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Abstract

In this paper we consider the problem of estimating the parameters of a Markov
queuing model from discrete time observations of the queue length. The proposed
approach is an application of the martingale estimating function methodology which
has been used extensively in mathematical finance. A small simulation study sug-
gests that the estimator performs well, even for moderate sample size, and that
it is an improvement over the Gaussian diffusion based, approximate maximum
likelihood estimator.
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1 Introduction

Much of the literature on parameter estimation for queuing processes con-
cerns continuous observation of the entire queue (for example Auśın et al.,
2004). However, there has been some recent interest in parameter estima-
tion based on other types of data. The problem of parameter estimation from
inter-departure times for M/G/1 queues has been studied using a variety of
techniques. Fearnhead (2004) showed that the corresponding likelihood func-
tion can be computed exactly using a filtering algorithm and hence was able
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to compute the maximum likelihood estimate. Two simulation based inferen-
tial procedures have also been proposed for this problem: indirect inference
(Heggland and Frigessi, 2004) and approximate Bayesian computation (Blum
and Fançois, 2009). Basawa et al. (2008) demonstrated how to compute the
maximum likelihood estimate for a GI/G/1 queue based on waiting time data,
adjusted for any idle times, using the EM algorithm. Novak and Watson (2009)
devised a method of moments estimator for an M/D/1 queue based on delay
measurements from single packet probing.

Of particular interest in this paper is the method proposed by Ross et al.
(2007) for estimation of the parameters of an M/M/c queue from discrete time
observations of the queue length. The main difficulty in parameter estimation
in this setting is that, for most queuing systems, the transition probabilities
for the queue length process are not easily calculated. As a result, likelihood
based estimation is far from routine. Given this difficulty, Ross et al. (2007)
proposed an approximate maximum likelihood estimator for M/M/c queues.
Based on the results of Kurtz (1971) and Barbour (1974), they proposed using
the likelihood function of a Gaussian Ornstein-Uhlenbeck (OU) process as an
approximation of the true likelihood function, hereafter referred to as the OU
likelihood. The OU likelihood function is easily evaluated and the estimator
can be obtained using standard numerical optimisation procedures. Although
the estimator is easy to compute, this approach has two significant drawbacks
which have been noted by the authors. Firstly, the method produces accurate
estimates only when the number of servers is large (c � 40). Secondly, the
proposed confidence sets appear to have rather poor coverage properties (see
Figure 1 of Ross et al., 2007).

Viewing the approximate OU likelihood approach as an estimating equation
(Heyde, 1997), the poor performance for moderate and small values of c is
perhaps not surprising. This is due to the fact that the resulting approximate
score function, the derivative of the log likelihood, will not, in general, have
expectation zero. Therefore, the estimator cannot be consistent.

This paper has two aims. Firstly, an estimator for the M/M/c queue is pro-
posed that improves on the approximate OU likelihood method of Ross et
al. (2007). The estimator is constructed applying the theory of martingale
estimating equations. This approach combines the ideas from the OU ap-
proximation of the queue length process with simulation to ensure that the
estimating equation is unbiased. The improvement over the OU likelihood ap-
proximation is demonstrated by a direct comparison on the simulated queues
used in Ross et al. (2007). The second aim of the paper is to demonstrate how
the methodology can be extended to deal with more complex queues. This
is done for a queue with two priority classes and for a tandem queue. Other
generalisations are possible such as queuing networks and bulk-arrival bulk
service queues. Although the restriction to Markovian queues excludes some
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basic queues from consideration, such as the GI/G/1 queue, we believe the
class of Markovian queues is sufficiently rich to be of interest. In the discus-
sion, we provide some comments on the application of estimating equations
to non-Markovian queues.

2 An overview of estimating functions

We assume that the queue length process X(t) is described by a pure jump
Markov process taking values in E ⊂ Zd with transition rates q(i, j). For
simplicity of notation, suppose that the queuing process X(t) is observed at
times 1, 2, . . . and denote these observations by X0, X1, X2, . . . The queuing
process is assumed to be parameterised by θ ∈ Θ ⊂ Rp.

