], noting that E(W 2

Nj) = σ2
t (x) and

the Lyapounov condition, that

E|WN1|2+δ

r
δ/2
N (EW 2

N1)
(1+δ/2)

→ 0 (for some δ > 0),

is satisfied here with δ = 1 because bt(x), the third centred moment of ξN

jt , is
bounded in x.

We have assumed that XN

t
P→ xt for all t ≥ 1, where x

.
is determined by

xt+1 = ft(xt) (t ≥ 0). But, since ft(x) is twice continuously differentiable in x,
we also have, by Taylor’s theorem, that

ft(X
N

t ) = ft(xt) + f ′
t (xt)(X

N

t − xt) +
1
2f

′′
t (θ

N

t )(X
N

t − xt)
2,

for some θN

t between XN

t and xt, and so, from (4),

Z
N

t+1 = ηN

t (X
N

t ) + f ′
t (xt)Z

N

t + 1
2
√
N
f ′′
t (θ

N

t )(Z
N

t )2.

Since f ′′
t (x) is bounded in x, we may thus write

Z
N

t+1 = f ′
t (xt)Z

N

t + ηN

t (X
N

t ) + oN

t (1), (5)

where oN

t (1)
P→ 0 as N → ∞.

To establish weak convergence of ZN

.

to Z
.
it is sufficient to establish conver-

gence of the finite-dimensional distributions. To this end, consider the character-
istic function φN

t (ωt, . . . , ω0) = E exp
(

i
(

ωtZ
N

t + · · ·+ ω0Z
N

0

))

of (Z
N

0 , . . . , Z
N

t ).
Then, from (5),

φN

t+1(ωt+1, ωt, . . . , ω0)

= E exp
(

iωt+1ηN

t (X
N

t ) + i (ωt + ωt+1f
′
t (xt))Z

N

t

+ i
(

ωt−1Z
N

t−1 + · · ·+ ω0Z
N

0

)

+ oN

t (1)
)

.

Since, for fixed t and x, ηN

t (x)
D→ N(0, vt(x)) as N → ∞, it follows, from the

Markov property and our premise ZN

0
D→ z0, that limN→∞ φN

t = φt exists for
all t ≥ 1 and satisfies

φt+1(ωt+1, ωt, . . . ω0) = exp(− 1
2ω

2
t+1vt(xt))φt(ωt + ωt+1f

′
t (xt), ωt−1, . . . ω0),

with φ0(ω0) = exp(iω0z0) being the characteristic function of Z0 = z0. But,
this iteration defines the characteristic function of (Z0, . . . , Zt), where Z

.
is the

proposed limiting Gaussian process. This completes the proof.
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Remarks . (i) An alternative approach to proving Theorems 1 and 3 would be
to adapt the results of Karr [30] to a time inhomogeneous setting. He considered
a sequence of time-homogeneous Markov chains (XN

t , t ≥ 0) on a general state
space (E, E)N with transition kernels (K

N
(x,A), x ∈ E,A ∈ E) and initial dis-

tributions (πN(A), A ∈ E). He proved that if πN ⇒ π and KN(xN , ·) ⇒ K(x, ·)
when xN → x in E, then the corresponding probability measures (PN

πN ) on
(E, E)N also converge: PN

πN ⇒ Pπ. Karr’s main result (Theorem 1 of [30]) re-
mains true, with obvious modifications, for a time inhomogeneous Markov chain.
Applying this to our density process (XN

t ), and then to the two-dimensional
process (XN

t , Z
N

t ), would establish the required convergence, and the form of
the limiting processes would become apparent once the limiting kernels were
evaluated.

(ii) The chain binomial models described in Section 2 are time homoge-
neous, yet we need the present level of generality to accommodate them be-
cause it is not always possible to establish density dependence, even on occa-
sions when we anticipate the kind of asymptotic (large N) behaviour exhibited
in Theorems 1 and 3. For our models (or, more generally, for Markov chains
with two alternating phases), it is natural to construct a time-inhomogeneous
Markov chain (nN

t , t ≥ 0) by setting nN

2t = nt and nN

2t+1 = ñt. Then, den-
sity dependence in the phases is often enough to establish the required asymp-
totic behaviour. Of course, this programme extends to models with more than
two density-dependent phases. For example, our methods can easily accommo-
date the (three-phase) extinction-reproduction-settlement model of Klok and
De Roos [34].

(iii) Klebaner and Nerman (Theorem 3 via Theorem 6 of [33]) anticipated a
special case of Theorems 1 and 3: when the time homogeneous version of (4) is
in force with rt(x) = x.

(iv) The mean and covariance function of Z
.
are easy to evaluate by iterat-

ing (3):
µt := EZt = z0Π0, t (t ≥ 1) (6)

and
ct, s := Cov(Zt, Zs) = Vt Πt, s (s ≥ t ≥ 1), (7)

where

Πu, v =

v−1
∏

w=u

f ′
w(xw) (v > u) (8)

and

Vt := Var(Zt) =

t−1
∑

s=0

vs(xs)Π
2
s+1, t (t ≥ 1). (9)

(Here and henceforth empty products are to be interpreted as being equal to 1.)

Furthermore, it is clear that, for any t ≥ 1, ZN

t
D→ N(µt, Vt), and so these

formulae can be used to approximate the mean and covariance function of nN
.

.
Indeed, the joint distribution of nN

t1 , . . . , n
N

tn , where t1, . . . , tn is any finite set
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of times, can be approximated by an n-dimensional Gaussian distribution with
EnN

ti ≃ Nxti +
√
Nµti and Cov(nN

ti , n
N

tj ) ≃ Ncti, tj .
(v) Even when nN

.

is time homogeneous, and hence the approximating deter-
ministic model has the form xt+1 = f(xt), the full range of long-term behaviour,
including chaos, is possible. For example, if f has a stable fixed point x∗ and

XN

0
P→ x∗, then, assuming f and v are continuous, and f(XN

t ) and v(XN

t )

are a.s. uniformly bounded, we will have XN

t
P→ x∗ for all t. Furthermore,

Z
N

t =
√
N(X

N

t −x∗) and, if f is twice continuously differentiable with bounded

second derivative, then, assuming ZN

0
D→ z0, the limit process Z

.
will be an au-

toregressive (AR-1) process with the representation Zt+1 = f ′(x∗)Zt+Et, where

(Et) are independent and Et ∼ N(0, v(x∗)). In this case ZN

t
D→ N(µt, Vt), where

µt = z0a
t (= EZt ) and ct, s = Vt a

|s−t| (= Cov(Zt, Zs) ), where a = f ′(x∗),
and, Vt = v(x∗)t if |a| = 1 and Vt = v(x∗)(1− a2t)/(1− a2) otherwise. Further-

more, if ZN

0
D→ z0, and |a| < 1, then there will be a sequence of times (tN) such

that ZN

tN

D→ N(0, V ∗), where V ∗ = v(x∗)/(1− a2).

More generally, if f admits a stable limit cycle, x∗
0, x

∗
1, . . . , x

∗
d−1, and XN

0
P→

x∗
0, we will have ZN

nd+j =
√
N(XN

nd+j − x∗
j ) (n ≥ 0, j = 0, . . . , d − 1) and,

assuming Z
N

0
D→ z0, the limit process Z

.
will have the following representa-

tion: (Yn, n ≥ 0), where Yn = (Znd, Znd+1, . . . , Z(n+1)d−1)
⊤ with Z0 = z0, is

a d-variate AR-1 process of the form Yn+1 = AYn + En, where (En) are in-
dependent and En ∼ N(0,Σ). The distribution of Y0, and both the coefficient
matrix A and the covariance matrix Σ, are determined using (6)–(9) (obtained
by iterating (3)) with xnd+j = x∗

j (n ≥ 0, j = 0, . . . , d − 1). This was done
explicitly by Klebaner and Nerman (Theorem 4 of [33]) for the population de-
pendent branching process, and observed to be true more generally (Theorem 6
of [33]). Indeed, their Theorems 4 and 5 hold word for word, but with obvious
adjustments in the definitions of f and v, in the present more general context
of a time-homogeneous density dependent family.

