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A model for a spatially structured metapopulation accounting for

within patch dynamics
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Abstract

We develop a stochastic metapopulation model that accounts for spatial structure as well as

within patch dynamics. Using a deterministic approximation derived from a functional law

of large numbers, we develop conditions for extinction and persistence of the metapopulation

in terms of the birth, death and migration parameters. Interestingly, we observe the Allee

effect in a metapopulation comprising two patches of greatly different sizes, despite there

being decreasing patch specific per–capita birth rates. We show that the Allee effect is due

to way the migration rates depend on the population density of the patches.

Keywords: extinction, Markov process, metapopulation, partially ordered flow, spatially

structured
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1. Introduction

The field of metapopulation ecology concerns the study of populations with a specific

spatial structure where the population is separated into geographically distinct patches or

islands. There has been a high level of interest in the field since the late 60s [1, 2], and this

has continued to the present (see [3, 4, 5, 6] and references therein). Of significant concern to

ecologists is the survival of the population and under what conditions the population might

become extinct. Mathematical models have proved useful in addressing these questions.
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Many models employ the presence–absence assumption, that is, they simply record

whether or not each patch is occupied. This assumption is employed in the two most widely

used metapopulation models: Levins’ model [1] and Hanski’s incidence function model [4].

Hanski’s model has proven extremely successful in incorporating landscape structure and

quality into the metapopulation dynamics. More generally, the presence–absence assump-

tion has simplified modelling, data collection and analysis for a number of metapopulations

[7, 8, 9, 10, 11, 12, 13, 14]. However, this assumption is not always adequate, for example in

stock dynamics where more detail is required [15].

On the other hand, structured metapopulation models (SMMs) such as [16, 17, 18, 19, 20]

model the births, deaths and migration of individuals directly, and the number of individuals

present on each patch is recorded. The parameters of SMMs are easily interpreted as per–

capita birth, death and migration rates, rather than abstract parameters such as patch level

extinction and colonisation rates. Furthermore, SMMs give far more detail about the state of

the metapopulation than is possible under the presence–absence assumption. Unfortunately,

the SMMs cited above impose a number of unrealistic assumptions on the metapopulation;

they fail to account for the spatial configuration of patches and assume that migration

patterns are homogeneous across all patches.

We introduce a metapopulation model that is structured in respect of both spatial con-

figuration and within patch dynamics. Our model has the form of a Markov population

process introduced in [21]. Previous analyses of this class of models have focussed on deter-

mining expressions for moments and stationary distributions [3]. However, the restrictions

that these analyses require are not natural in the present context since our model has an

absorbing state corresponding to extinction. In this case, the stationary distribution would

necessarily assign all its probability mass to the extinction state, and thus would not provide

useful information about any quasi-stationary regime (being a common feature of metapopu-

lation models [22]). Instead, we analyse this model by determining a simpler approximating

differential equation based on the work of Kurtz [23] and Pollett [24].

Using the differential equation, we are able to determine conditions under which the

2
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metapopulation will go extinct quickly or persist for an extended period of time. We are

also able to identify more complex dynamics such as the presence of an Allee effect for

some range of parameters. An Allee effect refers to populations exhibiting an increasing per

capita growth rate at low population density levels. When the per-capita growth rate is

initially negative, a critical threshold emerges below which the population goes extinct. In

populations displaying an Allee effect, conservation strategies need to be adapted to account

for this, particularly if a critical threshold is present [25, section 5.1.4].

The paper is organized as follows. We begin, in Section 2, by detailing our model.

The differential equation approximation is described in Section 3. In Section 4, we analyse

the long–term behaviour of the approximating deterministic model, deriving conditions for

extinction or persistence, and demonstrate the possibility of an Allee effect. Some examples

are given to illustrate our results. Our conclusions are summarised in Section 5.

2. The Model

Our model is an example of Kingman’s [21] Markov population process. Define, for any

positive integer J , SJ as the set of J-vectors n = (n1, . . . , nJ) where the ni are non-negative

integers. A simple Markov population process is a Markov process on a subset S of SJ whose

only nonzero transitions rates are given by

q(n, n+ ei) = αi(ni), (1)

q(n, n− ei) = βi(ni), (2)

q(n, n− ei + ej) = γij(ni, nj) for all j 6= i, (3)

where ei is the unit vector with a 1 in the ith position and q(x, y) is rate from state x to

state y. In the present context, J is the number of patches in the metapopulation and ni(t) is

the number of individuals occupying patch i at time t. The Markov process (n(t), t ≥ 0) de-

scribing the state of the metapopulation takes values in SN = {0, . . . , N1}×· · ·×{0, . . . , NJ}

3
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i jnibi

(

ni

Ni

)

φi(ni)λi0 + dini φi(ni)λij
Nj−nj

Nj

φj(nj)λji
Ni−ni

Ni

Figure 1: Illustration of the dynamics for patch i and migration to and from patch j.

and has nonzero transition rates

αi(ni) = nibi

(

ni

Ni

)

, (4)

βi(ni) = φi(ni)λi0 + dini, (5)

γij(ni, nj) = φi(ni)λij
Nj − nj

Nj

for all j 6= i, (6)

where φi(0) = 0, φi(n) > 0 for n ≥ 1 and bi : [0, 1] 7→ R+ such that bi(x) = 0 for all x ≥ 1.

These rates correspond to: an increase on patch i due to a birth (4), a decrease on patch i due

to a death or removal from the system (5) and a migration from patch i to patch j (6). The

parameters di, λij and Ni are the per–capita death rate, proportion of individuals migrating

from patch i to patch j (or out of the system if j = 0) and the population ceiling for patch i,

respectively. The birth rate function bi(·) determines the per–capita birth rate given how

densely populated patch i is. The function φi(·), henceforth referred to as the migration

function, represents the rate at which individuals leave patch i. Figure 1 illustrates these

transitions.

We note that the models of Renshaw [3] and Arrigoni [17] have a number of features in

common with our model. The main difference with Renshaw’s model is in the linearity of

the birth and migration rates. That linearity excludes the possibility of a carrying capacity

at each patch. Arrigoni’s model included catastrophes, that is, the possibility of the instan-

taneous death of all individuals on a given patch. However, it assumed that the birth, death

and migration rates were the same for all patches and, as in Renshaw’s model, it could not

4
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incorporate a carrying capacity at each patch.

3. Differential equation approximation

We will apply Theorem 3.1 of Pollett [24] which allows us to approximate the path of

our process by the solution to a system of differential equations. To do this we first need

to establish that our model is density dependent in the sense of Kurtz [23], or at least

asymptotically density dependent [24].