2.1 Formulating estimating equations

The following is a brief summary of the theory of estimating equations rele-
vant to the problem at hand. The reader should consult Heyde (1997) for a
more complete survey of the theory. An estimating function is a p-dimensional
function of the data and parameter

GT (θ) := GT (θ,X1, . . . , XT ).

The estimator θ∗ of θ is obtained by solving the estimating equationGT (θ) = 0.
This general framework incorporates most estimators including method of
moments and regular maximum likelihood estimators. The estimating function
in the later case, being the derivative of the log likelihood, is also known as
the score function.

We focus on a special class of estimating equations called martingale estimat-
ing equations (MEE). Let Ft be the sigma field generated by observations
X1, . . . , Xt. A martingale estimating function is an estimating function that
has the martingale property,

Eθ [GT (θ)|FT−1] = GT−1(θ).

Let {mt(θ)}Tt=1 be a martingale difference sequence, that is, for each t, mt(θ)
is Ft measurable and satisfies

Eθ (mt(θ) | Ft−1) = 0.

The simplest way to construct a martingale difference sequence from {Xt}Tt=1

is to transform the data using some function h(·) and then correct for the
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conditional expectation. For example, if we take h(x) = x then the martingale
difference sequence is mt(θ) := Xt −M(Xt−1; θ), where

M(x; θ) = Eθ[Xt|Xt−1 = x].

Consider the class of martingale estimating functions which are linear in mt(θ).
More precisely, consider the class of martingale estimating functions

G =

{
GT (θ) : GT (θ) =

T∑
t=1

at(θ)mt(θ)

}
,

where the at(θ) are Ft−1 measurable p × m matrices. Naturally, we would
like to chose the estimating function in G which is optimal in some sense.
According to the fixed sample optimality criteria (Heyde, 1997, pg 11), an
estimating function is optimal within the class G if it minimises the distance
to the score function. The optimal estimating function is obtained by setting
at(θ) := a∗t (θ), where

a∗t (θ) = (Eθ∂mt(θ)|Ft−1)
′ (Eθmt(θ)mt(θ)

′|Ft−1)
−1
, (1)

and ∂mt(θ) denotes differentiation of mt(θ) with respect to θ. In the case where
mt(θ) = Xt −M(Xt−1; θ), the corresponding optimal estimating function is

G∗T (θ) =
T∑
t=1

∂M(Xt−1; θ)V
−1(Xt−1; θ) [Xt −M(Xt−1; θ)] ,

where ∂M(x; θ) denotes the vector of partial derivatives of M(x; θ) with re-
spect to θ and

V (x; θ) = Eθ[(Xt −M(x; θ))(Xt −M(x; θ))′|Xt−1 = x].

We note that the choice of G affects the efficiency of the estimator. Ideally,
the score function will be an element of G.

2.2 Inference

Estimates obtained by solving a MEE typically have nice large sample proper-
ties. In this subsection we give an informal summary of the theory underlying
these properties. The verification of sufficient conditions for the asymptotic
properties to hold remains a challenge and needs to be investigated a on case
by case basis.

We first define the quadratic characteristic of the martingale GT (θ) as the

4



random positive semi-definite p× p matrix

〈G(θ)〉T =
T∑
t=1

at(θ)Eθ (mt(θ)mt(θ)
′|Ft−1) at(θ)

′.

Let θ0 denote the true parameter value. Assuming that X(t) is ergodic and
certain moments of X(t) are finite, the conditions of Theorem 2.3 of Bibby
et al. (2004) hold and GT (θ0) converges in distribution to a normal random
variable as T →∞,

〈G(θ0)〉−1/2
T GT (θ0)

d→ N(0, I). (2)

It follows from (2) that estimating functions in G satisfy

T−1GT (θ)
Pθ→ 0. (3)

This property is desirable as it is necessary for consistency of the estimator
obtained by solving GT (θ) = 0.

Assume that X(t) satisfies additional regularity conditions concerning the
smoothness with respect to θ of at(θ) and of certain conditional moments.
Then Theorem 2.2 of Bibby et al. (2004) can be applied to show that the
estimator is consistent, asymptotically normal. Although the asymptotic nor-
mality of the estimator can be used to construct confidence sets for the true
parameter, empirical evidence favours constructing confidence sets directly
from the normalised estimating function. If the convergence in (2) can be
strengthened to stable convergence, then an asymptotic (1−α) confidence set
for θ is given by{

θ : G′T (θ) 〈GT (θ)〉−1GT (θ) ≤ χ2
p;(1−α)

}
, (4)

where χ2
p;(1−α) is the 1− α percentile of the χ2 distribution with p degrees of

freedom.