4. N-patch models

Here we explain how the results of Section 3 can be used to study our N -patch
metapopulation models. We first identify an approximating deterministic model
and describe the structure of the approximating Gaussian process, and then give
a detailed account of long-term behaviour.

4.1. Limit theorems for the proportion of occupied patches

Let XN

t = nt/N be the proportion of occupied patches at census t. We first
prove a law of large numbers for the process XN

.

, thus establishing the existence
of an approximating deterministic trajectory, and a central limit law for the
fluctuations about this trajectory. For the N -patch CE model, we may evaluate
E(nt+1|nt) and Var(nt+1|nt) explicitly, because E(nt+1|ñt) and Var(nt+1|ñt)
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are both linear functions of ñt:

E(nt+1|nt) = E
(

E(nt+1|ñt, nt)|nt

)

= E
(

E(nt+1|ñt)|nt

)

= (1− e)E
(

ñt|nt

)

= (1− e)(nt + (N − nt)c(nt/N)),

implying that ft(x) := f(x) = (1− e)(x + (1− x)c(x)), and

Var(nt+1|nt) = E
(

Var(nt+1|ñt, nt)|nt

)

+Var
(

E(nt+1|ñt, nt)|nt

)

= E
(

Var(nt+1|ñt)|nt

)

+Var
(

E(nt+1|ñt)|nt

)

= e(1− e)E(ñt|nt) + (1 − e)2 Var(ñt|nt)

= eE(nt+1|nt) + (1− e)2(N − nt)c(nt/N)(1− c(nt/N)),

implying that

vt(x) := v(x) = ef(x) + (1 − e)2(1− x)c(x)(1 − c(x))

= (1− e) (ex+ (1 − x)c(x)(1 − (1− e)c(x))) .

We may apply Theorem 1 directly since both f and v are continuous, and f(XN

t )
and v(XN

t ) are bounded because 0 ≤ XN

t ≤ 1 and c(x) ≤ 1. For the N -patch
EC model we cannot evaluate the conditional mean and variance explicitly,
and it will be clear that the model is not density dependent unless we impose
further restrictions on c. For the N -patch EC model (and indeed, alternatively,
for the CE model) we apply Theorem 1 to the time-inhomogeneous Markov
chain (nN

t , t ≥ 0) obtained by setting nN

2t = nt and nN

2t+1 = ñt. Then, for the
EC model, f2t(x) = f0(x) = (1 − e)x and f2t+1(x) = f1(x) = x + (1 − x)c(x),
and, v2t(x) = v0(x) = e(1 − e)x and v2t+1(x) = v1(x) = (1 − x)c(x)(1 − c(x)).
All of these functions are continuous, and ft(X

N

t ) and vt(X
N

t ) are uniformly
bounded because 0 ≤ XN

t ≤ 1 and c(x) ≤ 1. The limiting trajectory satisfies
(in particular) x2(t+1) = f(x2t), where f = f1 ◦ f0. Thus we have the following
simple result.

Theorem 4. For the N -patch metapopulation models with parameters e and

c(x), let XN

t be the proportion of occupied patches at census t. If XN

0
P→ x0 (a

constant), then XN

t
P→ xt for all t ≥ 1, where x

.
is determined by xt+1 = f(xt)

(t ≥ 0) with

f(x) = (1− e)x+ (1− (1 − e)x)c((1 − e)x) (EC model)

f(x) = (1− e)(x+ (1 − x)c(x)). (CE model)

To obtain the corresponding central limit law for ZN

t =
√
N(XN

t − xt), first
observe that our N -patch models can be represented as

nt+1 = ñt +
∑N−ñt

j=1 Berj(c(ñt/N)) ñt = nt −
∑nt

j=1Berj(e) (EC model)

nt+1 = ñt −
∑ñt

j=1Berj(e) ñt = nt +
∑N−nt

j=1 Berj(c(nt/N)), (CE model)

where the (Berj(p)) are collections of iid Bernoulli random variables with success
probability p. We may thus apply Theorem 3 to the time-inhomogeneous Markov
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chain (nN

t , t ≥ 0) obtained (as above) by setting nN

2t = nt and nN

2t+1 = ñt,
because this chain will have the form (2) with the (± ξN

jt ) being appropri-
ate sequences of iid Bernoulli random variables. For both models, g2t(x) =
g2t+1(x) = x. For the EC model, r2t(x) = x, r2t+1(x) = 1 − x, m2t(x) = −e,
σ2
2t(x) = e(1− e), m2t+1(x) = c(x) and σ2

2t+1(x) = c(x)(1 − c(x)), leading to

f2t(x) = f0(x) = (1− e)x f2t+1(x) = f1(x) = x+ (1 − x)c(x) (10)

v2t(x) = v0(x) = e(1− e)x v2t+1(x) = v1(x) = (1− x)c(x)(1 − c(x)), (11)

and, b2t(x) = e(1− e)(1− 2e) and b2t+1(x) = c(x)(1− c(x))(1− 2c(x)). For the
CE model, r2t(x) = 1−x, r2t+1(x) = x, m2t(x) = c(x), σ2

2t(x) = c(x)(1− c(x)),
m2t+1(x) = −e and σ2

2t+1(x) = e(1− e), leading to

f2t(x) = x+ (1− x)c(x) f2t+1(x) = (1 − e)x

v2t(x) = (1− x)c(x)(1 − c(x)) v2t+1(x) = e(1− e)x,

and, b2t(x) = c(x)(1 − c(x))(1 − 2c(x)) and b2t+1(x) = e(1 − e)(1 − 2e). Thus,
for the CE model the roles of f0 and f1, and v0 and v1, are reversed. If c is twice
continuously differentiable, then (remembering that c is increasing and concave
with c(0) ≥ 0 and c(x) ≤ 1) in both cases ft(x) will be twice continuously
differentiable in x with bounded second derivative, vt(x) will be continuous
in x, and bt(x) will be bounded in x.

We have already seen that our deterministic trajectory satisfies x2(t+1) =
f(x2t), where f = f1 ◦ f0 for the EC model and f = f0 ◦ f1 for the CE model,
with f0 and f1 as given in (10). Similarly, it is clear that our limiting Gaussian
Markov chain Z

.
must satisfy

Z2(t+1) = f ′(x2t)Z2t + Ê2t, with Ê2t ∼ N(0, v(x2t)),

where v = v1 ◦ f0 + (f ′
1 ◦ f0)2v0 for the EC model and v = v0 ◦ f1 + (f ′

0 ◦ f1)2v1
for the CE model, with v0 and v1 as given in (11), noting that f ′

0 (x) = 1 − e
and f ′

1 (x) = 1− c(x) + (1− x)c ′(x). Thus we arrive at the following result.

