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Abstract

We consider the problem of how best to assign the service capacity
in a queueing network in order to minimise the expected delay under
a cost constraint. We study systems with several types of customers,
general service time distributions, stochastic or deterministic routing,
and a variety of service regimes. For such networks there are typically
no analytical formulae for the waiting time distributions. Thus, we
shall approach the optimal allocation problem using an approximation
technique: specifically, the residual-life approximation for the distri-
bution of queueing times. This work generalises results of Kleinrock,
who studied networks with exponentially distributed service times.
We illustrate our results with reference to data networks.

1 Introduction

Since their inception, queueing network models have been used to study a
wide variety of complex stochastic systems involving the flow and interaction
of individual items: for example, “job shops”, where manufactured items are
fashioned by various machines in turn [7]; the provision of spare parts for
collections of machines [17]; mining operations, where coal faces are worked
in turn by a number of specialised machines [12]; delay networks, where
packets of data are stored and then transmitted along the communications
links that make up the network [18, 1]. For some excellent recent expositions,
which describe these and other instances where queueing networks have been
applied, see [2, 6] and the important text by Serfozo [16].

In each of the above-mentioned systems it is important to be able to de-
termine how best to assign service capacity so as to optimise various perfor-
mance measures, such as the expected delay or the expected number of items
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(customers) in the network. We shall study this problem in greater generality
than has previously been considered. We allow different types of customers,
general service time distributions, stochastic or deterministic routing, and, a
variety of service regimes. The basic model is that of Kelly [8], but we do not
assume that the network has the simplifying feature of quasi-reversibility [9].

2 The model

We shall suppose that there are J queues, labelled j = 1, 2, . . . , J . Customers
enter the network from external sources according to independent Poisson
streams, with type u customers arriving at rate νu (customers per second).
Service times at queue j are assumed to be mutually independent, with
an arbitrary distribution Fj(x) that has mean 1/µj (units of service) and
variance σ2

j . For simplicity we shall assume that each queue operates under
the usual first-come-first-served (FCFS) discipline and that a total effort (or
capacity) of φj (units per second) is assigned to queue j. We shall explain
later how our results can be extended to deal with other queueing disciplines.

We shall allow for two possible routing procedures: fixed routing , where
there is a unique route specified for each customer type, and random al-
ternative routing , where one of a number of possible routes is chosen at
random. (We do not allow for adaptive or dynamic routing , where rout-
ing decisions are made on the basis of the observed traffic flow.) For fixed
routing we define R(u) to be the (unique) ordered list of queues visited by
type u customers. In particular, let R(u) = {ru(1), . . ., ru(su)}, where su is
the number of queues visited by a type-u customer and ru(s) is the queue
visited at stage s along its route (ru(s), s = 1, 2, . . . , su, are assumed to
be distinct). It is perhaps surprising that random alternative routing can
be accommodated within the framework of fixed routing (see Exercise 3.1.2
of [10]). If there are several alternative routes for a given type u, then one
simply provides a finer type classification for customers using these routes.
We label the alternative routes as (u, i), i = 1, 2, . . . , N(u), where N(u) is
the number of alternative routes for type-u customers, and we replace R(u)
by R(u, i) = {rui(1), . . . , rui(sui)}, for i = 1, 2, . . . , N(u), where now rui(s) is
the queue visited at stage s along alternative route i and sui is the number of
stages. We then replace νu by νui = νuqui, where qui is the probability that
alternative route i is chosen. Clearly νu =

∑N(u)
i=1 νui, and so the effect is to

thin the Poisson stream of arrivals of type u into a collection of independent
Poisson streams, one for each type (u, i). We should think of customers as
being identified by their type, whether this be simply u for fixed routing, or
the finer classification (u, i) for alternative routing. For convenience, let us
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denote by T the set of all types, and suppose that, for each t in T , customers
of type t arrive according to a Poisson stream with rate νt and traverse the
route R(t) = {rt(1), . . . , rt(st)}, a collection of st distinct queues. This is the
network of queues with customers of different types described in [8]. If all
service times have a common exponential distribution with mean 1/µ (and
hence µj = µ), the model is analytically tractable. In equilibrium the queues
behave independently : indeed, as if they were isolated , each with indepen-
dent Poisson arrival streams (independent among types). For example, if we
let αj(t, s) = νt when rt(s) = j, and αj(t, s) = 0 otherwise, so that the arrival
rate at queue j is given by αj =