2.3 Numerical solution

The optimal MEE involves quantities that are not available in closed form
for most queuing systems. Therefore, the difficulties in computing the optimal
MEE are similar to those in computing the likelihood function.

In the following section we derive some approximations to (1) that are easily
evaluated. Replacing (1) by an approximation entails some loss of efficiency
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however the resulting estimating equation remains unbiased and hence the
estimator should retain the nice asymptotic properties. The approximation to
(1) does not completely resolve the difficulty in evaluating the MEE since the
martingale difference sequence still requires the evaluation of a conditional
moment. We do not replace this conditional moment with an approximation
since the estimating equation would no longer satisfy (2) and the resulting es-
timator would not be consistent. Accurate evaluation of a conditional moment
can be achieved by simulating a large number of sample paths and taking the
appropriate average. This approach was used by Bibby and Sørensen (1995)
to evaluate the estimating functions for diffusion processes.

An alternate approach is to use a stochastic root finding algorithm as described
in Spall (2003, chapter 4) to solve the estimating equation. Assume that the
martingale difference sequence that we are using is mt(θ) = Xt −M(Xt−1; θ).
Let {X̃t} be a sequence of independent random variables such that X̃t is
simulated from the conditional distribution of Xt given Xt−1. Define

G̃T (θ) =
T∑
t=1

at(θ)
(
Xt − X̃t

)
.

Then

Eθ

[
G̃T (θ)|FT

]
= GT (θ).

Let H(θ) be an FT measurable matrix and let δk be a sequence of positive
real numbers converging to zero such that

∑∞
k=1 δk =∞. Define the sequence

{θ̂k} by the recursion

θ̂k+1 = θ̂k − δkH(θ̂k)G̃T,k(θ̂k), (5)

where G̃T,k(θ) are independent copies of G̃T (θ). Sufficient conditions for the
sequence (5) to converge to θ∗, the solution of GT (θ) = 0 are given in Spall
(2003, pg 107). Of these conditions, the most important is that θ∗ is an asymp-
totically stable equilibrium point of the ordinary differential equation

dΥτ

dτ
= −H(Υτ )GT (Υτ ). (6)

The choice of H(θ) that makes θ∗ an asymptotically stable equilibrium point
of (6) can be difficult. For the optimal martingale estimating equation a good
choice for H(θ) is the inverse of its quadratic characteristic, 〈G(θ)〉−1

T . In our
simulation study we let H(θ) be an approximation of 〈G(θ)〉−1

T obtained by
approximating Eθ (mt(θ)mt(θ)

′|Ft−1) using the OU process.
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3 Estimating functions from the OU approximation

The optimal form of at(θ) given in equation (1) depends on quantities that are
not available in closed form. Accurate numerical evaluation of a∗t (θ) is com-
putationally expensive as it involves numerical differentiation and evaluation
of high order moments. Furthermore, numerical instability in evaluating the
estimating function can lead to difficulties in solving the resulting estimating
equation. It is therefore of interest to develop computationally inexpensive
approximations to a∗t (θ). We propose to use approximations of a∗t (θ) based on
a diffusion approximation to the queue length process.

The literature on queuing processes contains a number of diffusion approxima-
tions that are valid under a variety of conditions (Iglehart, 1965; Chen and Ye,
2001; Anisimov, 2002; Ward and Glynn, 2003). While these approximations
could serve as a suitable starting point for constructing estimating equations,
we take as our starting point the class of density dependent Markov processes
and their approximation by the Ornstein-Uhlenbeck process.

Kurtz (1970) introduced the concept of density dependence for Markov pro-
cesses in his examination of solutions to ordinary differential equations as
approximations of Markov pure jump processes. Let f be a function mapping
Rd × Zd to R such that for each l ∈ Zd, l 6= 0, the function f(x, l) is continu-
ous in x. A one parameter family of Markov chains Xc(t), c > 0, is said to be
density dependent if the transition rates have the form

q(m,m+ l) = cf(c−1m, l), l 6= 0, m ∈ E.