Theorem 5. For the N -patch metapopulation models with parameters e and
c(x), suppose that c is twice continuously differentiable. Let Z

N

t =
√
N(X

N

t −xt),
where XN

t is the proportion of occupied patches at census t and where x
.

is
determined by xt+1 = f(xt) (t ≥ 0) with f given as in Theorem 4. Then, if

ZN

0
D→ z0, Z

N

.

converges weakly to the Gaussian Markov chain Z
.
defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0), with (Et) independent and Et ∼ N(0, v(xt)),
where

v(x) = (1− (1− e)x)c((1 − e)x)(1 − c((1 − e)x))

+ e(1− e)x
[

1− c((1− e)x) + (1 − (1− e)x)c ′((1 − e)x)
]2

(EC model)

v(x) = (1− e)
[

ex+ (1− x)c(x)
(

1− (1− e)c(x)
)]

. (CE model)

Since our limiting Gaussian Markov chain Z
.
satisfies (3), now with f given as

in Theorem 4, an immediate consequence of Theorem 5 is that ZN

t
D→ N(µt, Vt),
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where

µt = z0

t−1
∏

s=0

f ′(xs) and Vt =

t−1
∑

s=0

v(xs)

t−1
∏

u=s+1

f ′(xu)
2

(even though the constructed Markov chain nN
.

is time-inhomogeneous). Also,
the joint distribution of numbers of occupied patches, observed at census times
t1, . . . , tn, can be approximated by an n-dimensional Gaussian distribution with
means Nxti +

√
Nµti and covariances Ncti, tj , where ct, s := Cov(Zt, Zs) =

Vt

∏s−1
u=t f

′(xu) (s ≥ t).

4.2. Long-term behaviour

Next we look at stationarity/quasi stationarity, and begin by examining the
long-term (t → ∞) behaviour of our deterministic models. First notice that,
in an obvious notation, fCE((1 − e)x) = (1 − e)fEC(x), and so the fixed points
of fCE and fEC are related by x∗

CE
= (1 − e)x∗

EC
(again in an obvious nota-

tion). Furthermore, x∗
CE

and x∗
EC

will have the same stability properties, be-
cause f ′

CE
((1 − e)x) = f ′

EC
(x), implying that f ′

CE
(x∗

CE
) = f ′

EC
(x∗

EC
), and (1 −

e)f ′′
CE
((1 − e)x) = f ′′

EC
(x), implying that (1 − e)f ′′

CE
(x∗

CE
) = f ′′

EC
(x∗

EC
). Now, x∗

is a fixed point of fCE if and only if c(x∗) = r(x∗), where r(x) = ρx/(1−x) and
ρ = e/(1 − e), the function r having slope ρ at x = 0 and increasing strictly
from 0 to ∞ as x increases from 0 to 1. But, recall that c is strictly increasing
from c(0) ≥ 0 and concave with c(x) ≤ 1. Therefore, we always have precisely
one stable fixed point and xt approaches this point monotonically. We have the
following three cases.

(i) Stationarity: c(0) > 0. There is a unique fixed point x∗ in [0, 1] and this
satisfies 0 < x∗ < 1. Moreover it is stable, because clearly c ′(x∗

CE
) <

r ′(x∗
CE
), and a simple calculation shows that this entails f ′

CE
(x∗

CE
) < 1.

(ii) Evanescence: c(0) = 0 and c ′(0) ≤ ρ. Now 0 is the unique fixed point in
[0, 1]. It is stable because if c ′(0) < ρ, then f ′

CE
(0) = (1−e)(1+c ′(0)) < 1,

while if c ′(0) = ρ, then f ′
CE
(0) = 1, but f ′′

CE
(0) = (1− e)(c ′′(0)− 2c ′(0)) <

0.
(iii) Quasi stationarity: c(0) = 0 and c ′(0) > ρ. There are two fixed points in

[0, 1], 0 and x∗ ∈ (0, 1); 0 is unstable because now f ′
CE
(0) = (1 − e)(1 +

c ′(0)) > 1 and x∗ is stable by the same argument as used in (i).

Thus, in Case (i) we expect the unique stationary distribution of the process
nN
.

to be centred near Nx∗. In Cases (ii) and (iii) there is an absorbing state 0
which is reached in a finite time. However, in Case (ii) we expect the process to be
absorbed quickly (even for N quite large), while in Case (iii) a quasi-equilibrium
will be reached; we expect the unique quasi-stationary distribution of nN

.

(being
the limiting conditional state probabilities, conditional on non-extinction) to be
centred near Nx∗.

Notice that x∗
CE

< x∗
EC
. Indeed, since fCE(x) < fEC(x), the deterministic tra-

jectory x
.
will be uniformly smaller for the CE model than for the EC model.
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Fig 1. N-patch metapopulation model with N = 30, e = 0.2 and c(x) = cx. Simulation (solid
circles) of the EC Model with (a) c = 0.2 (evanescence) and (b) c = 0.6 (quasi stationar-
ity); deterministic trajectories are shown (solid), together with ±2 standard deviations of the
Gaussian approximation (dotted). (c) Simulation of the EC (solid circles) and CE (open cir-
cles) models with c = 0.6; both deterministic trajectories shown (solid). (d) Quasi-stationary
distribution (bars) of the EC Model with c = 0.6 and the stationary Gaussian pdf (dotted).

This is to be expected, for our models differ only in when the census is taken;
numbers observed following an extinction phase would likely be smaller than
numbers observed following a colonisation phase. These remarks are supported
by illustrations in Figure 1. Simulations are depicted for both the EC and CE
models with c(x) = cx (see Example 1 below), as well as the corresponding
deterministic trajectories and quantities relating to the limiting Gaussian pro-
cesses. The quasi-stationary distribution, pN = (pN

i , i ∈ E
N
), of nN

.

was eval-
uated as the normalized left eigenvector of the transition matrix restricted to
E

N
corresponding to its Perron-Frobenius eigenvalue (see Darroch and Seneta

[21]), and this was compared with the approximating Gaussian pdf with mean
Nx∗ and variance NV ∗, where V ∗ = v(x∗)/(1 − f ′(x∗)2) (see Corollary 1 be-
low). We note that, whilst the quasi-stationary distributions for our two models
cannot be exhibited explicitly, they are always related by πEC = πCE C̄ (in an
obvious notation) with common Perron-Frobenius eigenvalue, where C̄ denotes
the matrix C (the colonisation transition matrix) restricted to E

N
.
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Our next result is obtained from Theorems 4 and 5 on setting x0 = x∗. It
established that in the stationary and quasi-stationary cases, where there is a
positive stable deterministic equilibrium x∗, the fluctuations ZN

t =
√
N(XN

t −
x∗) of XN

.

about x∗ can be approximated by an AR-1 process whose parameters
can be exhibited explicitly.

Corollary 1. For the N -patch metapopulation models with parameters e and
c(x), let XN

t be the proportion of occupied patches at census t and let ZN

t =√
N(XN

t − x∗). Suppose that, in addition to c being twice continuously differen-
tiable, c(0) > 0 or c(0) = 0 and c ′(0) > e/(1− e), and let x∗ be the stable fixed

point of f (f given as in Theorem 4). Then, XN

0
P→ x∗ implies that XN

t
P→ x∗

for all t ≥ 1, in which case if ZN

0
D→ z0, then ZN

.

converges weakly to the
AR-1 process Z

.
defined by Zt+1 = f ′(x∗)Zt + Et (Z0 = z0), with iid errors

Et ∼ N(0, v(x∗)), where v is given as in Theorem 5.

One consequence of the corollary is that, for all t ≥ 1, Z
N

t
D→ N(z0a

t, Vt),
where a = f ′(x∗) and now Vt = v(x∗)(1 − a2t)/(1 − a2). Another is that, if

ZN

0
D→ z0, then there will be a sequence of times (tN) such that ZN

tN

D→ N(0, V ∗),

where V ∗ = v(x∗)/(1 − a2). Also, we expect that if the process has reached
equilibrium/quasi equilibrium then the joint distribution of the numbers of oc-
cupied patches, observed at census times t1, . . . , tn, can be approximated by
an n-dimensional Gaussian distribution with means Nxti +

√
Nµti and covari-

ances Ncti, tj , where ct, s := Cov(Zt, Zs) = Vt a
|s−t|. It would be of interest to

determine how closely, for how long, and over what ranges, XN

.

is faithfully ap-
proximated. To this end, we might look at the time τN = inf{t ≥ 1 : |ZN

t | ≥ eN }
of first exit of XN

.

from an interval containing x∗, where eN → ∞. Based on
Theorem 1 of Barbour [12] (who considered this problem for the continuous
time analogue—a limiting Ornstein-Uhlenbeck process), we conjecture that if
eN does not grow too quickly, XN

.

is asymptotically equally likely to leave to
the right of the interval as to the left, and, conditional on (say) leaving to the
right, the exit time is asymptotically geometrically distributed.