∑
t∈T

∑st
s=1 αj(t, s), and the demand (in units

per second) by aj = αj/µ, then, provided the system is stable (aj < φj for
each j), the expected number of customers at queue j is n̄j = aj/(φj − aj)
and the expected delay is W j = n̄j/αj = 1/(µφj − αj); for further details,
see Section 3.1 of [10].

3 The residual life approximation

Under our assumption that service times have arbitrary distributions, the
model is rendered intractable. In particular, there are no analytical formu-
lae for the delay distributions. We shall therefore adopt one of the many
approximation techniques. Consider a particular queue j and let Qj(x) be
the distribution function of the queueing time, that is, the period of time a
customer spends at queue j before its service begins. The residual-life approx-
imation, developed by the author [14], provides an accurate approximation
for Qj(x):

Qj(x) '
∞∑
n=0

Pr(nj = n)Gn
j (x) , (1)

where Gj(x) = µj
∫ φjx

0 (1 − Fj(y)) dy and Gn
j (x) denotes the n-fold convolu-

tion of Gj(x). The distribution of the number of customers nj at queue j,
which appears in (1), is that of a corresponding quasi-reversible network [10]:
specifically, a network of symmetric queues obtained by imposing a symme-
try condition at each queue j. The term residual-life approximation comes
from renewal theory; Gj(x) is the residual-life distribution corresponding to
the (lifetime) distribution Fj(x/φj).

One immediate consequence of (1) is that the expected queueing time Qj

is approximated by Qj ' n̄j(1+µ2
jσ

2
j )/(2µjφj), where n̄j is the expected num-

ber of customers at queue j in the corresponding quasi-reversible network.
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Hence, the expected delay at queue j is approximated as follows:

W j '
1

µjφj
+

1 + µ2
jσ

2
j

2µjφj
n̄j .

Under the residual-life approximation, it is only n̄j which changes when the
service discipline is altered. In the present context, the FCFS discipline,
which is assumed to be in operation everywhere in the network, is replaced by
a preemptive-resume last-come-first-served discipline, giving n̄j = aj/(φj −
aj) with aj = αj/µj, for each j, and hence

W j '
1

µjφj
+

1 + µ2
jσ

2
j

2µjφj

(
αj

µjφj − αj

)
. (2)

Simulation results presented in [14] justify the approximation by assessing
its accuracy under a variety of conditions. Even for relatively small networks
with generous mixing of traffic, it is accurate, and the accuracy improves
as the size and complexity of the network increases. (The approximation is
very accurate in the tails of the queueing time distributions and so it allows
an accurate prediction to be made of the likelihood of extreme queueing
times.) For moderately large networks the approximation becomes worse as
the coefficient of variation µjσj of the service time distribution at queue j
deviates markedly from 1, the value obtained in the exponential case.

4 Optimal allocation of effort

We now turn our attention to the problem of how best to apportion resources
so that the expected network delay, or equivalently (by Little’s Theorem)
the expected number of customers in the network, is minimised. We shall
suppose that there is some overall network budget F (dollars) which cannot
be exceeded, and that the cost of operating queue j is a function fj of its
capacity. Suppose that the cost of operating queue j is proportional to φj,
that is, fj(φj) = fjφj (the units of fj are dollars per unit of capacity, or
dollar-seconds per unit of service). Thus, we should choose the capacities
subject to the cost constraint

J∑
j=1

fjφj = F . (3)

