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a b s t r a c t

We study a class of chain-binomial metapopulation models, giving special attention to the
‘mainland–island’ configuration, where patches receive immigrants from an external source. We evalu-
ate the distribution of the number nt of occupied patches at any census time t and establish a law of large
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numbers that identifies a deterministic trajectory which can be used to approximate the process when
the number of patches is large. We also establish a central limit law, which shows that the fluctuations
about this trajectory are approximately normally distributed. We describe briefly much finer results that
can be used for model calibration.
iscrete-time Markov chain
ainland–island

hain-binomial model
easonal phases

. Introduction

The term ‘metapopulation’ is used to describe individuals of a
pecies living as a group of local populations in geographically sep-
rate, but connected, habitat patches (Levins, 1970; Hanski, 1999).
atches may become empty through local extinction and empty
atches may be recolonised by immigrants from other local pop-
lations. A balance between local extinction and colonisation may
e reached which allows the metapopulation to persist (Hanski,
999). The relationship between these two processes is there-
ore an important consideration when formulating mathematical

etapopulation models. We suppose that events of the same type
ccur in seasonal phases, so that extinction events only occur dur-
ng the extinction phase and colonisation events only occur during
he colonisation phase, and that these phases alternate over time.
hey may correspond to two parts of an annual cycle, for exam-
le, where local populations are prone to extinction during winter
hilst new populations establish during spring.

We assume that a census takes place either at the end of
he colonisation phase (. . . –extinction–colonisation–census–. . . )
r at the end of the extinction phase (. . . –colonisation–
xtinction–census–. . . ), and thus fits naturally within a discrete-
ime modelling framework. If extinction and colonisation events
ere to occur in random order, then a continuous-time model

ould of course be preferred. Here we use a discrete-time Markov

hain whose state nt is the observed number of occupied patches
t the t-th census. Its transition matrix is the product of two transi-
ion matrices that govern the individual extinction and colonisation
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processes. This approach has been used previously and several
models have been proposed (Akçakaya and Ginzburg, 1991; Day
and Possingham, 1995; Hill and Caswell, 2001; Klok and De Roos,
1998; Tenhumberg et al., 2004; Rout et al., 2007). Each model
accounts for local extinction in the same way, but different methods
are used to model the colonisation process, reflecting the differ-
ing breeding habits and means of propagation of the particular
species under investigation. Whilst they account for a range of
colonisation behaviour, the models were examined using numeri-
cal methods and simulation, and few explicit analytical results were
obtained. Furthermore, only the extinction–colonisation–census
scenario was considered. Whilst it is certainly true that timing
of the census is arbitrary in that it does not affect the dynam-
ics of the metapopulation (Day and Possingham, 1995), its timing
may affect the efficiency of any statistical procedures used to cal-
ibrate the models and successful implementation of management
actions.

We present a new and quite general approach to modelling
the colonisation process, one that permits explicit expressions
for a variety of quantities of interest. We concentrate here on a
mainland–island configuration: the patches (islands) receive immi-
grants from an external source (the mainland), assumed to be
immune from extinction. We evaluate the distribution of nt at any
census time t. We then establish a law of large numbers that iden-
tifies a deterministic trajectory which can be used to approximate
(nt, t ≥ 0) at any time t when the number of patches is large. We
also establish a central limit law, which shows that the fluctuations
about this trajectory are approximately normally distributed. These

results are useful in understanding the patch-occupancy process
when the parameters of the model are known. For example, the
mean and variance of nt , and the expected time to first total extinc-
tion, can be exhibited explicitly. We describe briefly much finer
results that can be used for model calibration.

ghts reserved.
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. Patch-occupancy models

