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Abstract—To model a fault that can be caused
by more than one source, a mixture of conditional
Gaussian transitions is proposed. The conditional
means are modelled by recurrent neural networks. An
expectation-maximization (EM) algorithm is used to
estimate model parameters. By grouping known types
of faults it is possible to form a bank of different fault
models.

Index Terms—Fault modelling, mixture of Gaussian
transitions, neural networks, EM algorithm.

I. INTRODUCTION

The model-based fault detection methods are a very
important class of techniques which can reveal unwanted
deviations in system characteristics [19]. There are two
kinds of model: process models and signal models. The
first is used when both the input and output variables
of the system are available, and the second when only
output measurements are available. Once an appropriate
model is adopted it can be used to generate residuals,
being the difference between observed signal values and
model predicted values. Once evaluated, the residuals can
provide information about system behaviour.

In the existing literature on fault diagnosis, a variety
of different process and signal models have been proposed
[3], [10], [20], [23]. However, a model involving a mixture of
Gaussian transitions has not yet been applied in the con-
text of fault diagnosis. Using this approach, we propose a
methodology for designing a bank of models. The proposed
algorithm can be applied as either a process model or as
a signal model.

Our approach is similar to one introduced by Newbold
and Ho [18], and studied further by Hanlon and May-
beck [6] and Semoushin et al. [22]. The Kalman filter bank
is applied to diagnose multiple faults in a system and
a general likelihood ratio test (GLRT) is used to detect
changes in system behaviour. We apply these ideas to a
model with a mixture of Gaussian transitions in order to
deal with various operational modes. However, instead of
dealing only with first-order and second-order moments,
we propose to represent the model in terms of conditional
distributions. One advantage that a mixture of conditional
Gaussian distributions has over other models [6], [18],
[22] is that nonlinear effects due to system faults can be
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captured [14]. We use recurrent neural networks [8] as our
model for the nonlinear effects in the mean of the signal.
This approach allows different causes of a single fault to
be modelled.

II. MIXTURE OF GAUSSIAN TRANSITIONS

The signals produced by most faults are nonstationary,
nonlinear time series. This makes modelling difficult if
a particular fault has multiple sources. There are two
difficulties in resolving problems associated with these
signals: selection of an appropriate model capable of cap-
turing multi modality and estimating the parameters of
the selected model. Our approach is to use a mixture of
conditional Gaussian transitions, as follows:

K
FlulFin) = e (L=E20)
k=1

where F(y|F¢—1) is the conditional cumulative distribu-
tion function (cdf) of the observation y; at time ¢, F;_1 is
a dependence vector (a vector of previous samples) taking
values in R™ with m = |F|, ®(-) is the cdf of the standard
normal distribution, a4 is a mixture weighting coefficient,
hy is a non-linear mapping hy, : R™—R, o7 is the variance
of component k and K is a number of mixture components.
Equation (1) is a generalization of the finite mixture model
discussed in [4], [16], [24]. Our mixture representation was
chosen because (i) estimating parameters for this type of
model is possible using the EM framework, (ii) the most
likely fault type can be detected by monitoring changes
in the likelihood ratio for given set of observations, and
(iii) using Monte Carlo techniques, the future behaviour of
the signal can be predicted. Whilst our model has several
attractive features, there are some drawbacks. First, the
choice of hj is not necessarily obvious, and will depend
on the problem at hand. Second, h; can be nonlinear in
its parameters. And, third, there are significant problems
associated with estimating K, the order of dependence in
Fi—1 and monitoring the standard error.