In our study, the parameter c can be identified with the number of servers
in the system. In a series of papers Kurtz (1970, 1971) and Barbour (1974,
1976, 1980) studied the asymptotic (c→∞) behaviour of this class of Markov
processes (see also Either and Kurtz, 2005, chapter 11). Our construction of
estimating functions uses only a few of their results which we now summarise.

Assume that the functions f(x, l) are Lipshitz continuous in x for each l and
that f(x, l) ≡ 0 for all but finitely many l. Define the function F (x) :=∑
l 6=0 lf(x, l). These assumptions satisfy the conditions of Theorem 2.1 of Ei-

ther and Kurtz (2005, chapter 11). Therefore, if c−1Xc(0)→ x∗, almost surely,
and if F (x∗) = 0, then for every t ≥ 0,

lim
c→∞

sup
s≤t

∣∣∣c−1Xc(s)− x∗
∣∣∣ = 0,

almost surely.

Now define Zc(t) = c1/2(c−1Xc(t) − x∗). Assume that the Jacobian of F is
continuous in a neighbourhood of x∗. Let A be the Jacobian of F evaluated at
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x∗ and let σ be the d×r matrix whose column vectors are the non-zero vectors
l
√
f(x∗, l). If Zc(0)→ z0, almost surely, then the conditions of Theorem 2.3 of

Either and Kurtz (2005, chapter 11) are satisfied and Zc(t) converges weakly
in D[0, T ] to the solution of the stochastic differential equation

dZ(t) = AZ(t)dt+ σdW (t), Z(0) = z0,

where W (t) is r dimensional standard Brownian motion. The process Z(t) is
the OU process.

The conditional moments of the OU process provide a reasonable approxima-
tion to the conditional moments of X(t). The conditional mean and condi-
tional variance of the OU process can be evaluated using standard results (see
Karatzas and Shreve, 1999, section 5.6). Let

φ(t, z) = E(Z(t)|Z(0) = z)

and let

ψ(t, x) = E((Z(t)− φ(t, x))(Z(t)− φ(t, x))T |Z(0) = z).

The functions φ(t, z) and ψ(t, z) are given by the solutions to the initial value
problems

dφ(t, z)

dt
= Aφ(t, z), φ(0, z) = z, (7)

and

dψ(t, z)

dt
= Aψ(t, z) + ψ(t, z)AT + σσT , ψ(0, z) = 0. (8)

Note that ψ(t, z) does not depend on z. Since the OU process is Gaussian,
any higher order moments can be expressed as a function of the conditional
mean and conditional variance. The following subsections provide details on
the use of the OU approximation in formulating the estimating function for
three types of queues. In each case, the sampling times are assumed to be the
sequence of integers 1, 2, . . . , T . The results can easily be modified to allow for
non-uniform sampling of the queue length process.

3.1 M/M/c queue

Consider an M/M/c queue that has a Poisson arrival process with rate λc and
c servers each having exponentially distributed service times with rate µ. The
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queue length process X(t) is a Markov pure jump process on {0, 1, 2, . . .} with
transition rates

q(m,m+ 1) =λc,

q(m,m− 1) =µ(m ∧ c).

Assume that limc→∞ c
−1λc = λ∗. The OU approximation of X(t) as c →

∞ was first derived by Iglehart (1965). Applying the above results, we find
F (x) = λ∗ − µ(x ∧ 1). If we assume that λc < cµ then the parameters of the
OU process approximating X(t) are x∗ = λ∗/µ, A = −µ and σσT = 2λ∗. The
conditional mean and conditional variance of X(t) are approximated by

M̃(x; θ) =µ−1λc + e−µ(x− µ−1λc),

Ṽ (θ) =µ−1λc(1− e−2µ).

To form the estimating function we first need to choose a martingale differ-
ence sequence. It is known that the score function of a Gaussian process is
a quadratic function of the data. So that our class of estimating functions is
close to the true score function, at least when c is large, we propose to use the
martingale difference sequence based on (X(t), X2(t)). That is,

mt(θ) =
[
Xt −M(Xt−1; θ) (Xt −M(Xt−1; θ))

2 − V (Xt−1; θ)
]′
.