Stochastic patch-occupancy models (SPOMs) which assume that
xtinction and colonisation occur in distinct phases in discrete-
ime can be categorised as (i) heterogeneous SPOMs (Akçakaya
nd Ginzburg, 1991; Day and Possingham, 1995) or (ii) homoge-
eous SPOMs (Daley and Gani, 1999; Hill and Caswell, 2001; Klok
nd De Roos, 1998; Rout et al., 2007; Tenhumberg et al., 2004).
eterogeneous SPOMs use a vector of size N to describe the pres-
nce/absence of occupants in an N-patch metapopulation, the k-th
omponent being 1 or 0 according to whether the k-th patch is
ccupied or empty. Local extinction and colonisation event prob-
bilities can be patch-specific, such as in Akçakaya and Ginzburg’s
1991) 3-patch model for the endangered Mountain Gorilla (Gorilla
orilla beringei) metapopulation in Uganda, or vary according to
atch size and position as demonstrated in Day and Possingham’s
1995) 8-patch model for the malleefowl (Leipoa ocellata) metapop-
lation in South Australia. Since there are 2N possible states, the
nalysis of these models quickly becomes computationally expen-
ive as N increases. Homogeneous SPOMs on the other hand simply
ecord the number of occupied patches and therefore have only
+ 1 states for an N-patch metapopulation, entailing computa-

ionally inexpensive analysis even for large (N = 50) networks.
hilst patches are assumed to behave in the same way, these mod-

ls can account implicitly for spatial arrangement by allowing the
olonisation probabilities to depend on the number of occupied
atches. They have additional appeal because, as we shall see, they
an be analytically tractable. Two-phase homogeneous SPOMs are
sually based on the following approach to modelling the extinc-
ion and colonisation processes.

.1. Extinction and colonisation

Occupied patches are assumed to go extinct independently, each
ith the same probability e. Hence, given i patches initially occu-
ied, the number that survive the extinction process follows a
inomial Bin(i, 1 − e) law. With j patches remaining after the extinc-
ion phase, the N − j empty patches either remain empty or are
olonised during the subsequent colonisation phase. In modelling
he colonisation process one must consider how individuals dis-
erse through the metapopulation network. Hill and Caswell (2001)
ssume implicitly that propagules arrive at each patch according to
homogeneous Poisson process with rate ˇi/N, where i is the num-
er of patches currently occupied and ˇ is the expected number
f propagules produced by each occupied patch. Thus, the prob-
bility that one or more propagules arrive at any given patch is
i = 1 − exp(−ˇi/N), and so the number of colonisation events fol-
ows a binomial Bin(N − i, ci) law. Their model goes one step further
n allowing only a fixed subset of the N patches to be suitable for
abitation.

Klok and De Roos (1998) suppose that colonisation comprises
wo separate processes: (i) reproduction, which determines the
umber of juveniles born to adults that survive the preceding
xtinction phase (each adult occupying one patch or ‘territory’), and
ii) settlement, which determines how many patches are colonised
y juveniles. Each process is governed by its own transition matrix
nd these are multiplied to produce the overall transition matrix
or the colonisation phase. Their model was designed to study the
ommon shrew (Sorex araneus L.), which exhibits the three-phase
extinction–reproduction–settlement) behaviour described.
Tenhumberg et al. (2004) and Rout et al. (2007) model a single
opulation of individuals with an assumed fixed population ceiling.
heir models track the number of female individuals, each produc-
ng either a maximum of one offspring (Tenhumberg et al., 2004),
r a binomially distributed number of offspring (Rout et al., 2007).

(
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The total number of females resulting from the colonisation process
is then determined by a recursive formula.

These Markov chain models are often referred to as chain-
binomial models (Daley and Gani, 1999; Hill and Caswell, 2001),
because the numbers of patches/individuals remaining after each
phase is determined by a binomial distribution whose parameters
are determined by the result of the previous phase.

2.2. Timing of the census

Whilst the choice between taking the census after colonisation
or after extinction does not affect the dynamics of the metapopu-
lation, it is certainly important from an empirical perspective. For
example, Klok and De Roos (1998) chose to census after the coloni-
sation phase because the real shrew population was known to be
more stable at this time.

Our approach is similar. We introduce a homogeneous stochas-
tic patch-occupancy model of a similar design to those described,
but with a quite general approach to modelling colonisation. We
study both census scenarios and present analytical results for both,
concentrating here on the mainland–island configuration.