We have already noted the simple relationship between the deterministic
equilibria of our two models, x∗

CE
= (1− e)x∗

EC
, and that the decay rates are the

same: a = f ′
CE
(x∗

CE
) = f ′

EC
(x∗

EC
). The stationary variances of the approximating

AR-1 processes are also related. First, because c(x∗) = r(x∗), it is easy to prove
that

vCE(x
∗
CE
) = ex∗

CE
(2− e/(1− x∗

CE
)) . (12)

And, since it can also be shown that

(1− e)2vEC(x) = vCE((1 − e)x) + e
(

(1 − e)x(f ′
CE
((1 − e)x))2 − fCE((1− e)x)

)

,

we have
(1− e)2vEC(x

∗
EC
) = vCE(x

∗
CE
)− ex∗

CE
(1 − a2), (13)

and therefore (1− e)2V ∗
EC

= V ∗
CE

− ex∗
CE
.



F.M. Buckley and P.K. Pollett/Discrete-time metapopulation models 67

4.3. Examples

We now illustrate these results by looking at particular instances of c(x).

Example 1. Suppose that c(x) = cx (0 < c ≤ 1). In this case we may write
f(x) = x(1 + r(1 − x/x∗)), where r = c(1 − e) − e for both models and x∗ is
the appropriate equilibrium: x∗

EC
= r/(c(1 − e)2) or x∗

CE
= r/(c(1 − e)) (both

being strictly positive, and then stable, if and only if c > e/(1 − e)). Thus,
our limiting deterministic trajectory follows the discrete logistic model (see for
example Section 3.2 of Renshaw [55]), with r being the ‘natural growth rate’ and
x∗ being the ‘carrying capacity’ (expressed as a proportion of the ceiling N).
Of course the logistic model is well known to exhibit a wide range of dynamic
behaviour, but we emphasise that here 0 < 1 + r = (1 − e)(1 + c) < 2. Our
limiting Gaussian Markov chain has error variance

v(x) = (1− e)x
[

c(1− (1 − e)x)(1 − c(1− e)x)

+ e
(

1 + c− 2c(1− e)x
)2]

(EC model)

v(x) = (1− e)x
[

e+ c(1 − x)(1 − c(1− e)x)
]

. (CE model)

In the quasi-equilibrium case (r > 0), the limiting AR-1 process is defined
by Zt+1 = aZt + Et, where a = 1 − r (0 < a < 1), with Et ∼ N(0, v∗),
where, from (12) and (13), v∗

CE
= er(1 − e + a)/(e + r) and (1 − e)2v∗

EC
=

er(a(1+a)−e)/(e+ r). The stationary variance of Z
.
is V ∗ = v∗/(1−a2). Note

that this decreases with a, so the faster the decay in the mean, the smaller the
stationary variance.

Example 2. Suppose that c(x) = c0, where 0 < c0 ≤ 1. This case was studied
in detail by us in [18]. As mentioned earlier, the metapopulation behaves as if,
at every census, each occupied patch remains occupied with probability p, and,
independently, each unoccupied patch is colonised with probability q, where

p = 1− e(1− c0) q = c0 (EC model)

p = 1− e q = (1− e)c0. (CE model)

Notice that for the EC model the ‘effective’ extinction probability is e(1 − c0).
This accords with Hanski’s [25] interpretation of the ‘rescue effect’, a term coined
by Brown and Kodric-Brown [17] to describe the deleterious effect of colonisation
on extinction when colonisation is frequent; Hanski argued that the extinction
probability should be (1 − c0)e, where e is the extinction probability in the
absence of migration.

In [18] we proved that, for all t ≥ 1, nN

t has the same distribution as the
sum of two independent random variables, Bin(nN

0 , pt) and Bin(N − nN

0 , qt),
with success probabilities qt = q∗(1 − at) and pt = qt + at (t ≥ 0), where
a = p− q = (1− e)(1− c0) (the same for both EC and CE) and q∗ = q/(1− a).
The proportion XN

t of occupied patches at time t has mean and variance given
by EXN

t = xt(X
N

0 ) and NVar(XN

t ) = Vt(X
N

0 ), where

xt(x0) = x0pt + (1− x0)qt and Vt(x0) = x0pt(1− pt) + (1− x0)qt(1 − qt).
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So, on the one hand, as t → ∞, EXN

t converges to q∗ at geometric rate a (note
that 0 < a < 1) and NVar(XN

t ) → q∗(1 − q∗) (indeed, nN
.

has a Bin(N, q∗)
stationary distribution). On the other, letting N → ∞ with t fixed, EXN

t →
xt(x0) and NVar(X

N

t ) → Vt(x0) whenever X
N

0
P→ x0. Furthermore, because

nN

t is the sum of two independent binomial random variables, it is clear that
ZN

t :=
√
N(XN

t − xt) and Y N

t :=
√
N(XN

t − q∗) will converge in distribution
to Gaussian random variables if their initial values converge. Theorem 5 and
Corollary 1 provide more detailed information. Since f(x) = px+ q(1− x), and

hence f ′(x) = a, and v(x) = p(1−p)x+q(1−q)(1−x), we deduce that if ZN

0
D→

z0, then ZN

.

converges weakly to a Gaussian Markov chain Z
.
with EZt = atz0

and Cov(Zt, Zs) = Vt(x0) a
|s−t|, while if Y N

0
D→ y0, then Y N

.

converges weakly to
an AR-1 process Y

.
with EYt = aty0 and Cov(Yt, Ys) = q∗(1−q∗)a|s−t|(1−a2t);

the error variance here is v(q∗) = q∗(1 − q∗)(1− a2).
Finally, we remark that if nN

0 follows the stationary Bin(N, q∗) law, our repre-
sentation nt+1 = Bin(nt, p1)+Bin(N −nt, q1) is termed binomial autoregressive
[43, 44, 65, 66]. Our results establish a connection with standard autoregressive
processes.

Example 3. Suppose that c(x) = c0 + cx, where c0 > 0, c > 0 and c0 + c ≤ 1.
Now we may write f(x) = ν + x(1 + r(1 − x/K)), where ν = c0(1 − e) and
r = (c − c0)(1 − e) − e for both models, and K depends on which model:
KEC = r/(c(1 − e)2) or KCE = r/(c(1 − e)) (in an obvious notation). Since
c(0) = c0 > 0, we have unique stable equilibria x∗

EC
= x∗

CE
/(1 − e) with x∗

CE

being the unique positive solution to c(1 − e)x2 − rx − ν = 0. The common
decay rate is a = 1 + r(1 − 2x∗/K). The error variance can be evaluated, but
omitted for brevity’s sake. The limiting AR-1 process has stationary variance
v∗/(1− a2), where v∗ is given by (12) or (13).