Using this martingale difference sequence, the optimal estimating function is
obtained by setting

a∗t (θ) = [−∂M(Xt−1; θ)
′ − ∂V (Xt−1; θ)

′]

V (Xt−1; θ) S(Xt−1; θ)

S(Xt−1; θ) K(Xt−1; θ)

 ,
where ∂ denotes the partial derivative with respect to θ,

S(x; θ) = Eθ[(Xt −M(x; θ))3|Xt−1 = x]

and
K(x; θ) = Eθ[(Xt −M(x; θ))4|Xt−1 = x]− V (x; θ).

Applying the OU approximation, S(x; θ) ≈ 0 and K(x; θ) ≈ 2Ṽ 2(θ). The
proposed estimating function is

T∑
t=1

∂M̃(Xt−1; θ)
′Ṽ (θ)−1 (Xt −M(Xt−1; θ))

+
T∑
t=1

∂Ṽ (θ)′
(
2Ṽ 2(θ)

)−1 (
(Xt −M(Xt−1; θ))

2 − V (Xt−1; θ)
)
.
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Note that the functions M,V appearing in the estimating function are deter-
mined by simulation.

3.2 A priority queue with preemptive service

We now consider a queue with two priority classes. Customers of the high
priority class arrive in the queue according to a Poisson process with rate λ1,c.
Customers of the low priority class arrive in the queue according to a Poisson
process with rate λ2,c independent of the high priority class customers. The
customers are served by c servers having independent exponentially distributed
service times with rate µ. Customers of the high priority class are served before
those of the low priority class. Furthermore, the queue is preemptive so that
a high priority customer will displace a low priority customer that is being
served. The low priority customer is returned to the queue. Formally, the queue
length process X(t) = (X1(t), X2(t)) counting the number of customers of each
priority class in the queue is a Markov pure jump process with transition rates

q(X,X + e1) =λ1,c,

q(X,X + e2) =λ2,c,

q(X,X − e1) =µ(X1 ∧ c),
q(X,X − e2) =µ(X2 ∧ (0 ∨ c−X1)),

where e1 = (1, 0)′ and e2 = (0, 1)′. Assume that λ1,c + λ2,c < cµ and that
limc→∞ λi,c/c = λ∗i . Applying the results on density dependent processes, we
have

F (x) =

 λ∗1 − µ(x1 ∧ 1)

λ∗2 − µ(x2 ∧ (0 ∨ 1− x1))


The parameters of the approximating OU process are

x∗ =

λ∗1/µ
λ∗2/µ

 , A =

−µ 0

0 −µ

 , σσT =

 2λ∗1 0

0 2λ∗2

 .

Therefore, X1(t) and X2(t) are asymptotically independent processes.

As in the previous example, we construct the estimating function using a
quadratic function of the data. The estimating function is formed from the
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martingale difference sequence

mt (θ) =



X1,t −M1(Xt−1; θ)

X2,t −M2(Xt−1; θ)

(X1,t −M1(Xt−1; θ))
2 − V11(Xt−1; θ)

(X1,t −M1(Xt−1; θ))(X2,t −M2(Xt−1; θ))− V12(Xt−1; θ)

(X2,t −M2(Xt−1; θ))
2 − V22(Xt−1; θ)


.

The exact form for a∗t (θ) is quite complicated. However, a great deal of simpli-
fication is achieved by using the OU process approximation. First, note that
V12(x; θ) ≈ 0, since X1(t) and X2(t) are asymptotically independent. It follows
that

Eθ [∂mt(θ)|Ft−1]

≈ [−∂M1(Xt−1; θ) − ∂M2(Xt−1; θ) − ∂V11(Xt−1; θ) 0 − ∂V22(Xt−1; θ)] .

Secondly, the matrix Eθ [mt(θ)mt(θ)
′|Ft−1] is approximately diagonal with

non-zero entries[
V11(Xt−1; θ) V22(Xt−1; θ) 2V 2

11(Xt−1; θ) 2V11(Xt−1; θ)V22(Xt−1; θ) 2V 2
22(Xt−1; θ)

]
Finally, we can approximate Mi(x; θ) and Vii(x; θ) by

M̃i(x; θ) =µ−1λi,c + e−µ(xi − µ−1λi,c),

Ṽii(θ) =µ−1λi,c(1− e−2µ).