3. A chain-binomial model with state dependent
colonisation probabilities

Suppose there are N patches. Let nt be the observed number
occupied at census time t ∈ {0, 1, . . . } and suppose that (nt, t ≥ 0) is
a discrete-time Markov chain that takes values in S = {0, 1, . . . , N}
with transition probabilities P = (pij). The colonisation and extinc-
tion processes are governed by their own transition matrices, E =
(eij) and C = (cij), respectively, so that P = EC (the EC model) if the
census is taken just after the colonisation phase or P = CE (the CE
model) if the census is taken just after the extinction phase.

3.1. Extinction phase

Occupied patches are assumed to go extinct independently, each
with the same probability e (0 < e < 1). Thus, given i occupied at
the start of the extinction phase, the number that survive extinction
follows a Bin(i, 1 − e) law. Therefore

eij =
(

i
j

)
(1 − e)jei−j, forj = 0, . . . , i,

and eij = 0 for j > i.

3.2. Colonisation phase

Suppose that, given i occupied patches at the start of the coloni-
sation phase, the empty patches are colonised independently, each
with probability ci (0 < ci < 1). We call ci the colonisation poten-
tial (of i occupied patches). Thus, given i occupied (and hence N − i
unoccupied), the number of empty patches colonised during this
phase follows a Bin(N − i, ci) law. Therefore,

cij =
(

N − i
j − i

)
(1 − ci)

N−jcj−i
i

, for j = i, i + 1, . . . , N,

and cij = 0 for j < i. This general setup accommodates (among other
choices):
(i) ci = 1 − exp(−ˇi/N), which is Hill and Caswell’s (2001) specifi-
cation with ˇ being the propagation rate;

ii) ci = (i/N)c, where the colonisation potential is proportional to
the number of occupied patches up to a fixed maximum coloni-
sation potential c ∈ (0, 1], the (hypothetical) probability that a
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single unoccupied patch would be colonised by the fully occu-
pied network;

ii) ci = c∗(1 − (1 − c1/c∗)i), so that a ‘law of decreasing returns’
operates (the colonisation potential of the occupied group
increases by less and less with each addition of an occupied
patch), and c1 ≤ c∗ (≤ 1) where c1 is the probability that an
empty patch will be colonised given there is one patch occupied
(i = 1) and c∗ is the limiting colonisation potential (cN → c∗ as
N → ∞);

iv) ci = c, the same for all i = 0, . . . , N (in particular i = 0), which
corresponds to there being a ‘mainland’ providing overwhelm-
ing colonisation potential, the potential of colonised patches
being insignificant in comparison;

v) A combination of (iv) with any of (i)–(iii), for example ci =
c0 + (i/N)c, which would correspond to there being a mainland,
but with a significant internal colonisation process operating
according to (ii).

If desired, one can evaluate transition matrix P elementwise:

ij =
∑min(i,j)

k=0 eikckj for the EC model and pij =
∑N

k=max(i,j)cikekj for
he CE model. Notice that E is lower-triangular and C is upper-
riangular, and hence P is always dense. Notice also that the
robability that the patch network becomes empty in one time step

s pi0 = ei(1 − c0)N for the EC model and pi0 = ei(1 − ci(1 − e))N−i

or the CE model. Furthermore, p0j =
(

N
j

)
(1 − p0)N−jpj

0, where

0 = c0 for the EC model and p0 = c0(1 − e) for the CE model. Thus,
n cases (i)–(iii), we have p0j = ı0j , implying that 0 is the (sole)
bsorbing state (corresponding to total extinction) with {1, . . . , N}
eing a communicating class from which 0 is accessible.