Example 4. Suppose that c(x) = 1−exp(−βx), where β > 0 is the propagation
rate. Since c(0) = 0 and c ′(0) = β > 0, we have evanescence if β ≤ e/(1 − e)
and quasi stationarity if β > e/(1−e). The limiting Gaussian Markov chain has
error variance

v(x) = e−β(1−e)x
(

(1− (1− e)x)(1 − e−β(1−e)x)

+ e(1− e)x
[

1 + (1− (1− e)x)β
]2
e−β(1−e)x

)

(EC model)

v(x) = (1 − e)
[

ex+ (1− x)(1 − e−βx)
(

e+ (1− e)e−βx
)]

. (CE model)

In the quasi-stationary case the deterministic equilibria cannot be exhibited
explicitly, but can be evaluated numerically by iterating the map fCE(x) = (1−
e)(1−(1−x) exp(−βx)), remembering that x∗

EC
= x∗

CE
/(1−e). The limiting AR-

1 process has stationary variance v∗/(1− a2), where v∗ is evaluated using (12)
or (13). A simple calculation reveals that

a =
(1 + β(1 − x∗

CE
))(1 − e− x∗

CE
)

(1 − e)(1− x∗
CE
)

.
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5. Infinite-patch models

As previously, let nt be the number of occupied patches at time t, but suppose
now that (nt, t ≥ 0) is a Markov chain taking values in S = {0, 1, . . .} that
evolves as follows:

nt+1 = ñt + Poi(m(ñt)) ñt = nt − Bin(nt, e) (EC model)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m(nt)), (CE model)

where m(n) ≥ 0. So, as before, extinction and colonisation occur in alternating
phases, and occupied patches go extinct independently with probability e (0 <
e < 1), but now the number of colonisations follows a Poisson law and the
expected number of colonisations is a function of the number of patches presently
occupied.

Before embarking on the general case, let us examine the important special
case where the expected number of colonisations is a linear function of the
number of patches presently occupied.

5.1. The infinite-patch branching model

Suppose that m(n) = mn, where m > 0. The parameter m can be interpreted
as the expected number of colonisations by any one occupied patch. As we
noted earlier, this is the natural analogue of our N -patch models, for recall
that, if c(0) = 0 and c has a continuous second derivative near 0, then Bin(N −
n, c(n/N))

D→ Poi(mn) as N → ∞, where m = c ′(0). But, this infinite-patch
scheme has a simplifying feature, namely branching, which makes both models
much simpler to analyse. Notice that if there are n occupied patches at the
beginning of any given phase, then the number occupied at the end of that
phase has the same distribution as the sum of n independent copies of either
B = Ber(1 − e) (extinction phase) or P+ := 1 + Poi(m) (colonisation phase).
And, since the phases are conditionally independent, the net effect is that nt+1

will have the same distribution as the sum of nt independent copies of Y , where
Y is either B independent copies of P+ (the EC model) or P+ independent copies
of B (the CE model). We therefore make the following simple observation.

Proposition 1. The process (nt, t ≥ 0) is a Galton-Watson process whose
offspring distribution has pgf G(z) given by

G(z) = e+ (1− e)ze−m(1−z) (EC model)

G(z) = (e+ (1− e)z)e−m(1−e)(1−z). (CE model)

Thus, we think of the census times as marking the ‘generations’ of our branch-
ing process, the ‘particles’ being the occupied patches, and the ‘offspring’ being
the occupied patches that they notionally replace in the succeeding generation.
For the EC model, it is as if each occupied patch becomes empty with proba-
bility e, or otherwise colonises Poi(m) patches, while, for the CE model, it is as
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if each occupied patch survives with probability 1 − e or becomes empty with
probability e, but, whatever happens, it colonises Poi(m(1− e)) patches.

We may now invoke the encylopaedic theory of branching processes [8, 9, 10,
28] to prove results for this important special case of the model; it is just a
matter of which questions are of interest. For example, it is easy to prove that
offspring distribution has mean µ = (1+m)(1− e) (the same for both models),
and so E(nt|n0) = n0µ

t (t ≥ 1). Also, our branching process is subcritical ,
critical or supercritical according as m is less than, equal to or greater than the
critical value ρ = e/(1− e). This accords immaculately with our earlier criteria
for evanescence (c ′(0) ≤ ρ) versus quasi stationarity (c ′(0) > ρ) of our N -patch
models with c(0) = 0. We also have the following simple result concerning the
probability that the metapopulation becomes extinct (totally extinct), starting
with n0 patches occupied.

Corollary 2. For the infinite-patch branching model, total extinction occurs
with probability 1 if and only if m ≤ ρ; otherwise total extinction occurs with
probability ηn0 , where η is the unique fixed point of G on the interval (0, 1), with
G given as in Proposition 1.

The extinction probability η cannot be exhibited explicitly, but can of course
be obtained numerically by iterating the map G.

Finally, the variance of the offspring distribution is σ2 = σ2
EC

:= (1− e)((1 +
c)2e+ c) or σ2 = σ2

CE
:= (e+ c)(1 − e), depending on which model, and so

Var(nt|n0) =

{

n0σ
2t if µ = 1 (m = ρ )

n0σ
2(µt − 1)µt−1/(µ− 1) if µ 6= 1 (m 6= ρ ),

for all t ≥ 1.
A simple extension of the branching model is obtained by setting m(n) =

m0 +mn, where now m ≥ 0, and the new parameter m0 (> 0) is to be inter-
preted as the expected number of colonisations from an external source. It can
be derived from our N -patch models if they are modified so that colonisation
probability c(n/N) is replaced by m0/N + c(n/N) (imagine that an external
colonization potential m0 is apportioned equally among all N patches), for then

Bin(N − n,m0/N + c(n/N))
D→ Poi(m0 + c ′(0)n). The effect is to introduce

an additional (independent) Poi(m0) number of colonisations in each colonisa-
tion phase. It is easy to see that the resulting process (nt, t ≥ 0) will be the
Galton-Watson process identified in Proposition 1, but modified so that there
are Poi(d) immigrant particles in each generation, where d = m0 for the EC
model and d = (1−e)m0 for the CE model. Again we can invoke general theory.
For example, on applying Theorem VI.7.2 of [10], we learn that n

.
has a proper

limiting distribution if and only if m < ρ.

5.2. The infinite-patch model with regulated colonisation

Returning now to the general case, where the expected number of colonisations
depends arbitrarily on the number of occupied patches, let us consider what
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happens when the initial number of occupied patches becomes large. We will
suppose that there is an index N such that m(n) = Nµ(n/N), where µ is con-
tinuous with bounded first derivative. We may take N to be simply n0 or, more
generally, following Klebaner [32], we may interpret N as being a ‘threshold’
with the property that n0/N → x0 as N → ∞. By choosing µ appropriately,
we may allow for a degree of regulation in the colonisation process; for example,
µ(x) might be of the form µ(x) = rx(a − x) (0 ≤ x ≤ a) (logistic growth),
µ(x) = xer(1−x) (x ≥ 0) (Ricker growth dynamics) or µ(x) = λx/(1 + ax)b

(x ≥ 0) (Hassell growth dynamics) (see [55]). Under these conditions we can es-
tablish a law of large numbers for XN

t = nt/N , the number of occupied patches
at census t measured relative to the threshold.

The CE model is always density dependent because

E(nt+1|nt) = (1− e)(nt +m(nt)) = (1− e)(nt +Nµ(nt/N)),

implying that ft(x) := f(x) = (1− e)(x + µ(x)), and

Var(nt+1|nt) = e(1− e)E(ñt|nt) + (1− e)2 Var(ñt|nt)

= e(1− e)(nt +m(nt)) + (1 − e)2m(nt)

= e(1− e)(nt +Nµ(nt/N)) + (1− e)2Nµ(nt/N),

implying that vt(x) := v(x) = (1 − e)(ex + µ(x)), but, whilst f and v are
both continuous, we cannot apply Theorem 1 because XN

t is not necessar-
ily bounded. However, Theorem 2 can be used; since µ is continuous with
bounded first derivative, it is Lipschitz continuous and hence so too are f
and v. The EC model is not always density dependent, but we may work
with the phases separately, applying Theorem 2 to the time-inhomogeneous
Markov chain (nN

t , t ≥ 0) obtained by setting nN

2t = nt and nN

2t+1 = ñt.
We let f2t(x) = f0(x) = (1 − e)x and f2t+1(x) = f1(x) = x + µ(x), and,
v2t(x) = v0(x) = e(1 − e)x and v2t+1(x) = v1(x) = µ(x), noting that all are

Lipschitz continuous. Thus, XN

0
2→ x0 as N → ∞ is sufficient for convergence

of XN

.

to a limiting deterministic trajectory x
.
, which satisfies (in particular)

x2(t+1) = f(x2t), where f = f1 ◦ f0. We may summarise these observations as
follows.