We combine these approximations to yield the estimating function

T∑
t=1

∂M̃(Xt−1; θ)
′Ṽ (θ)−1 (Xt −M(Xt−1; θ))

+
T∑
t=1

∂Ṽ (θ)′
(
2Ṽ 2(θ)

)−1 (
(Xt −M(Xt−1; θ))

2 − V (Xt−1; θ)
)
,

where ∂M̃(x; θ) = [∂M1(Xt−1; θ) ∂M2(Xt−1; θ)], ∂Ṽ (θ) = [∂Ṽ11(θ) ∂Ṽ22(θ)]
and Ṽ (θ) is the diagonal matrix whose non-zero entries are [Ṽ11(θ) Ṽ22(θ)].
It is important to note that although X1(t) and X2(t) are asymptotically
independent as c → ∞, they are dependent for any finite c. The functions
Mi(Xt; θ) and Vii(Xt; θ) appearing in the estimating function are functions of
the vector (X1,t, X2,t) and not just the respective Xi,t.
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3.3 A tandem queue

As a final example, we consider a simple tandem queue. Customers arrive in the
queue according to a Poisson process with rate λc. Customers are served at the
first station by c servers having exponentially distributed service times with
rate µ1. After being served at the first station, customers proceed to a second
station where they are served by c servers having exponentially distributed
service times with rate µ2. The queue length process comprising of the number
of customers at each station is a Markov pure jump process with transition
rates

q(X,X + (1, 0)′) =λc,

q(X,X + (−1, 1)′) =µ1(X1 ∧ c),
q(X,X + (0,−1)′) =µ2(X2 ∧ c)

We assume that limc→∞ λc/c = λ∗ and that λ < cmini µi. The queue length
process is density dependent with

F (x) =

 λ∗ − µ1(x1 ∧ 1)

µ1(x1 ∧ 1)− µ2(x2 ∧ 1)

 .
The parameters of the approximating OU process are

x∗ =

λ∗/µ1

λ∗/µ2

 , A =

−µ1 0

µ1 −µ2

 , σσT =

 2λ∗ −λ∗

−λ∗ 2λ∗

 .
Solving the ordinary differential equations (7) and (8), we obtain the approx-
imating conditional mean and conditional variance functions,

M1(x; θ)≈ M̃1(x; θ) =
λc
µ1

+ e−µ1

(
x1 −

λc
µ1

)
,

M2(x; θ)≈ M̃2(x; θ) =
λc
µ2

+ e−µ2

(
x2 −

λc
µ2

)
+

µ1

µ2 − µ1

(
x1 −

λc
µ1

)(
e−µ1 − e−µ2

)
,

V11(x; θ)≈ Ṽ11(θ) =
λc
µ1

(
1− e−2µ1

)
,

V12(x; θ)≈ Ṽ12(θ) =
λc

µ2 − µ1

(
e−(µ1+µ2) − e−2µ1

)
,

V22(x; θ)≈ Ṽ22(θ) =
−µ1λc

(µ2 − µ1)2

(
e−µ1 − e−µ2

)2
+

2λc
µ2

(
1− e−µ2

)
.

For simplicity we only consider the estimating function based on the martin-
gale difference sequence Xt − M(Xt−1; θ). The estimating function is given
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by
T∑
t=1

∂M̃(Xt−1; θ)
′Ṽ −1(θ) [Xt −M(Xt−1; θ)] .

We expect that the resulting estimator will be less efficient than an estima-
tor obtained from a quadratic estimating equation. However, it will still be
consistent, assuming the regularity conditions are satisfied.

4 Simulations

4.1 M/M/c

As stated in the introduction, the problems with the OU likelihood estimator
has motivated our proposal to use estimators based on MEEs. Our first ex-
ample provides a comparison of the two approaches using simulated data. We
take the same M/M/c queues used in Ross et al. (2007) as the basis of the
comparison. The three M/M/c queues have the following parameters: (A) a
shopping queue comprised of 5 servers with a service rate of 0.175 and arrival
rate 0.75, (B) a small telecommunications queue comprised of 50 servers with
a service rate of 1/6 and arrival rate 85/12 and (C) a large telecommunications
queue comprised of 300 servers with a service rate 0.09 and arrival rate 25.