Our work builds on that of Le et al. [14] and Wong
and Li [26]. Both papers deal with mixtures of conditional
Gaussian distributions. The first is a continuation of work
of Raftery [21]. It explains how this type of mixture can
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model nonlinear time series, particularly flat stretches,
bursts of activity and change points, using a simple au-
toregressive model (AR) of the first order (AR(1)) for
the conditional mean. The second generalizes this to an
autoregressive model of arbitrary order (AR(p)).
However, the linear AR model has some disadvan-
tages [25]. Of particular interest from perspective of fault
modelling, are the following restrictions. The AR model
is not suitable for time series exhibiting sudden bursts of
large amplitude. Moreover it deals only with symmetric
data. In addition, since a linear difference equation does
not have stable periodic solutions, independent of initial
conditions, the AR model cannot account for limit cycles.
Notwithstanding these limitations, (1) is a natural gen-
eralization of the linear AR model to the case of nonlinear
hi(Fi—1). Let it be assumed that process of signals of the
monitored system follow a stochastic difference equation
of the form
Ye=hp(Fi—1)+€ek, (2)

where hy is an unknown smooth function governing the
dynamic behaviour of component k, €, are iid with
zero mean and finite variance 0,%, having probability
density function fi(-) (a standard normal distribution),
and {y:,t € Z,} is a time series on an arbitrary space
generated by (1).

There is a variety of possible approximations of the
deterministic skeleton hi(F;—1) in (2), for example, the
class of linear basis erpansion models with splines or
wavelets as bases [7]. However, given that our primary
objective is time series modelling, a parametric model
hi(Fi—1) is required that must be capable of embed-
ding temporal sequences. It must be capable of making
temporal association, that is, to generate a sequence in
response to a particular input sequence, and it must have
the capacity to reproduce a sequence when it observes
part of it. The first is related to process models, while
the second is connected with signal models within the
model-based fault diagnosis framework. For the case of a
process model, the dependence vector F;_; is defined as
Fie1={yt—1,-- s Yt—p, Ut—1, - - . , Uy—y }. For a signal model
it is given by Fi—1={yt—1,...,Yt—p}, where y,_; is an
output signal and w;—; a control signal of the monitored
system.

To meet the requirements imposed on hy(Fi—1), two
types of neural networks are proposed. For the pro-
cess models, a recurrent neural network (RNN) is sug-
gested, described by a discrete-time nonlinear model of
the form [12]

n
:vi(t)z)\i:vi(t—l)—l—ﬁia[zwij:vj(t—l)-i-si} , (3)

j=1
where n is the number of neurons, x; is the state of the
it" neuron, a[] is a nonlinear activation function, W =
[Wijlnxn is the matrix of connection weights and s; is a
constant input (bias). A time constant A; models node
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dynamics and it is assumed that —1 < \; < 1. The node
gain (3; can take any non-zero value. The neurons that
receive an external input do not have node dynamics, but
the neurons that represent an output from the network
possible do.

For the signal models, a time delay neural network
(TDNN) is considered. It differs from (3) in that A; = 0 (no
node dynamics). We analyse stability conditions of RNN in
order to reveal model properties. Since TDNN is a subclass
of RNN, our results for RNN apply directly to TDNN.

An application of RNN in the context of Mizture of
Ezperts was given in [13], but the statistical properties
of RNN were not considered.

III. MODEL PROPERTIES

The conditional Gaussian mixture (1) has two im-
portant properties. Since the conditional mean of each
component depends on previous samples, a conditional
distribution can change its shape and from unimodal it
can become multimodal. The conditional expectation of
y+ given previous samples F;_; is [26]

E(y| Fi-1) Zakhk (Fi=1) (4)

where hp(F;—1) is a nonlinear parametric model. It is
worth noting that the accuracy of prediction depends on
the model used for the conditional mean. Additionally, (1)
has the conditional variance [26]

Z akak—i— Z akhk Fi-1)

—(Zakhk(ft—l))2- (5)
k=1

var(y:| Fi—1)

By exploiting these properties in the context of fault
modelling, a multiple source fault can be modelled, one-
step prediction can be performed, and its corresponding
variance calculated. However, asymptotic stationarity of
the time series {y;,t € Z4} is required. We establish this
condition using results of Meyn and Tweedie [17], Chan
and Tong [1] and Wassim and Bernstein [5].