We content ourselves with a detailed analysis of case (iv). The
ther cases will be considered separately in another paper. In this
ase it is useful to think of the patches as being islands that receive
mmigrants from a mainland: hence the term mainland–island

odel. Now S is irreducible and aperiodic, and so the Markov chain
as a unique stationary (and hence limiting) distribution. We will
valuate this below in Corollary 1. We begin by exhibiting explic-
tly the distribution of the number nt of occupied patches at time
. With ci = c, our model can be reinterpreted as a chain-binomial
IS (susceptible–infected–susceptible) epidemic model that incor-
orates immigration–emigration episodes; see Section 4.4 of Daley
nd Gani (1999). Our results apply equally to their model, with nt

nterpreted as the number of susceptibles.

. Results for the mainland–island model

The simplicity of the mainland–island model is exemplified by
he following lemma. We see that the behaviour of both models (EC
nd CE) can be summarized in terms of a single pair of parameters
p, q): for the EC model p = 1 − e(1 − c) and q = c, whilst for the CE

odel p = 1 − e and q = (1 − e)c. It will be clear from the statement
f Lemma 1 that p and q can be interpreted as ‘effective’ survival
nd colonisation probabilities.

emma 1. Given nt = i, nt+1 has the same distribution as the sum
f two independent binomial random variables, B1 and B2, with
1∼Bin(i, p) and B2∼Bin(N − i, q).

Remark: It is as if each of the i currently occupied patches
emains occupied with probability p and each of the N − i cur-
ently unoccupied patches becomes occupied with probability q,

ll patches being affected independently.

Our main result gives the distribution of nt at any time t, con-
itional on the initial (t = 0) number of occupied patches. Set
= p − q = (1 − e)(1 − c), being the same for both models, and

∗ = q/(1 − a), noting that 0 < a < 1 and 0 < q∗ < 1. It will be clear
Fig. 1. A single simulation of the EC model with N = 20, e = 0.01 and c = 0.05, start-
ing with n0 = 2 patches occupied. The number nt of occupied patches is plotted at
times t = 0, . . . , 200. The bar graph in green is the Bin(N, q∗) stationary distribution
(q∗ = 0.84034).

from the statement of Theorem 1 that q∗ is the equilibrium expected
proportion of occupied patches, and that a is the rate of (geometric)
approach to equilibrium.

Theorem 1. Define sequences (pt) and (qt) by qt = q∗(1 − at) and
pt = qt + at (t ≥ 0). Then, given n0 = i, nt has the same distribution as
the sum of two independent binomial random variables, B(1)

t and B(2)
t ,

with B(1)
t ∼Bin(i, pt) and B(2)

t ∼Bin(N − i, qt).

Remark: It is as if each of the i initially occupied patches remains
occupied with probability pt and each of the N − i initially unoc-
cupied patches becomes occupied with probability qt , all patches
being affected independently.

We may conclude that E(nt |n0 = i) = ipt + (N − i)qt and, since
B(1)

t and B(2)
t are independent, Var(nt |n0 = i) = ipt(1 − pt) + (N −

i)qt(1 − qt). Note also that the sequences (pt) and (qt) satisfy p0 = 1
and q0 = 0, p1 = p and q1 = q, and, both have limit q∗. Theorem 1
is therefore consistent with Lemma 1 and, furthermore, the equi-
librium behaviour of our model is very simple to describe. It is as if
each of the N patches is occupied independently with probability
q∗:

Corollary 1. Given n0 = i, nt converges in distribution to a Bin(N, q∗)
random variable as t → ∞.

This is illustrated in Fig. 1, along with a simulation of the EC
model. It is important to realise that it is the equilibrium observed
occupancy that follows the binomial Bin(N, q∗) law, and that the
expected equilibrium observed proportion q∗ depends on when the
census is taken; it is smaller for the CE model than for the EC model
by a factor of 1 − e. Indeed, because the extinction and colonisation
processes are assumed to occur as distinct phases, the long-term
proportions fluctuate between high and low.