Ross et al. (2007) have noted that larger sample sizes do not improve the OU
likelihood estimate. Although we do not expect this to be true for the MEE
estimate, we use two different lengths of time series; one as in Ross et al.
(2007) and another approximately ten times longer.

For each queue and length of time series, 100 time series were simulated and the
two estimators applied. We solved the quadratic MEE of section 3.1 using the
stochastic root finding algorithm described in section 2.3. The OU likelihood
estimates were obtained using a quasi-Newton solver.

Tables 1 – 3 provide summaries of the estimator performance for each of the
three queues and two lengths of time series. The MEE approach provides
a considerable reduction in the mean squared error over the OU likelihood
approach. This is almost entirely due to a reduction of bias. As expected the
improvement is greater for larger sample sizes and is less when the OU process
is a good approximation for the queue length process.

It has already been noted that the confidence sets for the approximate like-
lihood estimator have poor coverage. Using the same simulated data as for
Tables 1 – 3, we investigate the observed coverage levels for 95% confidence
sets for the MEE estimator and compared this with the OU estimator. The
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Table 1
(A) Small shopping queue: Empirical bias and standard deviation of estimates from
simulated queue. RMSE is the ratio of the mean squared error of the MEE estimate
to the OU estimate.

n Parameter Method Bias Std Dev RMSE

240 λ OU 0.0268 0.0858

MEE -0.0082 0.0959 1.1470

µ OU 0.0856 0.0322

MEE -0.0061 0.0210 0.0569

2000 λ OU 0.0523 0.0326

MEE -0.0057 0.0352 0.3322

µ OU 0.1050 0.0188

MEE -0.0029 0.0086 0.0072

Table 2
(B) Small telecommunication system: Empirical bias and standard deviation of es-
timates from simulated queue. RMSE is the ratio of the mean squared error of the
MEE estimate to the OU estimate.

n Parameter Method Bias Std Dev RMSE

240 λ OU 0.1768 0.6234

MEE 0.0479 0.6558 1.0290

µ OU 0.0089 0.0176

MEE 0.0009 0.0176 0.5609

2000 λ OU 0.1145 0.2727

MEE -0.0338 0.2736 0.8674

µ OU 0.0078 0.0073

MEE -0.0010 0.0062 0.3487

confidence sets for the MEE estimator are constructed using expression (4).
The confidence sets for the OU estimator are similarly constructed using{

θ : u′T (θ)IT (θ)−1uT (θ) ≤ χ2
p;(1−α)

}
, (9)

where uT (θ) is the score (first derivative of the log likelihood), IT (θ) is the
observed information matrix (negative of the Hessian of the log likelihood)
and χ2

p;(1−α) is the 1 − α percentile of the χ2 distribution with p degrees of
freedom. The results are reported in Table 4. Although 100 simulations is too
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Table 3
(C) Large telecommunication system: Empirical bias and standard deviation of
estimates from simulated queue. RMSE is the ratio of the mean squared error of
the MEE estimate to the OU estimate.

n Parameter Method Bias Std Dev RMSE

600 λ OU 0.1103 1.7816

MEE -0.0020 1.8044 1.0218

µ OU 0.0008 0.0065

MEE -0.0002 0.0064 0.9798

6000 λ OU 0.0818 0.5279

MEE -0.0783 0.5218 0.9755

µ OU 0.0009 0.0020

MEE -0.0003 0.0019 0.7756

Table 4
Observed coverage level for 95% confidence sets formed using expressions (4) and
(9).

MEE OU

length A B C length A B C

short 0.94 0.95 0.96 short 0.09 0.65 0.84

long 0.96 0.98 0.97 long 0.00 0.41 0.57

few to be able to detect small deviations from the theoretical coverage level,
it is sufficient to detect the large deviations observed for the OU likelihood
method. For the OU likelihood method, coverage of the confidence intervals
improve as c increases and deteriorates as the sample size increases. This is
expected as the bias in the OU likelihood estimates decrease as c increases.
The confidence sets from the MEE method are possibly conservative due to
the small amount of extra variation introduced by the approximation of the
conditional mean and the conditional variance in the estimating equation using
simulation.