Theorem 6. For the infinite-patch metapopulation models with parameters e
and µ(x), let XN

t = nt/N be the number of occupied patches at census t relative
to the threshold N . Suppose that µ is continuous with bounded first derivative.

If XN

0
2→ x0 as N → ∞, then XN

t
2→ xt (and hence XN

t
P→ xt) for all t ≥ 1,

where x
.
is determined by xt+1 = f(xt) (t ≥ 0) with

f(x) = (1 − e)x+ µ((1 − e)x) (EC model)

f(x) = (1 − e)(x+ µ(x)). (CE model)

Having established that XN

t
P→ xt for all t ≥ 0, we can also prove a central

limit law for the scaled fluctuations ZN

t =
√
N(XN

t −xt) under the stronger con-
dition that µ is twice continuously differentiable with bounded second derivative.
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First observe that our infinite-patch models have the equivalent representation

nt+1 = ñt +
∑N

j=1Poij(µ(ñt/N)) ñt = nt −
∑nt

j=1Berj(e) (EC model)

nt+1 = ñt −
∑ñt

j=1Berj(e) ñt = nt +
∑N

j=1Poij(µ(nt/N)), (CE model)

where the (Poij( · )) are collections of iid Poisson random variables with mean
µ(nt/N). Thus, mirroring our argument leading to Theorem 5 for our N -patch
models, we may apply Theorem 3 to the time-inhomogeneous Markov chain
(nN

t , t ≥ 0) obtained by setting nN

2t = nt and nN

2t+1 = ñt. This chain also
has the form (2), but with the (± ξN

jt ) now being appropriate sequences of iid
Poisson random variables. For both models, g2t(x) = g2t+1(x) = x. For the
EC model, r2t(x) = x, r2t+1(x) = 1, m2t(x) = −e, σ2

2t(x) = e(1 − e) and
m2t+1(x) = σ2

2t+1(x) = µ(x), leading to

f2t(x) = f0(x) = (1− e)x f2t+1(x) = f1(x) = x+ µ(x) (14)

v2t(x) = v0(x) = e(1− e)x v2t+1(x) = v1(x) = µ(x), (15)

and, b2t(x) = b0(x) = e(1− e)(1− 2e) and b2t+1(x) = b1(x) = µ(x). For the CE
model, r2t(x) = 1 and r2t+1(x) = x, m2t(x) = σ2

2t(x) = µ(x), m2t+1(x) = −e
and σ2

2t+1(x) = e(1 − e), leading to the same expressions for ft, vt and bt, but
with the roles f0 and f1, v0 and v1, and b0 and b1, reversed. Since µ is twice
continuously differentiable with bounded second derivative, in both cases ft(x)
will be twice continuously differentiable in x with bounded second derivative,
vt(x) will be continuous in x, and bt(x) will be bounded in x.

We have just seen that the limiting deterministic trajectory satisfies x2(t+1) =
f(x2t), where f = f1 ◦ f0 for the EC model and f = f0 ◦ f1 for the CE model,
with f0 and f1 as given in (14). Similarly, it is clear that our limiting Gaussian
Markov chain Z

.
should take the form

Z2(t+1) = f ′(x2t)Z2t + Ê2t, with Ê2t ∼ N(0, v(x2t)),

where v = v1 ◦ f0 + (f ′
1 ◦ f0)2v0 for the EC model and v = v0 ◦ f1 + (f ′

0 ◦ f1)2v1
for the CE model, with v0 and v1 as given in (15), noting that f ′

0 (x) = 1 − e
and f ′

1 (x) = 1 + µ ′(x). Thus we arrive at the following result.

Theorem 7. For the infinite-patch metapopulation models with parameters e
and µ(x), suppose that µ is twice continuously differentiable with bounded second
derivative. Let X

N

t be the proportion of occupied patches at census t, and suppose

that XN

0
2→ x0, so that XN

t
P→ xt for all t ≥ 0, where x

.
is determined by

xt+1 = f(xt) (t ≥ 0) with f given as in Theorem 6. Let ZN

t =
√
N(XN

t − xt)

and suppose that Z
N

0
D→ z0. Then, Z

N

.

converges weakly to the Gaussian Markov
chain Z

.
defined by Zt+1 = f ′(xt)Zt+Et (Z0 = z0), with (Et) independent and

Et ∼ N(0, v(xt)), where

v(x) = µ((1− e)x) + e(1− e)x (1 + µ ′((1− e)x)) (EC model)

v(x) = (1− e)(ex+ µ(x)). (CE model)
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Equilibrium behaviour is richer and more interesting than for the earlier N -
patch models, because now the limiting deterministic models can exhibit the
full range of long-term behaviour, and we cannot be as precise in classifying
this behaviour as we were earlier. First notice that, in the notation adopted
earlier, fCE((1 − e)x) = (1 − e)fEC(x), and so fixed points of fCE and fEC

are related by x∗
CE

= (1 − e)x∗
EC
, and, as before, f ′

CE
(x∗

CE
) = f ′

EC
(x∗

EC
) and

(1− e)f ′′
CE
(x∗

CE
) = f ′′

EC
(x∗

EC
), implying that x∗

CE
and x∗

EC
have the same stability

properties. Notice also that x∗
CE

will be a fixed point of fCE if and only if µ(x∗
CE
) =

ρx∗
CE
, where ρ = e/(1 − e). So, if µ(0) = 0 then 0 is a fixed point; it is stable

if µ ′(0) < 1 and unstable if µ ′(0) > 1 (if µ ′(0) = 1 its stability is determined
by higher derivatives of µ near x = 0). However, even when µ(0) = 0, there
might be other (conceivably many) fixed points; our conditions on µ do not
preclude this. Certainly if there is a unique positive fixed point x∗, it will be
stable if µ ′(x∗) < 1 and unstable if µ ′(x∗) > 1 (again we need to consider
higher derivatives when µ ′(x∗) = 1). Finally, notice that the d-th iterates of

our maps are also related by f
(d)
CE ((1 − e)x) = (1 − e)f

(d)
EC (x), which means

that if x∗
0, x

∗
1, . . . , x

∗
d−1 is a limit cycle for the deterministic EC model, then

(1−e)x∗
0, (1−e)x∗

1, . . . , (1−e)x∗
d−1 is a limit cycle for the deterministic CE model.

To illustrate, we look at the case where the expected number of colonisations
relative to the threshold obeys a Ricker law. For this model the full range of
behaviour is exhibited, and we can be precise in classifying this behaviour.

Ricker growth dynamics. Suppose that µ(x) = x exp(r(1−x)), where r > 0,
so that the colonisation potential of the occupied patches is greatest when their
number is close to N/r; the parameter r can be interpreted as the growth rate
and N the carrying capacity of the metapopulation in the absence of extinction.
The fixed points of fCE are 0 and x∗

CE
= 1− r0/r, where r0 = log(ρ). Notice that

f ′
CE
(x) = (1 − e)(1 + (1 − rx)er(1−x)), implying that f ′

CE
(0) = (1 − e)(1 + er),

and f ′′
CE
(x) = −(1 − e)(2 − rx)rer(1−x), implying that f ′′

CE
(0) = −2(1 − e)rer.