For a model (2), let (R™, 8™, u,,) be a probability
space, where B" are the Borel sets of R™ and pu,, is
Lebesgue measure on R™. Furthermore, it is postulated
that e, are iid with positive probability density fi.
For some FER™ and A€®B™, the transition probability
function P(F, A) of {y;} is given by

P(F, A)= Zak/

Similarly, P(")(F, A)=P(Fi1n€A|F;=F) are the n-step
transition probabilities with P)=P. In this way, a time
series {y¢, t€Z4 } with a transition probability P(F, A) can
be viewed as a Markov chain on (R™,B™, uy,).

() pn (). (6)
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There are three important properties of Markov chains
formulated in [17] that are relevant to the problem dis-
cussed here. The first is g-irreducibility. The Markov chain
is said to be -irreducible if, for some finite measure
©(A)>0, there is an n>0 such that P (F, A)>0 for all
FeR™. In other words, all parts of the state space can be
reached whatever the initial point. The next is aperiodic-
ity: there is no regular pattern in return times to states.
Finally, a property that gives the rate of convergence and
makes a link with the deterministic part of the model (2) is
geometric ergodicity. For any measure w on (R™, 8™ 1),
let || - || denote the total variation of m. A Markov chain is
geometrically ergodic if there is a constant p>1 such that

lim anP(n)(]:7 A)—m(A)||=0, VFeR™, (7)
where 7 is invariant probability measure, that is,
w(4)= [ P AraR), vaeBT.

If the associated Markov chain is geometrically ergodic,
then the distribution of the time series will converge to
m geometrically quickly, in which case it is said to be
asymptotically stationary.

For asymptotic stationarity, geometric ergodicity must
be proved for each component in (6). We use a result of
Chan and Tong [1] to establish a connection between geo-
metric ergodicity of {y:} and the existence of a Lyapunov
function of the parametric model hi(F;—1) in (2). Once
a Lyapunov function is identified for hy(F;—1), geometric
ergodicity follows from Theorem 4.2 and Section 5 of [1].

To prove the existence of a Lyapunov function for (3),
re-write it as

Xt:AXt,1+Ba(Ht,1)
H,_1=WX,_i, 9)

where X is the state vector [z;],x1, A and B are the diago-
nal matrices [diag(A;)]nxn and [diag(5;)]nxn, respectively,
H is the output vector, W is the matrix [w;;]nxn of con-
nection weights and a(-) is a bounded nonlinear function.
Based on results in [5] (Theorem 3.1 and Theorem 4.1) it
follows that for (9) there is a Lyapunov function of the
form V(x)=xTPx, where P is a positive-definite matrix
for which AV (x)<0. Particular constraints imposed on A,
B and W are given in [12].

We deduce that the time series {y;,t€Z.}, generated
by the Gaussian transition model with a conditional mean
modelled by RNN, is asymptotically stationary, connoting
that (4) and (5) take only finite values.

IV. ESTIMATION

The EM algorithm [2] is used to estimate model pa-
rameters. Suppose that a set of observations {y;,t€Z } is
generated by (1). An unobservable random choice of com-
ponent k, that originates an observation y;, is modelled by
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random indicator variable

L1 itZ=k,
k4= 0 otherwise.

The set of indicators Z={Ix, : k=1,...,K; t=1,...,T}
creates the missing data. Consequently this turns an
incomplete data problem into a complete data problem
and allows the application of the EM algorithm. Since the
values of I ;, are unknown, it is necessary to evaluate their
expectations given the observations and parameters. Once
the expectation of I ; has been calculated, the model
parameters of hi(F;—1) are updated. This describes one
iteration of the EM algorithm. The set of parameters is
U={ay,...,ax; Wi,...,Wg;0%,...,0%; }, where ay, is
a mixture proportion, Wy, is a matrix of neural network
weights, o7 is the variance of mixture component k.

The likelihood function of the complete data is given by

Le(W]Y, Z)=p(Y, Z|¥)

T K .
H H [p(zt;‘l’)p(yt|2t,.7:t_1;\11)} “, (10)

t=p+1 k=1

where Y, Z and ¥ denote observations, the missing data
and the parameters of the model, respectively.