Define the population ceiling as the sum of all patch ceilings N :=
∑

j Nj . The population

density at patch i is the number in patch i measured relative to N and is given by X
(N)
i (t) :=

ni(t)/N . We are interested in the convergence of the density process XN := (X
(N)
1 , . . .X

(N)
J )

as N → ∞. Define the relative ceiling for patch i as M
(N)
i := Ni/N and assume that

M
(N)
i →Mi > 0 as N → ∞. The density process XN is a Markov process on the state space

EN := SN/N .

Suppose that the functions φ̂
(N)
i : [0,M

(N)
i ] → R+ satisfy

φ̂
(N)
i

( n

N

)

=
φi(n)

N
,

for all n ≥ 1 and N ≥ 1. Then, the rates (4), (5) and (6) can be written as

q(n, n+ l) = NfN

( n

N
, l
)

,

where

fN(x, l) =











































xibi

(

xi

M
(N)
i

)

if l = ei,

φ̂
(N)
i (xi)λi0 + dixi if l = −ei,

φ̂
(N)
i (xi)λij

(

1− xj

M
(N)
j

)

if l = −ei + ej ,

0 otherwise.

Let F (N)(x) :=
∑

l lfN (x, l) and observe that

F
(N)
i (x) =

(

bi

(

xi

M
(N)
i

)

− di

)

xi

+
∑

j 6=i

φ̂
(N)
j (xj)λji

(

1− xi

M
(N)
i

)

− φ̂
(N)
i (xi)

(

λi0 +
∑

j 6=i

λij

(

1− xj

M
(N)
j

))

.
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Define E := [0,M1] × . . . × [0,MJ ]. Assume there exists bounded Lipschitz continuous

functions φ̂i : [0,Mi] → R+ satisfying

lim
N→∞

sup
x∈[0,Mi]

∣

∣

∣
φ̂
(N)
i (x)− φ̂i (x)

∣

∣

∣
= 0, for all i, (7)

and also

lim
N→∞

sup
x∈[0,Mi]

∣

∣

∣

∣

∣

bi

(

xi

M
(N)
i

)

− bi

(

xi
Mi

)

∣

∣

∣

∣

∣

= 0. (8)

We may then conclude that F (N)(x) → F (x) as N → ∞, uniformly on E, where

Fi(x) =

(

bi

(

xi
Mi

)

− di

)

xi

+
∑

j 6=i

φ̂j(xj)λji

(

1− xi
Mi

)

− φ̂i(xi)

(

λi0 +
∑

j 6=i

λij

(

1− xj
Mj

)

)

,

for i = 1, . . . , J . Therefore, the family of processes indexed by the population ceiling N

is asymptotically density dependent according to Definition 3.1 of [24]. Next we apply

Theorem 3.1 of [24], the analogue of Theorem 3.1 of Kurtz [23] for asymptotically density

dependent families of processes. The conditions of this theorem are fulfilled as fN (x, l) is

bounded on E for all N and l and is nonzero for only finitely many l. Recall that λij is the

proportion of individuals emanating from patch i who are destined for patch j. Thus,

∑

j 6=i

λij + λi0 = 1, (9)

and so we may rewrite F (x) as

Fi(x) =

(

bi

(

xi
Mi

)

− di

)

xi − φ̂i(xi)

+
∑

j 6=i

(

φ̂j(xj)λji +

(

φ̂i(xi)λij
xj
Mj

− φ̂j(xj)λji
xi
Mi

))

,

i = 1, . . . , J . It can be seen that F is Lipschitz continuous on E. Hence, the conditions

of Theorem 3.1 of [24] are satisfied, and we conclude that the density process converges in

probability over finite time intervals to the solution x(t, x0) of the deterministic model

dx(t, x0)

dt
= F (x(t, x0)), x(0, x0) = x0, (10)

6
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as N increases. More precisely, we have the following result.

Theorem 3.1. Let x(t, x0) be the solution to (10). Suppose there exists bounded Lipschitz

continuous functions φ̂i : [0,Mi] → R+ satisfying (7) and assume also that the functions bi

satisfy (8). If XN(0) → x0 ∈ E\∂E as N → ∞ and x(s, x0) ∈ E\∂E for 0 ≤ s ≤ t. Then,

for every t > 0 and δ > 0,

lim
N→∞

Pr

(

sup
s≤t

|XN(s)− x(s, x0)| > δ

)

= 0.

Although the above result holds only in the limit as N → ∞, explicit bounds on

Pr
(

sups≤t |XN(s)− x(s, x0)| > δ
)

for finite N could be determined using Theorems 4.1

and 4.2 of [26]. Furthermore, the fluctuations of the stochastic process XN about the deter-

ministic trajectory x(·, x0) can be scaled as N → ∞ to yield a Gaussian diffusion in the limit.

As the diffusion limit is not of immediate use in our analysis, we defer its description to the

Appendix. These results go some way to justifying the use of the deterministic model (10)

to approximate the behaviour of our metapopulation model when the population ceiling N

is large. Note that, for a given population ceiling N , we expect the deterministic model to

provide a better approximation to the stochastic model when the number of patches is small.

In the extreme case where the number of patches is comparable to N , only a small num-

ber of individuals would occupy any given patch, a situation where a differential equation

approximation would be ineffective.

In what follows, we identify the fixed points of our deterministic model, investigate their

stability, and thus elucidate conditions for persistence and extinction of the metapopulation.

4. Equilibrium Behaviour

The basic problem we seek to address is to understand what happens to the metapop-

ulation in the long term. If the population ceiling N is finite then it is known that the

metapopulation will eventually go extinct. However, for N sufficiently large, the time to ex-

tinction may be very large and the metapopulation may settle into some quasi–equilibrium

state before going extinct. In this section, we examine the quasi–equilibrium state of the

7
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metapopulation described by the Markov population process (4) by examining the fixed

points of the limiting deterministic model given by (10). We make the following assump-

tions about the population dynamics:

(A) The migration functions are linear: φi(n) = φin, where φi > 0 for all i (implying that

φ̂i(x) = φix for all i).

(B) For all i and j, λij = 0 implies λji = 0.

(C) For all i and j, there is a finite sequence (ak) such that λia1λa1a2 . . . λamj 6= 0.

(D) For all i, bi(x) is a continuously differentiable, strictly decreasing function on [0, 1] such

that bi(x) = 0 for all x ≥ 1 and xbi(x) is strictly concave on [0, 1].

(E) The parameters φi, λij and Mi satisfy φiλijMi = φjλjiMj for all i, j.