Therefore, if r ≤ r0, 0 is the unique non-negative fixed point, and it is stable.
If r > r0, then x∗

CE
is an additional positive fixed point; it is stable because

f ′
CE
(x∗

CE
) = 1 − e(r − r0) < 1 (and 0 is unstable). However, if r is sufficiently

large, we get limiting cycles with period doubling towards chaos, as illustrated
in Figure 2.

Figure 3 illustrates some of the range of behaviour exhibited by the stochastic
CE model with Ricker growth dynamics. Four cases are depicted. Evanescence
(a): for r between 0 and r0 (≃ 0.8473), corresponding to 0 being the unique
stable fixed point, the process dies out quickly. Quasi stationarity (b): for r
between r0 and r1 ≃ 0.7, corresponding to x∗

CE
(≃ 1 − 0.8473/r) being the

unique stable fixed point, the process exhibits (quasi-) equilibrium behaviour;
r1 is the point of first period-doubling (we have not been able to determine r1
analytically). Oscillation (c) and (d): for r bigger than r1 the process ‘tracks’
the limit cycles of the deterministic model (period 2 and 4, respectively). To
be sure, the theory predicts the kind of behaviour shown in Figure 3(c), but it
is no less remarkable when one witnesses it; one could not mistake it for, say,
bistability.
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Fig 2. Bifurcation diagram for the infinite-patch deterministic CE model with Ricker growth
dynamics: xn+1 = (1 − e)xn(1 + er(1−xn)). Here e = 0.7 and r ranges from 0 to 7.2.

Returning now to generality, we complete the picture by presenting two re-
sults concerning the fluctuations of XN

.

about a positive stable equilibrium x∗,

assuming X
N

0
2→ x∗, or a stable limit cycle x∗

0, x
∗
1, . . . , x

∗
d−1, assuming X

N

0
2→ x∗

0.
Corollary 3 follows from Theorem 7 on setting x0 = x∗, so that then xt = x∗

for all t ≥ 0, and evaluating the stationary error variance v(x∗) in both cases.
Corollary 4 follows from Theorem 7 on setting x0 = x∗

0, so that then x
.
tracks

the limit cycle, that is, xnd+j = x∗
j (n ≥ 0, j = 0, . . . , d − 1). The represen-

tation of Z
.
as a d-variate AR-1 process Y

.
, and in particular the form of the

coefficient matrix A and the error covariance matrix Σd, follow by iterating
Zt+1 = f ′(xt)Zt + Et (Z0 = z0), with (Et) independent N(0, v(xt)) random
variables: using expressions (6) to (9) with ft = f and vt = v, noting that

Πi, j =
∏j−1

k=i f
′(x∗

k) = aj/ai for 1 ≤ i ≤ j ≤ d, we obtain a representation of
Znd+j (j = 1, . . . , d) in terms of Znd (n ≥ 0), as well as the stationary covariance
matrix V . Notice that, because Z

.
is Markovian, only Z(n+1)d−1 contributes to

the drift in Yn.

Corollary 3. Suppose that f given in Theorem 6 admits a unique positive fixed

point x∗ satisfying µ ′(x∗) < 1. Then, if XN

0
2→ x∗, xt = x∗ for all t and,

assuming ZN

0 → z0, the limit process Z
.

determined by Theorem 7 is AR-1
process Z

.
defined by Zt+1 = aZt+Et (Z0 = z0), where a = (1−e)(1+µ ′(x∗

CE
))

(being the same for both models), and with iid errors Et ∼ N(0, v), where v =
e(1 + a)x∗ (EC model) or v = e(2− e)x∗ (CE model).
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Fig 3. Simulation (open circles) of the infinite-patch CE model with Ricker growth dynamics,
together with the corresponding limiting deterministic trajectories (small solid circles). Here
e = 0.7 and N = 200, and, (a) r = 0.84, (b) r = 1 (c) r = 4 and (d) r = 5. In (a), (b) and
(c), the dotted lines indicate ±2 standard deviations of the Gaussian approximation (in (c)
every second point is joined to indicate variation about each of the two limit cycle values).

Corollary 4. Suppose that f given in Theorem 6 admits a stable limit cycle

x∗
0, x

∗
1, . . . , x

∗
d−1 with XN

0
2→ x∗

0. Then, xnd+j = x∗
j (n ≥ 0, j = 0, . . . , d − 1)

and, assuming ZN

0 → z0, the limit process Z
.
determined by Theorem 7 has the

following representation: (Yn, n ≥ 0), where Yn = (Znd, Znd+1, . . . , Z(n+1)d−1)
⊤

with Z0 = z0, is a d-variate AR-1 process of the form Yn+1 = AYn+En, where
(En) are independent and En ∼ N(0,Σd); here A is the d× d matrix

A =











0 0 · · · a1
0 0 · · · a2
...

...
. . .

...
0 0 · · · ad











,

where aj =
∏j−1

i=0 f ′(x∗
i ), Σd = (σij) is the d× d symmetric matrix with entries

σij = aiaj

i−1
∑

k=0

v(x∗
k)/a

2
k+1 (1 ≤ i ≤ j ≤ d),



F.M. Buckley and P.K. Pollett/Discrete-time metapopulation models 76

where v is given as in Theorem 7, and the random entries, (Z1, . . . , Zd−1),
of Y0 have a Gaussian N(az0,Σd−1) distribution, where a = (a1, . . . , ad−1).
Furthermore, Y

.
has a Gaussian N(0, V ) stationary distribution, where V =

(vij) has entries given by

vij =
aiaj
1− a2d

d−1
∑

k=0

v(x∗
k)/a

2
k+1 (1 ≤ i ≤ j ≤ d).

6. Continuous-time analogues

When extinction and colonisation events happen in random order, rather than
in alternating phases, it is natural to take (nt, t ≥ 0), where nt is the number
occupied patches at time t, to be a Markov chain in continuous time. But, what
is the most appropriate model?

If the probability of colonisation in a small time interval were independent of
the number of occupied patches, then the SIS model would seem to be the most
appropriate N -patch model, and the Levins model (1) could be used, in much
the same way as above, to draw conclusions about its long-term behaviour.
Evanescence and quasi stationarity could be distinguished by examining the
stability of the equilibrium points, 0 and n∗ = N(1 − e/c); if c ≤ e, 0 would
be stable and the population would have genuine evanescent character, while
if c > e, n∗ would be strictly positive and stable, and the population would
persist (in this latter case the quasi-stationary distribution would be centred
near n∗ [47, 48]).