4.2 A priority queue with preemptive service

We now examine the performance of the estimating equation approach as
applied a queue with two priority classes. Two queues of the form described
in section 3.2 were simulated. The first queue had arrival rates 0.3 and 0.45

15



Table 5
Empirical bias and standard deviation of estimates from simulated queues with two
priority classes.

Queue One Queue Two

Parameter Bias Std Dev Parameter Bias Std Dev

λ1 -0.0077 0.0483 λ1 0.0384 0.2743

λ2 0.0068 0.0525 λ2 0.0585 0.3083

µ 0.0055 0.0172 µ 0.0022 0.0125

for the high and low priority classes, respectively. There were 5 servers in the
queue with a service rate of 0.175. The second queue had arrival rates of 3
and 4.083 for the high and low priority classes, respectively. There were 50
servers in the queue with a service rate of 1/6. The queues were simulated
and 240 observations of queue length were recorded at unit time intervals.
The estimate of θ from solving the estimating equation was also recorded.
This was repeated 100 times for both queues to obtain empirical estimates of
the bias and standard deviation of the estimator. The results are summarised
in Table 5. We see that any bias in the estimators is smaller than could be
detected by this simulation study. A good level of accuracy was achieved in
both cases.

4.3 A tandem queue

Finally, we examine the performance of the estimating equation approach as
applied to tandem queues with two stations. Two queues of the form described
in section 3.3 were simulated. The first queue had an arrival rate of 0.75 and
each station comprised 5 servers with a service rate 0.175. The second queue
had arrival rate of 3.54 and each station comprised of 25 servers with a service
rate of 1/6. The same procedure that was used for the priority queues was
applied for the two tandem queues. The results are summarised in Table 6.
Although there is a noticeable drop in efficiency due to using a linear instead
of a quadratic estimating equation, the estimator still appears to perform well.
There also appears to be a positive bias in the estimates of the arrival and
service rates.
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Table 6
Empirical bias and standard deviation of estimates from simulated tandem queues
with two stations.

Queue One Queue Two

Parameter Bias Std Dev Parameter Bias Std Dev

λ 0.1197 0.1572 λ 0.1212 0.3882

µ1 0.0275 0.0343 µ1 0.0059 0.0177

µ2 0.0260 0.0327 µ2 0.0057 0.0182

5 Discussion

The MEE approach yields improved estimators compared to the OU likelihood
approach. Unlike the OU likelihood approach, the performance of the MEE
estimators does not critically depend on the closeness of the queue length
process to an OU process. The MEE estimators typically have smaller mean
squared error due to a large reduction in the bias. Furthermore, the confidence
sets constructed from the MEE appear to have better coverage. Although
there is considerable support for preferring the MEE approach, we need to
acknowledge two important facts. Firstly, we have assumed that the queuing
process satisfies certain regularity conditions so that the MEE estimator would
be consistent and asymptotically normal. These conditions still need to be
verified. Secondly, these improvements are obtained at the cost of additional
computations.

We have used the approximating OU process as a means of approximating the
optimal MEE. It may not always be possible to use the OU approximation in
this way, especially if the OU approximation does not depend on one or more
of the process parameters. An alternative approach would be to approximate
the required conditional moments using a small sampling time approximation.
In this case, the conditional distribution of X(t+h) given X(t) = x, and hence
the conditional moments, is approximated assuming h is small. Truncation of
the uniformization expansion is one approach to obtain this approximation.

Finally, we note that it is possible to modify the ideas of this paper to deal
with non-Markovian queues. Suppose that we have an approximate likelihood
function for the queue length process. Let l(θ) denote the approximate log
likelihood function. An unbiased estimating equation is given by

∂l

∂θ
(θ)− Eθ

(
∂l

∂θ
(θ)

)
= 0.

If l(θ) is exactly the log likelihood of the queue length process then the above
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expectation is known to be zero and we obtain the maximum likelihood esti-
mate. In general, the above expectation does not have a simple form but can
be evaluated numerically if the queue can be simulated.
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