We shall suppose that the average delay of customers at queue j is adequately
approximated by (2). Using Little’s Theorem, we obtain an approximate
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expression for the mean number m̄ of customers in the network. This is

m̄ '
J∑
j=1

αj

{
1

µjφj
+

αj(1 + µ2
jσ

2
j )

2µjφj(µjφj − αj)

}
=

J∑
j=1

aj

{
1

φj
+

aj(1 + cj)

2φj(φj − aj)

}
,

where cj = µ2
jσ

2
j is the squared coefficient of variation of the service time

distribution Fj(x). We seek to minimise m̄ over φ1, . . . , φJ subject to (3). To
this end, we introduce a Lagrange multiplier 1/λ2; our problem then becomes
one of minimising

L(φ1, . . . , φJ ;λ−2) = m̄+
1

λ2

 J∑
j=1

fjφj − F

 .
Setting ∂L/∂φj = 0 for fixed j yields a quartic polynomial equation in φj:

2fjφ
4
j − 4ajfjφ

3
j + 2aj(ajfj − λ2)φ2

j − 2εja
2
jλ

2φj + εja
3
jλ

2 = 0 ,

where εj = cj − 1, and our immediate task is to find solutions such that
φj > aj (recall that this latter condition is required for stability). The task is
simplified by observing that the transformation φjfj/F → φj, ajfj/F → aj,
λ2/F → λ2, reduces the problem to one with unit costs fj = F = 1, whence
the above polynomial equation becomes

2φ4
j − 4ajφ

3
j + 2aj(aj − λ2)φ2

j − 2εja
2
jλ

2φj + εja
3
jλ

2 = 0 , (4)

and the constraint becomes

φ1 + φ2 + . . .+ φJ = 1 . (5)

It is easy to verify that, if service times are exponentially distributed (εj = 0
for each j), there is a unique solution to (4) on (aj,∞), given by φj =
aj + |λ|√aj. Upon application of the constraint (5) we arrive at the optimal

capacity assignment φj = aj +
√
aj(1−

∑J
k=1 ak)/(

∑J
k=1

√
ak), for unit costs.

In the case of general costs this becomes

φj = aj +
1

fj

(
F −

J∑
k=1

fkak

) √
fjaj∑J

k=1

√
fkak

,

after applying the transformation. This is a result obtained by Kleinrock [11]
(see also [10]): the allocation proceeds by first assigning enough capacity to
meet the demand aj, at each queue j, and then allocating a proportion of the
affordable excess capacity, (F −∑J

k=1 fkak)/fj (that which could be afforded
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to queue j), in proportion to the square root of the cost fjaj of meeting that
demand. In the case where some or all of the εj, j = 1, 2, . . . , J , deviate
from zero, (4) is difficult to solve analytically. We shall adopt a perturbation
technique, assuming that the Lagrange multiplier and the optimal allocation
take the following forms:

λ = λ0 +
J∑
k=1

λ1kεk +O(ε2) (6)

φj = φ0j +
J∑
k=1

φ1jkεk +O(ε2) , j = 1, . . . , J, (7)

where O(ε2) denotes terms of order εiεk. The zero-th order terms come from
Kleinrock’s solution: specifically, φ0j = aj + λ0

√
aj, j = 1, . . . , J , where

λ0 = (1 − ∑J
k=1 ak)/(

∑J
k=1

√
ak). On substituting (6) and (7) into (4) we

obtain an expression for φ1jk in terms of λ1k, which in turn is calculated
using the constraint (5) and by setting εk = δkj (the Kronecker delta). We
find that the optimal allocation, to first order, is

φj = aj + λ0
√
aj −

√
aj∑J

k=1

√
ak

∑
k 6=j

bkεk +

(
1−

√
aj∑J

k=1

√
ak

)
bjεj , (8)

where bk = 1
4
λ0a

3/2
k (ak + 2λ0

√
ak)/(ak + λ0

√
ak)

2. For most practical appli-
cations, higher-order solutions are required. To achieve this we can simplify
matters by using a single perturbation ε = max1≤j≤J |εj|. For each j we
define a quantity βj = εj/ε and write φj and λ as power series in ε :