Assumption (A) stipulates that the rate at which individuals leave a patch is proportional

to the number of individuals in that patch; as the patch becomes more crowded, individuals

leave at a greater rate. Whilst it is true that this assumption simplifies our analysis, there

is considerable empirical evidence to support density-dependent migration [27, 20], a linear

migration term often being used [16, 17, 28]. Assumption (B) implies that all migration paths

must allow two–way movement; if an individual moves from patch i to patch j, it must be

possible to return without needing to go through other patches. Assumption (C) excludes

the possibility that any patch or group of patches is isolated. If Assumption (C) did not

hold, then the metapopulation could be divided into a number of smaller metapopulations

that could each be analysed separately. Assumption (D) implies that as a patch becomes

full and less space is available for new individuals, the birth rate decreases. When the patch

is full, the birth rate is 0. In a empty network, Assumption (E) translates to every patch

having the same maximum migration rate to any other patch. For example, in a symmetric

case, λij = λji for all i, j, individuals would migrate away faster from a smaller patch than a

larger patch. Although this restriction is quite strict, it is not required for all of our results.

Under these assumptions, we will analyse the behaviour of a population governed by (10).

8
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In our analysis, we employ the concept of a partially ordered flow. For vectors a, b ∈ R
J ,

the inequality a ≤ b will mean that ai ≤ bi for all i while a < b will mean a ≤ b with aj < bj

for at least one j. The solution x(t, x0) of the ODE (10) with initial condition x(0) = x0, as

a function of t and of x0, is called the flow of F . Let U ⊂ R
J be a convex open set. The

flow is then partially ordered on U if for any a, b ∈ U , x(t, a) ≤ x(t, b) for all t ≥ 0 whenever

a ≤ b. According to Lemma 2.1 of [29], any flow F on a set U ⊂ R
n is partially ordered if all

off–diagonal elements of ∇F (x) are nonnegative for all x ∈ U , that is, if ∇F (x) is a Metzler

matrix. For our ODE (10) the off–diagonal elements of ∇F (x) are given by

∇Fij(x) = φ̂′
j(xj)λji

(

1− xi
Mi

)

+ φ̂i(xi)
λij
Mj

.

Define the open set Uǫ = (−ǫ,M1+ǫ)×(−ǫ,MJ +ǫ) for some ǫ > 0. Under Assumptions (A)

and (B), ∇Fij(x) ≥ 0 for ǫ sufficiently small. Thus, the flow of F is partially ordered on Uǫ.

Proposition 4.1. Assume (A) and (B) hold. The set E := [0,M1] × . . . × [0,MJ ] is a

positive invariant set for the flow defined by (10). That is, if x0 ∈ E, then x(t, x0) ∈ E for

all t ≥ 0.

Proof. Note that E ⊂ Uǫ and for any x0 ∈ E, 0 ≤ x0 ≤ M . As the flow is partially ordered

on Uǫ, if x0 ∈ E, then

x(t, 0) ≤ x(t, x0) ≤ x(t,M), t ≥ 0. (11)

Therefore, to show that E is a positive invariant set it is sufficient to show that x(t, 0) ∈ E

and x(t,M) ∈ E for all t ≥ 0. Consider the trajectory starting atM . The elements of F (M)

are given by

Fi(M) = −
(

diMi + φ̂i(Mi)

(

1−
∑

j 6=i

λij

))

= −
(

diMi + φ̂i(Mi)λi0

)

< 0.

Therefore, for all s > 0 sufficiently small, x(s,M) < M , which implies that x(ns,M) ≤ M ,

where n ∈ Z+, again by partial ordering. Therefore, for all t ≥ 0,

x(t,M) ≤M. (12)

At the lower boundary, F (0) = 0 so x(t, 0) = 0 for all t ≥ 0. This, combined with (11) and

(12), implies that x(t,M) ∈ E for all t ≥ 0. This completes the proof.

9
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4.1. Extinction

As noted earlier, although the eventual extinction of the Markov population process is

certain, the process may take a very long time to reach the extinction state. However, if the

deterministic process (10) converges to the extinction state quickly, then, from Theorem 3.1,

it would be reasonable to conclude that the Markov population process also goes extinct

quickly. The following theorem describes the behaviour of the deterministic process in a

neighbourhood of the extinction state.

Theorem 4.1. Assume (A) - (D) hold. If there exists a y ∈ R
J
+\{0} such that

(bi(0)− di − φi) yi + φi

J
∑

j 6=i

λijyj ≤ 0, for all i, (13)

with strict inequality for at least one i, the fixed point 0 is asymptotically stable. If there is

no y ∈ R
J
+\{0} satisfying (13), then 0 is unstable.

Proof. Under Assumption (A), 0 is a fixed point of (10), that is Fi(0) = 0. The elements of

the Jacobian of F at 0 are given by

∇F (0)ij =











bi(0)− di − φi if j = i

φjλji if j 6= i.

As all parameters are non-negative, J0 := ∇F (0) is a Metzler matrix. From Assumption (C),

J0 is irreducible, meaning for every pair (i, j) there is an integer m such that (Jm
0 )ij > 0.

Henceforth we will exploit properties of JT
0 , noting that its eigenvalues are the same as those

of J0. Since JT
0 is also a Metzler matrix, Theorem 2.6(c) of [30] implies that JT

0 has a real

eigenvalue r which is greater than the real part of any other eigenvalue of JT
0 . Furthermore,

from Part (e) of that theorem, r ≤ 0 if and only if there is a vector y > 0 such that JT
0 y ≤ 0

and r < 0 if and only if JT
0 y < 0. The condition JT

0 y ≤ 0 gives rise to (13). Now write F (x)

in (10) as

F (x) = J0x+ F̃ (x), (14a)

where

F̃i(x) = xi

(

bi

(

xi
Mi

)

− bi(0)

)

+
∑

j 6=i

xixj

(

φiλij
Mj

− φjλji
Mi

)

. (14b)

10
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It can be seen that F̃ (x) is Lipschitz continuous on E and that

lim
||x||→0

||F̃ (x)||
||x|| = 0. (15)

If r < 0, then 0 is an asymptotically stable fixed point by Theorem 7.1 of [31]. If r > 0,

then 0 is unstable by Theorem 7.3 of [31].

It must be noted that Theorem 4.1 does not deal with the case of equality in (13) for

all i. This corresponds to the case of where the maximum eigenvalue of J0 is 0. Our

numerical studies have shown that, in such cases, the stability of 0 is model specific. This is

demonstrated in Figure 2. In plot A, the trajectory begins with both patches being full and

the metapopulation tends towards the extinction state. As the system is partially ordered,

every other trajectory in E will also tend towards the extinction state implying it is globally

stable. However, in plot B, the trajectory begins with both patches near extinction and

the metapopulation moves away to a nonzero fixed point. Hence, in the second case, the

extinction state is unstable.

The conditions given in Theorem 4.1 are not easily interpreted, particularly for metapop-

ulations consisting of a large number of patches. The following corollaries provide simpler

sufficient conditions for stability/instability of the extinction state.