Next we examine the proportion X(N)
t (= nt/N) of occupied

patches at time t, and consider what happens for fixed t as N gets
large. The following law of large numbers shows that the (random)
proportion of occupied patches can be approximated using a deter-

ministic process (xt). Here and henceforth
D→ denotes convergence

in distribution.
Theorem 2. Let (iN) be a sequence of initial states such that iN/N →
x0 as N → ∞. Then, for any t ≥ 1, X(N)

t
D→xt asN → ∞, where

xt = ptx0 + qt(1 − x0) = q∗ + at(x0 − q∗).
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atches is plotted at times t = 0, . . . , 100. The solid curve joins points on the limiting
eterministic trajectory. The dashed curve is ± 2 standard deviations as predicted
y the normal approximation.

The limiting (t → ∞) proportion of occupied patches for the
eterministic process (xt) is q∗. Indeed, the limiting e xpected pro-
ortion is also q∗. Thus, for both models (EC and CE), the proportion
f occupied patches converges to the same limit regardless of the
rder in which limits are taken. However, note that q∗ is different
or each model. Indeed, q∗ is uniformly g reater for the EC model,
hich is not surprising because even in equilibrium the process is

bserved immediately after colonisation.
We also note a connection with the incidence function model

f Hanski (1994), which describes the occupancy of a single patch
sing a two-state Markov chain. Hanski uses the term ‘rescue effect’
o describe the deleterious effect of colonisation on extinction when
olonisation is frequent, and intuits that the extinction probability
hould be (1 − c)e rather than e (in our notation). However, Lemma
(above) establishes that, for the EC model, (1 − c)e is the effec-

ive extinction probability resulting from our assumed two-phase
ehaviour, and Corollary 1 establishes that the expected equilib-
ium observed proportion is q∗ = q/(1 − a) = c/(c + (1 − c)e), being
recisely Eq. (7) of Hanski (1994). Furthermore, our Theorem 1
ives a more detailed interpretation of the rescue effect. The ‘effec-
ive’ extinction probability at time t is 1 − pt = (1 − q∗)(1 − at),
hich for the EC model is 1 − pt = (1 − c)e(1 − at)/(1 − a), being

1 − c)e when t = 1 and (1 − e)c/(c + (1 − c)e) in the long term.
The following central limit law establishes that, for large N,

he fluctuations about the deterministic trajectory determined by
heorem 2 have an approximate normal (Gaussian) distribution.

heorem 3. In addition to the conditions of Theorem 2, suppose
hat

√
N(x(N) − x0) → z0, as N → ∞, where x(N) = iN/N. Let Z(N)

t =
N(X(N)

t − xt). Then, for any t ≥ 1, Z(N)
t

D→N(atz0, vt) as N → ∞, where
t = pt(1 − pt)x0 + qt(1 − qt)(1 − x0).

Notice that the approximating variance given in Theorem
is consistent with the exact variance given by Theorem 1:

arZ(N)
t = NVarX(N)

t = pt(1 − pt)x(N) + qt(1 − qt)(1 − x(N)) → vt as
→ ∞ (they will be identical if x(N) = x0). This is illustrated in

ig. 2, along with a simulation of the EC model.

We can also assess the fluctuations about the deterministic

quilibrium q∗, provided that the initial proportion occupied is
ufficiently close to q∗, thus giving a much simpler distributional
pproximation that is appropriate once equilibrium is reached. On
etting x0 = q∗ in Theorems 2 and 3 we obtain the following result.
odelling 221 (2010) 2526–2530 2529

Corollary 2. Let (iN) be a sequence of initial states such iN/N → q∗ as

N → ∞. Then, for any t ≥ 1, X(N)
t

D→q∗ as N → ∞. Let Z(N)
t = √

N(X(N)
t −

q∗). If
√

N(iN/N − q∗) → z0, then, for any t ≥ 1, Z(N)
t

D→N(atz0, q∗(1 −
q∗)).

Remark:

(i) Afficionados will realise that strong laws of large numbers hold,
because convergence in Theorem 2 and the first part Corollary
2 can be strengthened to convergence almost sure.

(ii) Theorem 3 and the second part of Corollary 2 allow us to assess
the quality of the deterministic approximation. For example,
Theorem 3 implies that, for N sufficiently large, Pr(|X(N)

t − xt | >

�t) 
 2(1 − �(�t

√
N/vt)), where � is the standard normal dis-

tribution function.