λ =
∞∑
n=0

λnε
n , φj =

∞∑
n=0

φnjε
n , j = 1, . . . , J. (9)

Substituting as before into (4), and using (5), gives rise to an iterative scheme,
details of which can be found in [13]. The first-order approximation is useful,
none-the-less, in dealing with networks whose service time distributions are
all ‘close’ to exponential in the sense that their coefficients of variation do not
differ significantly from 1. It is also useful in providing some insight into how
the allocation varies as εj, for fixed j, varies. Let φ′i, i = 1, 2, . . . , J , be the
new optimal allocation obtained after incrementing εj by a small quantity
δ > 0. We find that to first order in δ

φ′j − φj =

(
1−

√
aj∑J

k=1

√
ak

)
bjδ > 0

φ′i − φi = −
√
ai∑J

k=1

√
ak

(φ′j − φj) < 0 , i 6= j,
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Thus, if the coefficient of variation of the service time distribution at a given
queue j is increased (respectively decreased) by a small quantity δ, then there
is an increase (respectively decrease) in the optimal allocation at queue j
which is proportional to δ. All other queues experience a complementary
decrease (respectively increase) in their allocations and the resulting deficit
is reallocated in proportion to the square root of the demand.

In [13] empirical estimates were obtained for the radii of convergence
of the power series (9) for the optimal allocation. In all cases considered
there, the closest pole to the origin was on the negative real axis outside the
physical limits for εi, which are of course −1 ≤ εj < ∞. The perturbation
technique is therefore useful for networks whose service time distributions
are, for example, Erlang (gamma) (−1 < εj < 0) or mixtures of exponential
distributions (0 < εj <∞) with not too large a coefficient of variation.

5 Extensions

So far we have assumed that the capacity does not depend on the state of
the queue (as a consequence of the FCFS discipline), and, that the cost of
operating a queue is a linear function of its capacity. Let us briefly consider
some other possibilities. Let φj(n) be the effort assigned to queue j when
there are n customers present. If, for example, φj(n) = nφj/(n+η−1), where
η is a positive constant, the zero-th order allocation, optimal under (3), is
precisely the same as before (the case η = 1). For values of η greater than 1
the capacity increases as the number of customers at queue j increases and
levels off at a constant value φj as the number becomes large. If we allow η
to depend on j we get a similar allocation but with the factor√

fjaj∑J
k=1

√
fkak

replaced by

√
fjηjaj∑J

k=1

√
fkηkak

.

See Exercise 4.1.6 of [10]. The higher order analysis is very nearly the same
as before. The factor 1 + cj is replaced by ηj(1 + cj); for the sake of brevity,
we shall omit the details.

As another example, suppose that the capacity function is linear, that is
φj(n) = φjn, and that service times are exponentially distributed. In this
case, the total number of customers in the system has a Poisson distribu-
tion with mean

∑J
j=1(aj/φj) and it is elementary to show that the optimal

allocation subject to (3) is given by

φj =

√
fjaj

fj
∑J
k=1

√
fkak

F , j = 1, . . . , J.
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It is interesting to note that we get a proportional allocation, φj/φk = aj/ak,
in this case if (3) is replaced by

∑J
j=1 log φj = 1. See Exercise 4.1.7 of [10].

More generally, we might use the constraint
∑J
j=1 fj log(gjφj) = F to account

for ‘decreasing costs’: costs become less with each increase in capacity. Under
this constraint, the optimal allocation is φj = λaj/fj, where log λ = (F −∑J
k=1 fk log(gkak/fk))/(

∑J
k=1 fk).