Corollary 4.1. Assume (A) - (D) hold. If

bi(0)

di + φiλi0
≤ 1, for all i, (16a)

with a strict inequality for at least one i, 0 is asymptotically stable, while if

bi(0)

di + φiλi0
> 1, for all i, (16b)

0 is unstable.

Proof. Take y = 1. The condition for the asymptotic stability of 0 from Theorem 4.1 is

satisfied if

bi(0)− di − φi + φi

∑

j 6=i

λij ≤ 0, for all i, (17)

11
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Figure 2: Illustrating the different behaviour ODE (10) exhibits when r = 0 for a J = 2 system. The red

dotted lines are the trajectories for a given initial condition and the black dots are fixed points. The birth

rate function used was bi(x/Mi) = bi(0)(1 − x/Mi). The parameters used were A b1(0) = 0.1, b2(0) = 0.5,

d1 = 0.2, d2 = 0.1, φ1 = 0.2, φ2 = 0.6, M1 = 0.7 and M2 = 0.3, whilst λ10 = 0.5 and λ20 = 0 and B

b1(0) = 1.3, b2(0) = 0.54, d1 = 0.6, d2 = 0.38, φ1 = 0.75, φ2 = 0.64, M1 = 0.63 and M2 = 0.37, while

λ10 = 0, and λ20 = 0.95.

with a strict inequality for at least one i. Using (9) we may express (17) as bi(0)−di−φiλi0 ≤
0, for all i, which gives rise to (16a). To prove the second part of the corollary, we can apply

Corollary 1 of Theorem 2.8 of [30] to J0 to give the following lower bound on r, the largest

real part of the eigenvalues of J0:

min
i

(

bi(0)− di − φi +
∑

j 6=i

φiλij

)

≤ r. (18)

Recalling (9) again, (18) becomes

min
i

(bi(0)− di − φiλi0) ≤ r.

If (16b) holds, then mini (bi(0)− di − φiλi0) > 0 and r > 0. Hence, 0 is unstable from

Theorem 4.1.

Remark: For homogeneous systems, where bi(0)/(di+φiλi0) = α 6= 1 for all i, conditions

(16) are almost necessary and sufficient for the stability of 0. When α = 1, the maximum

12
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eigenvalue of J0 is 0 and the stability of 0 is not characterised by determining the maximum

eigenvalue of J0, as stated previously.

Corollary 4.2. Assume (A) - (D) hold. Then if

bi(0)

di + φi

> 1, for at least one i, (19)

0 is unstable.

Proof. If (19) holds for some i, then, for any vector y ∈ R
J
+\{0},

yi (bi(0)− di − φi) + φi

∑

j 6=i

yjλij > 0.

Thus there is no y ∈ R
J
+\{0} satisfying inequality (13) and, according to Theorem 4.1, 0 is

unstable.

The above results only address the behaviour of the system when it starts in a neighbour-

hood of the extinction state. It may be that the metapopulation can persist if it is initially

densely populated, such as for a metapopulation with Allee effect [32, 25]. Due to the par-

tial ordering of the flow, an Allee effect would be observed if there exists a nonzero fixed

point and 0 were asymptotically stable. The following result shows that if Assumption (E)

is imposed and inequality (13) holds, then the metapopulation goes extinct regardless of

the initial condition. Hence, the metapopulation does not display an Allee effect under

Assumption (E).

Theorem 4.2. Assume (A) - (E) hold. If there exists a y ∈ R
J
+\{0} such that (13) holds,

then x(t, x0) → 0 for all x0 ∈ E.

Before giving the proof of this theorem we first derive an upper bound on x(t, x0).

Lemma 4.1. Assume (A) - (E) hold and define y(t, y0) as the solution to

dy

dt
= J0y, y(0) = y0. (20)

Then x(t, x0) ≤ y(t, x0) for all t ≥ 0.

13
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Proof. The solution to (20) is given by y(t, x0) = eJ0tx0 and we can write the unique solution

to (10) as

x(t, x0) = y(t, x0) +

∫ t

0

e(t−s)J0F̃ (x(s))ds, (21)

where F̃ (x) is given by (14b). Under Assumptions (D) and (E), F̃i(x) ≤ 0 for all x ∈ E.

Furthermore, as J0 is an irreducible Metzler matrix (from the proof of Theorem 4.1), we

can apply Theorem 2.7 of [30] to conclude that etJ0 is positive for all t ≥ 0. It follows that

x(t, x0) ≤ y(t, x0) for all t ≥ 0.

We can now use Lemma 4.1 to show that 0 is globally stable under the conditions of

Theorem 4.2.

Proof of Theorem 4.2. When there exists y ∈ R
J
+\{0} such that (13) holds, the eigenvalue of

J0 with largest real part, r, satisfies r ≤ 0 and has algebraic multiplicity one [30, Theorem 2.6

(a,c,d,e)]. Applying Theorem 6.1(b) of [31], there exists a positive constant C such that

‖y(t, x0)‖ ≤ C‖x0‖. Therefore, y(t, x0) is bounded uniformly in t ≥ 0 and x0 ∈ E. Next

we know x0 ≤ M for all x0 ∈ E. Therefore, if x(t,M) → 0 then, due to partial ordering,

x(t, x0) → 0 for all x0 ∈ E also. So we will only consider x(t,M). As E is a positive

invariant set, from Proposition 4.1, x(s,M) ≤ M for any s ≥ 0. Due then to partial

ordering x(t, x(s,M)) = x(s + t,M) ≤ x(s,M) ≤ M for any s, t ≥ 0. Hence, x(t,M) is

monotone decreasing and bounded, implying that it has a limit as t → ∞ which we denote

by α. The proof will be complete if we can show that α = 0.

Suppose r < 0. From Theorem 4.5 of [33], y(t, x0) → 0 for any x0 ∈ E. Since y(t, x0)

bounds x(t, x0), x(t, x0) → 0 for any x0 ∈ E, showing α = 0. Now suppose r = 0 and that

0 < α. With Assumptions (D) and (E), this implies that there exists a β > 0 such that

−F̃ (x(t,M)) ≥ β for all t > 0. Since etJ0 is positive for all t ≥ 0 [30, Theorem 2.7], it follows

that

∫ t

0

e(t−s)J0F̃ (x(s,M))ds ≤ −
∫ t

0

e(t−s)J0βds. (22)

14
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From Theorem 2.7 of [30] we know that esJ0 = wvT +O(eλs), elementwise, as s→ ∞, where

λ < 0, and w and v are the positive right and left eigenvectors of J0 corresponding to the

eigenvalue r normed so that vTw = 1. Therefore, the integral on the right-hand side of (22)

tends to negative infinity as t → ∞. Hence, from Lemma 4.1 (equation (21)) and recalling

that y is bounded, we can take t sufficiently large so that x(t,M) < 0. This is a contradiction

since, from Proposition 4.1, x(t,M) ∈ E for all t. Therefore α = 0 and x(t, x0) → 0 for all

x0 ∈ E.