5. Discussion

Our results are useful for understanding the patch-occupancy
process when the effective survival and colonisation parameters p
and q are known. Much finer results would be needed for model
calibration, because data would typically be collected at succes-
sive census times, and thus observations would be dependent
(even in equilibrium). We have been able to show that the finite-
dimensional distributions of the scaled process (Z(N)

t ) defined in
Theorem 3 converge to those of a Gaussian Markov chain (Zt)
defined by Zt+1 = aZt + Et (Z0 = z0), where the ‘errors’ Et (t ≥ 0) are
independent random variables with Et∼N(0, �2

t ) and �2
t = xtp(1 −

p) + (1 − xt)q(1 − q). A similar result holds for the scaled process
defined in Corollary 2, but now Et∼N(0, q∗(1 − q∗)(1 − a2)), and so
(Zt) is a standard (autoregressive) AR-1 process with identically dis-
tributed errors. Thus, standard time-series methods can be used to
estimate p and q.

In addition to the present mainland–island model (case (iv)
above), we have studied cases (i) and (iii), evaluating the expected
time to total extinction, extinction probabilities, and quasi-
stationary distributions. For models with ci = g(i/N) for a suitable
function g, we have developed limit laws which allow one to
approximate the proportion of occupied patches over time by
a discrete-time Gaussian (autoregressive) process. These results,
which are based largely on the analytical methods introduced in
this paper, will be reported elsewhere.

6. Conclusion

We have presented a two-phase discrete-time Markov chain
model that describes the dynamics of a metapopulation network.
A new and quite general approach to modelling the colonisation
process was presented, one that substantially subsumes earlier
models. Despite its generality, explicit results can be obtained
for several quantities of interest. We concentrated here on the
mainland–island case, where the colonisation probability was con-
stant. The distribution of the observed number of occupied patches
after the extinction and colonisation phases was obtained (both the
time-dependent and equilibrium distribution) and a law of large
numbers and a central limit law were established that permit these
distributions to be approximated by a normal distribution whose
parameters were given explicitly.
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ppendix A.

Proof of Lemma 1. Suppose that nt = i. We will use conditional
xpectation to evaluate G, the probability generating function (pgf)
f nt+1. For the EC model, nt+1 = U + Z , where U∼Bin(i, 1 − e) and
∼Bin(N − U, c), and so

G(z) = E(zU+Z ) = E
(
E(zU+Z |U)

)
= E

(
zU
E(zZ |U)

)
= E

(
zU(1 − c + cz)N−U

)
= (1 − c + cz)N

E

(
(z/(1 − c + cz))U

)
= (1 − c + cz)N(e + (1 − e)z/(1 − c + cz))i

= (1 − c + cz)N−i(e(1 − c + cz) + (1 − e)z)i

= (e(1 − c) + [1 − e(1 − c)]z)i(1 − c + cz)N−i.

or the CE model, nt+1∼Bin(i + Z, 1 − e), where Z∼Bin(N − i, c), and
o

G(z) = E(E(znt+1 |Z)) = E
(

(e + (1 − e)z)i+Z
)

= (e + (1 − e)z)i
E

(
(e + (1 − e)z)Z

)
= (e + (1 − e)z)i(1 − c + c(e + (1 − e)z))N−i

= (e + (1 − e)z)i(1 − c(1 − e) + c(1 − e)z)N−i.

herefore,

(z) = (1 − p + pz)i(1 − q + qz)N−i,

here p = 1 − e(1 − c) and q = c for the EC model, and p = 1 − e and
= (1 − e)c for the CE model. The result follows.