6 Data networks

One of the most interesting and useful applications of queueing networks
is in the area of telecommunications, where they are used to model (among
other things) data networks. In contrast to circuit switched networks (see for
example [15]), where one or more circuits are held simultaneously on several
links connecting a source and destination node, only one link is used at any
time by a given transmission in a data network (message or packet switched
network); a transmission is received in its entirety at a given node before
being transmitted along the next link in its path through the network. If the
link is at full capacity, packets are stored in a buffer until the link becomes
available for use. Thus, the network can be modelled as a queueing network:
the queues are the communications links and the customers are the messages.
The most important measure of performance of a data network is the total
delay, the time it takes for a message to reach its destination. Using the
results presented above, we can optimally assign the link capacities (service
rates) in order to minimise the expected total delay. We shall first explain
in detail how the data network can be described by a queueing network.

Suppose that there are N switching nodes, labelled n = 1, 2, . . . , N , and J
communications links, labelled j = 1, 2, . . . , J . We assume that all the links
are perfectly reliable and not subject to noise, so that transmission times are
determined by message length. We shall also suppose that the time taken to
switch, buffer, and (if necessary) re-assemble and acknowledge, is negligible
compared with the transmission times. Each message is therefore assumed to
have the same transmission time on all links visited. Transmission times are
assumed to be mutually independent with a common (arbitrary) distribution
having mean 1/µ (bits, say) and variance σ2. Traffic entering the network
from external sources is assumed to be Poisson, and, that which originates
from node m and is destined for node n is offered at rate νmn; the origin-
destination pair determines the message type. We shall assume that each
link operates under a FCFS discipline and that a total capacity of φj (bits
per second) is assigned to link j.

In order to apply the above results, we shall need to make a further as-
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sumption. It is similar to the celebrated independence assumption of Klein-
rock [11]. As remarked earlier, each message has the same transmission time
on all links visited. However, numerous simulation results (see for exam-
ple [11]) suggest that, even so, the network behaves as if successive trans-
mission times at any given link are independent. We shall therefore suppose
that transmission times at any given link are independent and that trans-
mission times at different links are independent. This phenomenon can be
explained by observing that the arrival process at a given link is the re-
sult of the superposition of a generally large number of streams, which are
themselves the result of thinning the output from other links. The approx-
imation can therefore be justified on the basis of limit theorems concerning
the thinning and superposition of marked point processes; see [3, 4, 5], and
the references therein. Kleinrock’s assumption differs from ours only in that
he assumes the transmission time distribution at a given link j is exponen-
tial with common mean 1/µ, a natural consequence of the usual teletraffic
modelling assumption that messages emanating from outside the network are
independent and identically distributed exponential random variables. How-
ever, although the exponential assumption is usually valid in circuit switched
networks, we should not expect it to be appropriate in the present context
of message/packet switching, since packets are of similar length. Thus, it
is more realistic to assume, as we do here, that message lengths have an
arbitrary distribution.

For each origin-destination (ordered) pair (m,n), let R(m,n) = {rmn(1),
rmn(2), . . . , rmn(smn)}, be the ordered sequence of links used by messages on
that route; smn is the number of links and rmn(s) is the link used at stage s.
Let αj(m,n, s) = νmn if rmn(s) = j, and 0 otherwise, so that the arrival rate
at link j is given by αj =

∑
m

∑
n6=m

∑smn
s=1 αj(m,n, s), and the demand (in

bits per second) by aj = αj/µ. Assume that the system is stable (αj < µφj
for each j). The optimal capacity allocation (φj, j = 1, 2, . . . , J) can now
be obtained using the results of Section (4). For unit costs, the optimal
allocation of capacity (constrained by

∑
j φj = 1) satisfies µφj = αj + λ

√
αj,

j = 1, . . . , J , where λ = (µ−∑J
k=1 αk)/(

∑J
k=1

√
αk), in the case of exponential

transmission times. More generally, in the case where the transmission times
have an arbitrary distribution with mean 1/µ and variance σ2, the optimal
allocation satisfies (to first order in ε)

µφj = αj + λ
√
αj +

(
cj −

√
αj∑J

k=1

√
αk

J∑
k=1

ck

)
ε , (10)

where ck = 1
4
λα

3/2
k (αk + 2λ

√
αk)/(αk + λ

√
αk)