4.2. Persistence

Theorem 4.1 shows how the metapopulation behaves when near extinction but does

not provide any information concerning the behaviour of the metapopulation away from

the extinction state. Theorem 4.2 provides a complete description of the metapopulation

when the model satisfies Assumption (E) and inequality (13). This subsection studies the

behaviour of the metapopulation when condition (13) does not hold.

Theorem 4.3. Assume (A) – (D) hold. If there is no y ∈ R
J
+\{0} satisfying (13), E

contains at least one nonzero fixed point x(1)∗ and, for all x0 such that 0 < x0 ≤ x(1)∗,

x(t, x0) → x(1)∗.

Proof. Suppose that there is no y ∈ R
J
+\{0} satisfying (13), then the eigenvalue of J0 with

largest real part, r, satisfies r > 0 and has algebraic multiplicity one [30, Theorem 2.6

(a,c,d,e)]. The corresponding eigenvector v of J0 satisfies v > 0. Finally, as E is a posi-

tive invariant set we may apply Theorem 2.8 of [29]. Combining parts (1), (4) and (5) of

Theorem 2.8 [29], we can conclude that either x(t, x0) → x(1)∗ or ‖x(t, x0)‖ → ∞ for all

x0 ≥ 0, x0 6= 0 where x(1)∗ > 0. As E is a positive invariant set, ‖x(t, x0)‖ ≤ ‖M‖. Hence,

x(t, x0) → x(1)∗ for all x0 such that 0 < x0 ≤ x(1)∗.

This theorem shows that for sufficiently small x0 6= 0, trajectories will tend to a nonzero

fixed point. Furthermore, due to partial ordering, x(1)∗ ≤ lim inft→∞ x(t, x0) for all x0 ∈
E\{0}, implying that the metapopulation will persist. However, Theorem 4.3 does not pre-

15
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clude the possibility of another nonzero fixed point. This issue is addressed in the following

theorem under Assumption (E).

Theorem 4.4. Assume (A) - (E) hold. If there is no y ∈ R
J
+\{0} satisfying (13), then there

is a unique nonzero fixed point x(1)∗ and x(t, x0) → x(1)∗ for all x0 ∈ E\{0}.

As in the proof of Theorem 4.2, we first derive an upper bound on x(t, x0).

Lemma 4.2. Assume (A) - (E) hold and let y(t, y0) be the solution to

dy

dt
= J1(y − x(1)∗), y(0) = y0,

where J1 = ∇F (x(1)∗). Then x(t, x0) ≤ y(t, x0) for all t ≥ 0.

Proof. We know that y(t, x0) = x(1)∗+eJ1t(x0−x(1)∗). With the simple change of coordinates

z = x(t, x0)− x(1)∗, together with Assumption (E), we can write the solution to (10) as

x(t, x0) = y(t, x0) +

∫ t

0

e(t−s)J1 F̄ (x(s, x0))ds, (23)

where F̄ (x) is given by

F̄i(x) = xi

(

bi

(

xi
Mi

)

− bi

(

x
(1)∗
i

Mi

))

+
(

x
(1)∗
i − xi

)

b′i

(

x
(1)∗
i

Mi

)

x
(1)∗
i

Mi

.

Under Assumption (E), F̄ (x(s, x0)) ≤ 0 for x(s, x0) ∈ E. As in Lemma 4.1, eJ1t is a positive

matrix since J1 is an irreducible Metzler matrix. We then conclude that x(t, x0) ≤ y(t, x0)

for all t ≥ 0.

Proof of Theorem 4.4. From Theorem 4.3 it is known that for all x0 such that 0 < x0 ≤
x(1)∗, x(t, x0) → x(1)∗. If we can show that x(t,M) → x(1)∗, then we can conclude that

x(t, x0) → x(1)∗ for any x0 ∈ E\0 as the flow is partially ordered. Following the arguments

in the proof of Theorem 4.1, limt→∞ x(t,M) exists. Denote this limit by α. The proof will

be complete if we can show that α = x(1)∗. As in Theorem 4.1, J1 has a real eigenvalue r1

which is greater than the real part of any other eigenvalue of J1.

Suppose r1 < 0. From Theorem 4.5 of [33], y(t, x0) → x(1)∗ for any x0 ∈ E. Since y(t, x0)

bounds x(t, x0), x(t, x0) → x(1)∗ for any x0 ∈ E, showing α = x(1)∗. Now suppose that

16
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r1 = 0 and x(1)∗ < α. With Assumptions (D) and (E) this implies that there exists a β > 0

such that −F̄ (x(t,M)) ≥ β for all t > 0. Note that etJ1 is positive for all t ≥ 0 as J1 is

a Metzler matrix [30, Theorem 2.7]. It now follows from Lemma 4.2 (equation (23)) and

recalling that y is bounded, we can take t sufficiently large so that x(t,M) < x(1)∗. This is a

contradiction as the flow is partially ordered and x(1)∗ is a fixed point. Therefore α = x(1)∗

and x(t, x0) → x(1)∗ for all x0 ∈ E\0.

As before, the conditions for persistence can be quite difficult to interpret. If we assume

that Assumption (A) to (E) hold then, according to Theorem 4.4, if condition (13) does

not hold, the population will tend towards a unique nonzero fixed point. We can write this

fixed point explicitly if bi(0)/ (di + φiλi0) = α > 1 for all i. It is rather simple to show

that x∗ ∈ E\{0}, with elements x∗i = Mi (1− α−1), satisfies F (x∗) = 0. Furthermore, all

trajectories converge to x∗.

4.3. Allee Effect

Under Assumption (E), we have shown that when there exists a y ∈ R
J
+\{0} satis-

fying (13), the metapopulation will tend towards the extinction state 0. Otherwise, the

metapopulation will tend towards a nonzero unique equilibrium level regardless of its ini-

tial value. However, it has been observed for some populations that whether it progresses

towards extinction or a nonzero equilibrium depends on the initial population size. This is

known as the Allee effect [34]. Courchamp et al. [35] have shown the existence of an Allee

effect for metapopulations in their study of the African Wild dog, Lycaon pictus.

We investigate the possibility of our metapopulation model displaying an Allee effect

when Assumption (E) does not hold. To address this question, we focus on the two–patch

metapopulation with the decreasing birth rate function bi(x/Mi) = bi(0)(1 − x/Mi). To

simplify our notation, below we will write bi for bi(0). Let M1 = 1 − ε and M2 = ε and

yi := x∗i /Mi = y
(0)
i + εy

(1)
i + ε2y

(2)
i + . . . for i = 1, 2, where x∗i satisfies F (x∗) = 0. Using

perturbation theory, an expansion for the fixed points of the system is determined.