If, as envisaged here, the probability of colonisation were to depend on the
proportion of patches currently occupied, the natural N -patch continuous-time
model would be a birth-death process on S = {0, 1, . . . , N} with birth rates
λn = c(n/N)(N −n) and death rates µn = en, where c(x) is as above (assumed
to be continuous, increasing and concave, with c(0) ≥ 0 and c(x) ≤ 1). To
see this, suppose that an occupied patch becomes empty in a time interval
of length h with probability eh + o(h), or remains occupied with probability
1 − eh + o(h), while if there are n occupied patches at time t, then any given
unoccupied patch becomes occupied in the interval (t, t + h] with probability
c(n/N)h + o(h), or remains unoccupied with probability 1 − c(n/N)h + o(h).
Suppose also that the chance of two or more events of either kind happening
in (t, t + h] is o(h). Then, a transition from n to n + 1 in time h is effected by
having exactly one colonization and no extinctions (there are other ways, but
all have probability o(h)), and the chance of this happening in time h is

Pr(nt+h = n+ 1|nt = n)

= (N − n)(c(n/N)h+ o(h))(1− c(n/N)h+ o(h))N−n−1

× (1− eh+ o(h))n + o(h)

= (N − n)c(n/N)h+ o(h) = λnh+ o(h).
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Similarly,

Pr(nt+h = n− 1|nt = n)

= n(eh+ o(h))(1 − eh+ o(h))n−1(1− c(n/N)h+ o(h))N−n + o(h)

= enh+ o(h) = µnh+ o(h)

and

Pr(nt+h = n|nt = n)

= (1 − eh+ o(h))n(1− c(n/N)h+ o(h))N−n + o(h)

= 1− ((N − n)c(n/N) + en)h+ o(h) = 1− (λn + µn)h+ o(h),

as well as Pr(nt+h = m|nt = n) = o(h) when |m− n| ≥ 2.
So, analogous to Examples 1, 2 and 3 above, if c(x) = cx we get the stochas-

tic SIS model, if c(x) = c0 we get the continuous-time Ehrenfest model (see
Section 1.4 of [31]), while if c(x) = c0 + cx we get the mainland-island model of
Alonso and McKane [2] (see also [57]), all being instances of Feller’s stochastic
logistic model [23]. Whatever the form of c(x), we can obtain continuous-time
analogues of Theorems 4 and 5 and Corollary 1, because our birth-death model
is density dependent in the sense of Kurtz [35, 36]. It follows immediately from
Theorem 3.1 of [35] that the proportion XN

t = nt/N of occupied patches at time
t converges (uniformly in probability over finite time intervals) to a deterministic
trajectory (xt, t ≥ 0) satisfying the law of motion

dx

dt
= F (x) (t ≥ 0), where F (x) = c(x)(1 − x)− ex (0 ≤ x ≤ 1), (16)

assuming of course that XN

0 → x0 (our conditions on c imply that F is Lipschitz
continuous on [0, 1]). Furthermore, if we let ZN

t =
√
N

(

XN

t − xt

)

, then, assum-
ing ZN

0 → z0, Theorem 3.5 of [36] can be used to show that process (ZN

t , t ≥ 0)
converges weakly in D[0, t] (the space of right-continuous left-limits functions
on [0, t]) to a Gaussian diffusion (Zt, t ≥ 0) with initial value Z0 = z0 and with

mean EZt = Mtz0, where Mt = exp(
∫ t

0 Bu du) and Bt := F ′(xt), and vari-

ance Vt = M2
t

∫ t

0 M
−2
u G(xu) du, where G(x) = F (x) + 2ex. In the important

special case where x0 is taken to be an equilibrium point x∗ of (16), usually a
stable equilibrium, the approximating diffusion is an Ornstein-Uhlenbeck pro-
cess , and more precise results are available [61]. For example, if F (x∗) = 0 and
B := F ′(x∗) < 0, then EZt = e−atz0, where a = −B, and Vt = V ∗(1 − e−2at),
where V ∗ = G(x∗)/(−2B) = ex∗/a (the stationary variance).

There is a one to one correspondence between the equilibria of (16) and
the fixed points fCE; we simply replace ρ (= e/(1 − e) ) above by e, because
F (x) = 0 if and only if c(x) = ex/(1 − x). There is the same correspondence
in their classification (again simply replace ρ by e), because F ′(x) = c ′(x)(1 −
x)− c(x)− e and F ′′(x) = c ′′(x)(1 − x)− 2c ′(x), and, since

fCE(x)− x = (1− e)(x + (1− x)c(x)) − x = (1 − e)(c(x)(1 − x)− ρx),
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Fig 4. N-patch metapopulation model with N = 30, e = 0.2 and c(x) = cx. (a) x∗

CE
(solid),

x∗

SIS
(dotted) and x∗

EC
(dashed) versus c. (b) pdf of the stationary distribution of the limiting

Gaussian process for the CE model (solid), the SIS model (dotted) and the EC model (dashed)
with c = 0.6, together with the corresponding quasi-stationary distributions (open circles,
diamonds and solid circles).

we have that f ′
CE
(x)− 1 = (1− e)(c ′(x)(1−x)− c(x)−ρ) and f ′′

CE
(x)− 1 = (1−

e)(c ′′(x)(1−x)−2c ′(x)). Thus, stationarity happens when c(0) > 0, evanescence
when c(0) = 0 and c ′(0) ≤ e, and quasi stationarity when c(0) = 0 and c ′(0) > e.
One might have expected that, in stationary and quasi-stationary regimes, the
stable equilibrium would lie between x∗

EC
and x∗

EC
, but this turns out not to be

the case.
To illustrate this, and compare other equilibrium characteristics, suppose

that c(x) = cx. We will assume that ρ < c ≤ 1, so that also c > e. Then,
x∗

CE
= 1 − e/(c(1 − e)), x∗

EC
= x∗

CE
/(1 − e) and x∗

SIS
= 1 − e/c (in an obvious

notation) are all positive and stable. Thus, we always have x∗
SIS

> x∗
CE
, but

x∗
EC

> x∗
SIS

only if c > ρ+ e. Figure 4(a) shows the equilibria plotted against c
for fixed e (e = 0.2); note that here ρ = 0.25 and ρ+ e = 0.45.

Figure 4(b) shows the quasi-stationary distributions of the three models, CE,
SIS and EC, and the pdfs of the corresponding N(0, V ∗) stationary distributions
of the limiting Gaussian processes; V ∗

CE
= er(1− e+ a)/((e+ r)(1− a2)), where

r = c(1− e)− e and a = 1− r, V ∗
EC

= er(a(1 + a)− e)/((e+ r)(1− e)2(1− a2))
and V ∗

SIS
= e/c (in an obvious notation).

The natural continuous-time analogue of our infinite-patch models is the
birth-death process on S = {0, 1, . . .} with birth rates λn = m(n) and death
rates µn = en. When m(n) = mn, where m > 0, we get the simple immigration-
death process (see Section 6.1 of [24]), which can be interpreted as a Markov
branching process with binary splitting. Even with the inclusion of an immigra-
tion term, m(n) = m0 +mn, the model is completely tractable (explicit results
are catalogued in Section 3.2 of [3]). If, more generally, m(n) = Nµ(n/N), for
some threshold N , where µ is continuous with bounded first derivative (imply-
ing that F is Lipschitz continuous), Theorem 3.1 of [35] guarantees that if the
number XN

t = nt/N of occupied patches at time t, measured relative to the
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threshold, converges (uniformly in probability over finite time intervals) to a
deterministic trajectory (xt, t ≥ 0) satisfying

dx

dt
= F (x) (t ≥ 0), where F (x) = µ(x) − ex (x ≥ 0), (17)

whenever XN

0 → x0. Furthermore, Theorem 3.5 of [36] guarantees that (ZN

t , t ≥
0), where ZN

t =
√
N

(

XN

t − xt

)

, converges weakly in D[0, t] to a Gaussian dif-
fusion (Zt, t ≥ 0) with initial value Z0 = z0, assuming ZN

0 → z0. Its mean is

EZt = Mtz0, where Mt = exp(
∫ t

0
Bu du) and Bt := F ′(xt) = µ ′(xt)− e, and its

variance is Vt = M2
t

∫ t

0
M−2

u G(xu) du, where G(x) = F (x) + 2ex. When x0 is
taken to be a stable equilibrium point x∗ of (17) Z

.
is an Ornstein-Uhlenbeck

process with EZt = e−atz0, where a = e − µ ′(x∗), and Vt = V ∗(1 − e−2at),
where V ∗ = ex∗/a is the stationary variance. It will be clear that the equilibria
of (17), and their classification, will be the same as that laid out in Section 5.2
for the discrete-time models, but with ρ replaced by e.
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