2 and ε = µ2σ2 − 1.
To illustrate this, consider a symmetric star network , in which a collec-
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tion of identical outer nodes communicate via a single central node. Suppose
that there are J outer nodes and thus J communications links. The corre-
sponding queueing network, where the nodes represent the communications
links, is a fully-connected symmetric network. Clearly there are J(J − 1)
routes, a typical one being R(m,n) = {m,n}, where m 6= n. Suppose that
transmission times have a common mean 1/µ and variance σ2 (for simplicity,
set µ = 1), and, to begin with, suppose that transmission times are exponen-
tially distributed and that all traffic is offered at the same rate ν. Clearly the
optimal allocation will be φj = 1/J , owing to the symmetry of the network.
What happens to the optimal allocation if we alter the traffic offered on one
particular route by a small quantity? Suppose that we alter ν12 by setting
ν12 = ν + e. The arrival rates at links 1 and 2 will then be altered by the
same amount e. Since µ = 1 we will have a1 = a2 = ν + e and aj = ν for
j = 3, . . . , J . The optimal allocation is easy to evaluate. We find that, for
j = 1, 2,

φj = ν + e+
(1− Jν − 2e)

√
ν + e

(J − 2)
√
ν + 2

√
ν + e

=
1

J
+

1

2
(J − 2)

(Jν + 1)

J2ν
e+O(e2),

and, for j = 3, . . . , J ,

φj = ν +
(1− Jν − 2e)

√
ν

(J − 2)
√
ν + 2

√
ν + e

=
1

J
− Jν + 1

J2ν
e+O(e2).

Thus, to first order in e, there is an O(1/J) decrease in the capacity at all
links in the network, except at links 1 and 2, where there is an O(1) increase
in capacity.

When the transmission times are not exponentially distributed, similar
results can be obtained. For example, suppose that the transmission times
have a distribution whose squared coefficient of variation is 2 (such as a
mixture of exponential distributions). Then, it can be shown that the optimal
allocation is given by

φj =
1

J
+

1

2

(J2ν2 − Jν + 2)(J2ν2 − 2Jν − 1)

J2ν
e+O(e2), j = 1, 2,

φj =
1

J
− (J − 2)(J2ν2 − Jν + 2)(J2ν2 − 2Jν − 1)

4J2ν
e+O(e2), j = 3, . . . , J.

Thus, to first order in e, there is an O(J3) decrease in the capacity at all
links in the network, except at links 1 and 2, where there is an O(J2) increase
in capacity. Indeed, the latter is true whenever the squared coefficient of
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variation c is not equal to 1, for it is easily checked that φj = 1/J + gJ(c)e+
O(e2), j = 1, 2, and φj = 1/J − (J/2− 1)gJ(c)e+O(e2), j = 3, . . . , J , where

gJ(c) =
Jν(Jν − 1)3c− (J4ν4 − 3J3ν3 + 3J2ν2 + Jν + 2)

2J2ν
.

Clearly gJ(c) is O(J2). It is also an increasing function of c, and so this ac-
cords with our previous general results on varying the coefficient of variation
of the service time distribution.

7 Conclusions

We have considered the problem of how best to assign service capacity in
a queueing network so as to minimise the expected number of customers in
the network subject to a cost constraint. We have allowed for different types
of customers, general service time distributions, stochastic or deterministic
routing, and, a variety of service regimes. Using an accurate approximation
for the distribution of queueing times, we derived an explicit expression for
the optimal allocation to first order in the squared coefficient of variation
of the service time distribution. This can easily be extended to arbitrary
order in a straightforward way using a standard perturbation expansion. We
have illustrated our results with reference to data networks, giving particular
attention to the symmetric star network. In this context we considered how
best to assign the link capacities in order to minimise the expected total delay
of messages in the system. We studied the effect on the optimal allocation
of varying the offered traffic and the distribution of transmission times. We
showed that for the symmetric star network, the effect of varying the offered
traffic is far greater in cases where the distribution of transmission times
deviates from exponential, and that more allocation is needed at nodes where
the variation in the transmission times is greatest.
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