The E-step involves computing the conditional expecta-
tion of the complete log likelihood (10), often called the @
function, and defined as follows:

QU W' )=Ey:{log L.(¥|Y, Z)}
T K

=Eg:{ Z ka,t{10g0k+10gp(yt|Y, zt, Fe—1; V)
t=p+1 k=1

T K
=3 ) Egi{lia]Y, Uhx

t=p+1 k=1

x{log ar+log p(yt|Y, z¢, Fi—1; ¥)}, (11)

where Egi{l;.|Y, U} is the expectation of the hidden
variable Z conditional on observation Y and a set of
a model parameters U. Since log L.(¥|Y, Z) is a linear
function of an unobservable random variable Z, the E-
step requires calculating the conditional expectation of Z
given the observations [16]:

E{Ik,tw’ \I/}:P{Zt|yt7]:t—1§ql}
_ P(ye|ze, Fee1; ¥)p(2e| ¥)
p(yt|‘1’)
Olkp(yt|2t7-7:t71; ‘I/)
Sy (il Fioai )
o (6 0F)
K B 2
Zj:l O‘jfj(fj,tﬂfj)

= Tt,k-

(12)

where €;; is the current estimate of the residual for a
component i, defined by & ;=y¢—h;(Fi—1).
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The EM algorithm requires Q(¥|¥?) to be maximized.
To facilitate this, it can be rewritten as

\If|\If Z Zrtklogak— Z ZTtklogUk
t= p+1k 1 t=p+1k=1
- Z Zmsz (13)
t=p+1 k=1

It is maximized over oy and oy subject to the necessary
constraints using the Lagrange multiplier approach. This
leads to the following updating equations for oy and oy:

(14)

(15)

For models hi(F;—1) that are linear in the parameters,
such as the AR models and linear basis expansion models,
Q(¥|¥?) can be maximized directly. However, for the
neural network models considered here, maximization of
Q(¥|V?) requires an iterative technique. Taking deriva-
tives with respect to the parameters of hy(F;—1), the
following expression is obtained:

6@(\II|\II yt_hk —7:15 1))
k{ Z Z Mg )
6’[1}” 'LJ t=p+1 k=1
T
Ohy(Fi—
=y T_letk% (16)
t=pt1 Ok Wi

Equation (16) resembles the back-propagation (BP) learn-
ing algorithm in the case when the squared error cost
function is used. However, there is an important difference.
In contrast to original expression for BP, this one, given
by (16), is modulated by 7% 5 (the expectation of a latent
variable) and o7 (variance of component k). As in BP,
using the gradient-descent method, the weight is updated
using

T

Ohi(Foe
Awk= 3" ”—;étkig( 1) (17)
t=p+1 K Wi

From this it is apparent that the M-step is batch gradient
learning.

Most of our work here is devoted to modelling a single
fault coming from more than one source. Consequently
the EM based framework is applied. However, if there is
a single source, then it is still possible to use maximum
likelihood methodology for neural network training. By
simple arithmetic starting from the likelihood function

L(¥|Y)= H p(ye| Fe-1; V),

t=p+1

(18)
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it is possible to show that the maximum likelihood based
training procedure gives the following equations for batch
learning within one step:

T

B & Oh(Fi1)
Awi= Y 7 o (19)
t=p+1
| Ez:p-l-l €?

where €; is the current estimate of the residual, given by
gt:yt—h(]:tfl)-

Despite the fact that estimation of parameters is re-
stricted to the BP algorithm, there are still types of neural
network that can be successfully applied in model-based
fault modelling. We conclude that the methodology can
be applied to recurrent networks whose training is based
on BP. The types of RNN that can be used are the fully
and partially RNN-like recurrent back-propagation mnet-
work, Jordan sequential network and the simple recurrent
network [8], including TDNN.

V. SIMULATION RESULTS

We illustrate the algorithm by way of an exam-
ple of nonlinear vibrations in engineering systems; we
analyze the phenomenon of amplitude-dependent fre-
quency [9],[11],[25]. The frequency of the observed signal
depends on the amplitude of the excitation signal, which
is composed of deterministic and stochastic components.
Considering the amplitude-dependent frequencies as un-
desirable, we require a fault model capable of capturing
multi-modality. We will assume that the change in signal
amplitude (frequency) occurs at random.