The fixed points are the solutions to a system of two quadratic equations in two variables,

entailing four solutions. One of these is 0 and, for sufficiently small ε > 0, we can approximate

17
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the remaining three solutions y(i) := (y1, y2) to first order by

y(1) =





φ2λ21C1

(d1+φ1−b1−C1φ1λ12)
ε+O (ε2)

C1 + C3(C1)ε+O (ε2)



 (24a)

y(2) =





φ2λ21C2

(d1+φ1−b1−C2φ1λ12)
ε+O (ε2)

C2 + C3(C2)ε+O (ε2)



 (24b)

y(3) =





1− φ1λ10+d1
b1

− d2+φ2λ20

b1−d1−φ1λ10
ε+O (ε2)

1− b1(d2+φ2λ20)+φ2λ21(d1+φ1λ10)
φ1λ12(b1−d1−φ1λ10)

ε+O(ε2)



 , (24c)

where

C1 =
1

2

(

1 + α
(

R
(1)
1

−1 − 1
)

− R
(2)
0

−1
+

√

(

1 + α
(

R
(1)
1

−1 − 1
)

−R
(2)
0

−1
)2

+ γ

)

,

C2 =
1

2

(

1 + α
(

R
(1)
1

−1 − 1
)

−R
(2)
0

−1 −
√

(

1 + α
(

R
(1)
1

−1 − 1
)

−R
(2)
0

−1
)2

+ γ

)

,

γ = α
(

R
(1)
0

−1
− 1
)(

R
(2)
1

−1
− 1
)

+R
(2)
0

−1
− 1, (25)

and

α =
b1

φ1λ12
, R

(i)
0 =

bi
di + φiλi0

, R
(i)
1 =

bi
di + φi

, i = 1, 2.

We do not give the expression for C3(x) here owing to its length.

For the metapopulation to display an Allee effect, 0 must be stable. Using Theorem 4.1,

the fixed point 0 is stable if there exists y ∈ R
2
+\{0} such that

y1(b1 − d1 − φ1) + φ1y2λ12 ≤ 0, (26)

y2(b2 − d2 − φ2) + φ2y1λ21 ≤ 0, (27)

with strict inequality in one of (26) and (27). Such a y exists if di + φi − bi > 0 for i = 1, 2

and

1 <
(d1 + φ1 − b1) (d2 + φ2 − b2)

φ1λ12φ2λ21
. (28)

Inequality (28) implies γ > 0 which implies C1 > 0. A nonzero fixed point is present in

[0, 1]2 if C1 < 1, which is satisfied if

R
(1)
0 > α

(

1 + 1
3
R

(2)
1

−1
)

(

R
(2)
0

−1 − 1
) . (29)

18
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Figure 3: The red solid line represents stable fixed points, the blue dashed line represents unstable fixed

points and the black dash-dot line represents the first order approximation (24c). Parameters used for plots A

and B were b2 = 0.1, d1 = 0.1, d2 = 0.7, φ1 = 0.4, φ2 = 0.9, M1 = 0.99 and M2 = 0.01, while λ10 = 0.4 and

λ20 = 0.5.

Therefore, if the metapopulation parameters are such that R
(1)
0 > 1, γ > 0 and (29) is met,

then there exists an ε > 0 sufficiently small such that the three points 0, y(1) and y(3) are

contained in [0, 1]2.

Thus we have one stable fixed point at 0 and two nonzero fixed points whose stability

is unknown. Let x(i)∗, i = 1, 2, denote the nonzero fixed points. As the flow is partially

ordered, for any x0 such that x(i)∗ ≤ x0, we have x(i)∗ ≤ lim inft→∞ x(t, x0). Therefore,

the metapopulation will persist if it is initially sufficiently large. We can conclude that

the metapopulation can display an Allee effect for a certain range of parameters. Figure

3 plots the scaled fixed points of a metapopulation as a function of b1. The Allee effect is

present when there is a dotted line, representing an unstable fixed point, between two solid

lines, representing stable fixed points. In this example, the Allee effect is present when b1

is between 0.415 and 0.428. This also illustrates the sensitivity of the metapopulation to

disturbance, as only a very small change in the birth rate on the larger patch is needed to

reduce the occupancy of the metapopulation from (y1, y2) ≈ (0.1, 0.3) to the extinction state.
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Figure 4: The red dotted lines are the deterministic trajectories imposed by the flow (10), the squares are

unstable fixed points, the dots are stable fixed points and the solid blue lines are the nullclines. Parameters

used for plot A were b1 = 0.56, b2 = 0.06, d1 = 0.02, d2 = 0.14, φ1 = 0.55, φ2 = 0.09, M1 = 0.54 and

M2 = 0.46, while λ10 = 0.31, and λ20 = 0.99. Parameters used for plot B were b1 = 5.24, b2 = 7.5,

d1 = 1.14, d2 = 5.59, φ1 = 7.03, φ2 = 0.29, M1 = 0.78 and M2 = 0.22, while λ10 = 0.06 and λ20 = 0.51.

Although we have only demonstrated the Allee effect for a two–patch metapopulation

where the patch ceilings are significantly different, numerical results show that the Allee

effect can be present in metapopulations where the ceilings are not significantly different.

Figure 4A shows a phase plane diagram for such a system and illustrates the different long

term behaviour the system exhibits with different initial points. In one case the system

starts with patch 1 full and patch 2 is empty, and the system converges to the largest fixed

point. However, in the other case, patch 2 is full and patch 1 is empty, and the system goes

extinct.

In Figures 3 and 4A, the three fixed points are partially ordered with the largest fixed

point stable and the other nonzero fixed point unstable. There is some theoretical evidence

that this holds in general. If all the eigenvalues of ∇F (x(2)∗) have negative real parts, then

Proposition 2.9 of [29] implies that x(1)∗ ≤ x(2)∗ and at least one eigenvalue of ∇F (x(1)∗)
has nonnegative real part. On the other hand, if one of the eigenvalues of ∇F (x(1)∗) has
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positive real part, then Theorem 2.8 of [29] implies that x(1)∗ ≤ x(2)∗ and all the eigenvalues

of ∇F (x(2)∗) have nonnegative real parts. Difficulties in dealing with the case where the

eigenvalues of ∇F (x(i)∗) have real parts equal to 0 prevent us from proving the general

result.