Proof of Theorem 1. Suppose that n0 = i and let Gt be the pgf of
t . Then, G0(z) = zi and, from Lemma 1,

Gt+1(z) = E ((1 − p + pz)nt (1 − q + qz)N−nt )

= (1 − q + qz)N
E

((
1 − p + pz

1 − q + qz

)nt )
= (1 − q + qz)N Gt

(
1 − p + pz

1 − q + qz

)
,

(A.1)

or all t ≥ 0. The proof will be complete if we can show that

t(z) = (1 − pt + ptz)i(1 − qt + qtz)N−i (A.2)

or all t ≥ 0, where (pt) and (qt) are the given sequences. Recall
hat qt = q∗(1 − at) and pt = qt + at (t ≥ 0), where a = p − q = (1 −
)(1 − c) and q∗ = q/(1 − a). Clearly (A.2) is true for t = 0 because
0 = 1 and q0 = 0. But, if (A.2) is true for some fixed t ≥ 0, then a
imple calculation involving (A.1) shows that

Gt+1(z) = (1 − (q + apt) + (q + apt)z)i(1 − (q + aqt) + (q + aqt)z)N−

= (1 − pt+1 + pt+1z)i(1 − qt+1 + qt+1z)N−i,

nd so the result follows by mathematical induction.
Proof of Corollary 1. Suppose that n0 = i. Then, Theorem 1 states

hat nt has the same distribution as B(1)
t + B(2)

t , where B(1)
t and

(2)
t are independent random variables with B(1)

t ∼Bin(i, pt) and

(2)
t ∼Bin(N − i, qt). We have already remarked that (pt) and (qt)

ave common limit q∗. Therefore, it is clear that B(1)
t

D→B(1)∼Bin(i, q∗)

nd B(2)
t

D→B(2)∼Bin(N − i, q∗), as t → ∞, because the corresponding
equences of characteristic functions converge point wise to the
odelling 221 (2010) 2526–2530

appropriate limits. Then, since B(1)
t and B(2)

t are independent (for

each t), so are B1 and B2, and, moreover, B(1)
t + B(2)

t
D→B1 + B2. But,

clearly B1 + B2∼Bin(N, q∗), and the result follows.
Proof of Theorem 2. From Theorem 1, X(N)

t has the same dis-

tribution as K (N)
t + L(N)

t , where K (N)
t and L(N)

t are independent

random variables given by K (N)
t = B(1)

t /N = x(N)B(1)
t /iN and L(N)

t =
B(2)

t /N = (1 − x(N))B(2)
t /jN , where jN = N − iN and x(N) = iN/N. We

are told that x(N) → x0 as N → ∞, and so iN → ∞ and jN → ∞.
It follows from the standard Weak Law of Large Numbers that

B(1)
t /iN

D→pt and B(2)
t /jN

D→qt . Hence, Kt
(N)

D→x0pt and L(N)
t

D→(1 − x0)qt ,

and so K (N)
t + L(N)

t
D→ptx0 + qt(1 − x0)(= q∗ + at(x0 − q∗)), which is

the stated result.
Proof of Theorem 3. Again we exploit the independence exhib-

ited in Theorem 1. First notice that

X(N)
t − xt = x(N)B(1)

t /iN − x0pt + (1 − x(N))B(2)
t /jN − (1 − x0)qt

= x(N)(B(1)
t /iN − pt) + (1 − x(N))(B(2)

t /jN − qt)
+(x(N) − x0)(pt − qt),

and so, on multiplying by
√

N and noting that pt − qt = at , we find
that

Z(N)
t =

√
x(N)

√
iN(B(1)

t /iN − pt)

+
√

1 − x(N)
√

jN(B(2)
t /jN − qt) + z(N) at,

(A.3)

where z(N) = √
N(x(N) − x0). By the standard Central Limit The-

orem
√

iN(B(1)
t /iN − pt)

D→N(0, pt(1 − pt)) and
√

jN(B(2)
t /jN −

qt)
D→N(0, qt(1 − qt)). Therefore, the first and second terms of (A.3)

define independent sequences that converge in distribution to
N(0, x0pt(1 − pt)) and N(0, (1 − x0)qt(1 − qt)) random variables,
respectively. But, we are told that z(N) → z0 as N → ∞. Therefore,

Z(N)
t

D→N(z0at, vt), where vt = pt(1 − pt)x0 + qt(1 − qt)(1 − x0).
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