For simplicity, assume that there are only two amplitude
levels. A fault model is represented by two self-exiting au-
toregressive (SETAR) models, M; and Ms, given by (21)

and (22), respectively (see [25], Section 2.14.2):
1.6734—0.8295y;_1+0.1309y; o —0.0276y,_5+¢€;
B if 4o 1>05 o))
Y= 1.227041.0516y,_1 —0.5901y,_»—0.2149y,_5-+¢;
if yo_1 < 0.5

0.30—0.80y;_1+0.20y;_2—0.Tys 5+

B if y;_1>3.05
Y= 0.1540.855 140.22y0 5 — 0.7y st 22
if y4—1 < 3.05.
The mnoise that drives these models has variance

var(e;)=(0.005)2. Switching between models M; and M,
occurs according to a two-state Markov chain with tran-
sition probabilities p11=p22=0.95. The training and test
sets are created using simulated values. To improve neural
network training, simulated values were scaled to the
range y:€[—0.5,0.5], and the training set consisted of
T=9000 samples. Since for a given model only output
measurements are available, this is obviously an example
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Fig. 1. Test signal (solid) and model prediction (dotted)

of the signal model fault diagnosis approach, discussed in
Section I. Consequently, TDNN are used to approximate
the nonlinear conditional mean. In order to capture model
dynamics, given by (21) and (22), a two component mix-
ture (K=2) of conditional Gaussian transitions is used.
Accordingly, the TDNNs have one delayed input (p=1)
each, two hidden layers with N;=30 and N2=25 neu-
rons in each layer, and one output. A hyperbolic tan-
gent with constant parameter A=0.75 was used as
an activation function. There were relatively few it-

;l‘

I ’n'\ \
0.4571 1,1 o g
’\IH l““\l"”lu\\““\l ”
0.4 i
“ I\ h\’””“”\'\\ ll\
\,\m,‘l’uln\ 4
J i

0 20 40 60 80 100
Samples

Fig. 2. 60% Prediction interval
erations of the EM algorithm before AQ(¥|¥?) <
1073 (28 in total). In the first 25 iterations neu-
ral networks were trained with learning parameters
7i=0.751075,75=0.251075,75=0.12510">, i=1,2, while
the remaining 3 learning parameters were reduced to
7t=0.0313107°,75=0.06251075,75=0.1875 107", i=1,2.
Finally, for the given training set, the mixture proportions
were a1=0.4237 and a2=0.5763 for components k=1, 2,
respectively, while the variances for each of component
were 05=(0.0198)% and 03=(0.0456).

The resultant model was tested on a given test set. To
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Fig. 3. 90% Prediction interval

have clearer graphs, we have broken ordinates in Figs. 1, 2
and 3 respectively, ignoring irrelevant parts of the signal.
The top part of the figures show signals related to model
M, while the lower part of the figures represent that
relevant to model Ms.

Fig. 1 shows the first 100 samples of original test
signal and the corresponding one-step ahead predictions
obtained by (4). Swaps happened at the sample indices
15,33 and 79. The prediction abilities of our model are
illustrated in Figs. 2 and 3, where 60% and 90% prediction
intervals are given. The dashed lines represent upper and
lower boundaries, while the solid line represents the test
signal.

o
2
o
a
o]
o)
N
©
£
[e)
P4
0 0.5 1 1.5
Normalized frequency [rad/sample]
Fig. 4. The MUSIC of test (solid) and predicted (dashed) signal

Comparative frequency characteristics of the test and
predicted values of the signal, using the multiple signal
classification (MUSIC) [15] method, are given in Fig. 4.
It is apparent that the corresponding model captured
signal dynamics with negligible deviation from the original
signal.
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VI. DISCUSSION

In this paper an approach to modelling a multiple source
fault was proposed, based on a mixture of conditional
Gaussian transitions. The conditional means were approx-
imated by neural networks, allowing successful modelling
of nonlinear dynamics. Parameters were estimated using
maximum likelihood. Future research will focus on full
implementation of a bank of fault detection filters using
conditional Gaussian transitions.
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