Metapopulation models exhibiting an Allee effect are not new. Both Amarasekare [32]

and Zhou & Wang [36] have proposed models displaying an Allee effect. However, in contrast

to those models, the Allee effect observed here is not due to a manipulation of the birth rate

function. Without migration between patches, our metapopulation model will not exhibit

the Allee effect; it is induced by the migration of individuals as we now describe.

For a metapopulation to display an Allee effect, it is necessary that the extinction state be

stable and for there to be a non-zero equilibrium. The non-zero equilibrium derived through

perturbation analysis arises as follows. When the small patch is near capacity, migration

between the two patches is reduced to a very low level. This has different effects on the two

patches. The population dynamics on the large patch are dominated by the birth and death

events. As the per-capita birth rate is initially larger than the death rate, a stable population

becomes established. On the small patch, the immigration rate is still considerable relative

to the size of the patch, and is sufficient to maintain the population close to capacity.

The extinction state can be seen to be stable by considering what happens when the

populations on both patches are small relative to capacity. When the population on the small

patch is far from capacity, the per-capita emigration rate on the large patch is significant.

The birth rate is not sufficiently large to balance the deaths and emigration events resulting

in a decreasing population on the large patch. As previously noted, the small patch has a

high per-capita death rate. At the non-zero equilibrium, this was balanced by immigration

from the large patch. However, when the metapopulation is near extinction, the migration

from the large patch is much smaller and is no longer sufficient to balance the high death

rate on the small patch.

We have so far focussed on the case where 0 is stable, that is, when the quantity γ given by

equation (25) is greater than zero. However, interesting behaviour can also be observed if γ <
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0. In that case, if
(

1 + α
(

R
(1)
1

−1
− 1
)

−R
(2)
0

−1
)2

> |γ| and 1+α
(

R
(1)
1

−1
− 1
)

−R(2)
0

−1
> 0,

there potentially exists an ε > 0 sufficiently small such that all four fixed points are in [0, 1]2.

With γ < 0, 0 is unstable, and hence trajectories tend away from 0 (the system persists

regardless of the initial values). This possibility is discussed by Courchamp et al. [25, section

6.5.3], where Allee effects occur at intermediate population sizes or densities, resulting in

up to three interior steady states, two of which are locally stable. This type of behaviour

is illustrated in Figure 4B. One trajectory starting with patch 2 empty and patch 1 at 8%

capacity tends towards a nonzero fixed point. However, when patch 1 begins at 32% capacity

the trajectory tends to a larger (by partial ordering) fixed point. These two fixed points are

also separated by a unstable fixed point.

4.4. Example

We now consider the metapopulation of sea otter (Enhydra lutris) in the north–east

Pacific Ocean, which has been studied by various groups [39, 40]. Our purpose here is to

illustrate the results obtained in the previous section, rather than provide a complete de-

scription of the population. Estes [40] studied five populations in this region: Attu Island,

south–east Alaska, British Columbia, Washington State and central California. The migra-

tion rate between these 5 locations is not large. However, Amchitka Island, a previously

unoccupied island adjacent to Attu Island, became occupied with sea otters. We consider

a two–patch model to describe the evolution of the sea otter population in these two is-

lands. Siniff and Ralls [39] determined an age distribution for the lifespan of the sea otter

from which we can determine the average age of a female to be 5.18 years. Therefore, we set

di = 0.2 ≈ 5.18−1 per year for both islands. Since the reproductive rate of females is between

0.43 and 0.45 per year [40], we set bi(x) = 0.44(1−x/Mi). The per–capita migration rate φi

is set to be the inverse of the average time an individual spends on island i before migrating.

Finally, since Attu Island is approximately three times the size of Amchitka Island, we set

M1 = 0.75 (Attu) and M2 = 0.25 (Amchitka).

From Corollary 4.2, if the average time an otter spends on one island before migrating

is greater than 4.17 years, the extinction fixed point 0 is unstable and trajectories will tend
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away from it. In that case, Theorem 4.3 implies the population will persist.

Next we consider the case where the average time an otter spends on one island before

migrating is less than 4.17 years. By Theorem 4.1, extinction occurs if there exists a y ∈
R

2
+\{0} such that inequalities (26) and (27) hold, equivalently, if inequality (28) holds.

Rearranging inequality (28), we see that if the average time spent on one island is greater

than 4.17(1− λ12λ21) years, the population will persist. However, if the average time spent

on Attu Island and Amchitka Island before migrating are both less than 4.17(1 − λ12λ21)

years and

φ−1
i >

4.17
[

4.17 (1− λ12λ21)− φ−1
j

]

4.17− φ−1
j

, i, j ∈ {1, 2}, j 6= i, (30)

then the population will persist. If none of these conditions is met, the population will

become extinct. Note that if 4.17 (1− λ12λ21) < φ−1
i < 4.17 for any i, (30) will automatically

be satisfied.

These scenarios are illustrated in Figure 5. In plots A – C the average time spent on Attu

Island is 10 years (φ1 = 0.1), while the average time spent on Amckitka Island is 1.25 years

(φ2 = 0.8). The connectivity between patches is very weak, with λ12 = 0.1 and λ21 = 0.05.

However, from Corollary 4.2, the metapopulation persists. In D – F, φ1 is increased to 0.5,

but λ12 = 0.9 and λ21 = 0.4. As inequality (30) is satisfied, the metapopulation persists.

Finally, in G – I, φ1 is increased to 0.7 years. Now, inequality (30) is not satisfied and the

metapopulation goes extinct. With the chosen values for the birth and death rates, it is not

possible for condition (29) to be satisfied, and so this system will not exhibit the Allee effect.

5. Discussion and Conclusion

We have proposed a structured metapopulation model that incorporates heterogeneous

within patch dynamics and spatial structure, and identified conditions under which the

metapopulation persists or goes extinct. As the extinction state is absorbing, we are not able

to identify these conditions by identifying a stationary distribution for the model. Instead,

we have based our analysis on a dynamical system (10) that approximates the stochastic

density process when the population ceiling is large.
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Figure 5: An illustration of the effect the migration rates and the connectivity have on the persistence of

a metapopulation with a population ceiling of 200 sea otters at Attu and Amchitka Islands. For the three

cases mentioned in the text, A, D and G illustrate contours of the distribution of the two–dimensional

approximating Gaussian diffusion (Theorem Appendix A.1) at t = 40 years, together with one realisation of

the metapopulation model; B, E and H show the same realisation (solid blue line) on a phase plane diagram

together with the deterministic trajectory (10) (dotted red line); and C, F and I show this realisation and the

deterministic trajectory along with ± 2 standard deviations (dotted lines) determined from the distribution

of the approximating Gaussian diffusion.
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Our theorems combine to give a detailed description of the long term behaviour of the

model. Under Assumption (E), the long term behaviour of the system is completely de-

scribed; inequality (13) determines the extinction or persistence of the metapopulation.

When Assumption (E) does not hold, however, the metapopulation may display more com-

plex behaviour.

The discovery of an Allee effect in the two–patch metapopulation model is unexpected

as the birth rate functions for each patch are strictly decreasing. It appears that the Allee

effect arises as a result of a large variation in the migration rates which depends on the

population density of the patches. For a metapopulation where the two patches are of

greatly different sizes, a high population density on the smaller patch allows the population

to become established on the larger patch as emigration from the larger patch is reduced

to a very low level. We note that the presence of an Allee effect in a metapopulation has

important implications for the design of conservation strategies. Conservation targets need

to be set taking into account the critical threshold below which the metapopulation goes

extinct [25, section 5.1.4]. Similarly, for the successful reintroduction of a species, the release

size needs to be sufficiently large for the population density to exceed the critical threshold

[37]. The Allee effect can also be exploited to create more efficient strategies for managing

invasive pests [38].

We also discovered the possibility of three nonzero fixed points in the two–patch model

when the zero fixed point is unstable. For the J–patch system, there are 2J − 1 possible

nonzero fixed points, which, if all are contained in E, would result in the Allee effect occurring

at many intermediate population sizes. Although the perturbation analysis conducted for the

two–patch model could be generalised to larger number of patches, the expressions involved

quickly become cumbersome. Thus, a different approach will be required to improve our

understanding of the Allee effect in this model.

The veracity of our conclusions is dependent on how well the stochastic model (4) – (6)

is approximated by the dynamical system (10). We mentioned briefly in Section 3 that

the accuracy could be quantified using the results of [26]. However, it is important to note
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that, in general, the accuracy of the dynamical systems approximation deteriorates near the

extinction state [41, 42]. Therefore, alternative methods might be needed to improve our

understanding of the stochastic metapopulation model near extinction.

One aspect of population dynamics that our model excludes, but has been incorporated

in other models [19, 43, 17], is the potential for catastrophes. A catastrophe occurs when

every individual on a given patch dies instantly or when all individuals on a patch are subject

to a higher death rate over some small period of time. An obvious extension then would be to

include catastrophes. Doing so would increase the chance an individual dies, hence the birth

rate required for the metapopulation to survive would naturally have to be higher. One way

to introduce catastrophes into our model would be to randomly switch between two sets of

parameters where one set includes a much higher death rate. However, if catastrophes were

introduced, a deterministic approximation could not be used to study the stochastic model,

since catastrophes are inherently random events and affect a large number of individuals.

These two aspects are not approximated well by a deterministic system, even in the limit

as population ceiling N gets large. However, the behaviour of the metapopulation between

catastrophes would remain unchanged. A piecewise deterministic approximation to a model

including catastrophes might be obtained using the functional limit laws of Franz et al. [44].

Appendix A.

As stated earlier, Theorem 3.1 does not provide information concerning the stochastic

fluctuations about the deterministic trajectory. Therefore, we appeal to Theorem 3.2 of [24],

the analogue of Theorems 3.1 and 3.5 of Kurtz [45] for asymptotically density dependent

families. To this end define G(x) = (gij(x)) by

gij(x) = −φ̂i(xi)λij

(

1− xj
Mj

)

− φ̂j(xj)λji

(

1− xi
Mi

)

, for j 6= i,

and

gii(x) =νiMi +

(

bi

(

xi
Mi

)

+ di − νi

)

xi + φ̂i(xi)

+
∑

j 6=i,0

(

φ̂j(xj)λji

(

1− xi
Mi

)

− φ̂i(xi)λij
xj
Mj

)

, for all i.
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It can be seen that G is bounded and uniformly continuous if φ̂i has this property for all i,

while F has uniformly continuous first partial derivatives whenever φ̂i has this property for

all i. Noting that the Jacobian H(x) = (hij(x)) of F is given by

hij(x) = φ̂′
j(xj)λji + φ̂i(xi)

λij
Mj

− φ̂′
j(xj)

λjixi
Mi

, for j 6= i,

and

hii(x) = bi

(

xi
Mi

)

+
xi
Mi

b′i

(

xi
Mi

)

−νi−di−φ̂′
i(xi)

(

λi0 +
∑

j 6=i

λij

(

1− xj
Mj

)

)

−
∑

j 6=i

φ̂j(xj)
λji
Mi

,

for all i, we can apply Theorem 3.2 of [24] to show that the fluctuations of XN(t) about the

deterministic trajectory follow a Gaussian diffusion.

Theorem Appendix A.1. Assume the conditions of Theorem 3.1 hold. Assume also that

φ̂i has uniformly continuous first partial derivatives and

lim
N→∞

√
N (XN(0)− x0) = z.

Then the family of processes {ZN(t)}, defined by

ZN(s) =
√
N (XN(s)− x(s, x0)) , 0 ≤ s ≤ t,

converges weakly in D[0, t] to a Gaussian diffusion Z(t) with initial value Z(0) = z and

characteristic function ψ = ψ(t, θ) that satisfies

∂ψ(t, θ)

∂t
= −1

2

∑

j,k

θjgjk(x(t))θkψ(t, θ) +
∑

j,k

θj
∂Fj(x(t))

∂xk

∂ψ(t, θ)

∂θk
.

The scaled fluctuations ZN(t) about the deterministic trajectory can thus be approx-

imated by a Gaussian distribution with mean E (Z(t)) = M(t)z and covariance matrix

Cov(Z(t)) = Σ(t), where

Σ(t) =M(t)

(∫ t

0

M(u)−1G(x(u, x0))(M(u)−1)Tdu

)

M(t)T

and

M(t) = exp

(∫ t

0

H(u)du

)

.
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The covariance matrix of Z(t) can be evaluated explicitly only in some simple cases. However,

since populations are often observed in equilibrium, it makes sense to assume that the initial

value x0 is a fixed point x∗ of F . In that case, we may appeal to results of Barbour [46, 47]

which show that the fluctuations around x∗ are approximated by an Ornstein-Uhlenbeck

process.

Theorem Appendix A.2. Assume the conditions of Theorem Appendix A.1 hold and

lim
N→∞

√
N (XN(0)− x∗) = z.

The family of processes {ZN(t)}, defined by

ZN(s) =
√
N (XN(s)− x∗) , 0 ≤ s ≤ t,

converges weakly in D[0, t] to an Ornstein-Uhlenbeck process Z(t) with initial value Z(0) = z,

local drift matrix H = ∇F (x∗) and local covariance matrix G(x∗). Z(t) follows a Gaussian

diffusion with mean µ(t) = eHtz and covariance matrix

Σ(t) = eHt

(
∫ t

0

e−HsG(x∗)e−HT sds

)

eH
T t.
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