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ABSTRACT : This paper is concerned with
the performance evaluation of loss networks. For
the simplest networks there are explicit analyti-
cal formulae for the important measures of per-
formance, but for networks which involve some
level of dynamic control, exact analytical meth-
ods have had only limited success. Under several
regimes the Erlang Fized Point (EFP) method
provides a good approximation for the blocking
probabilities, but when these regimes are not op-
erative the method can perform badly. In many
cases this is because the key assumption of inde-
pendent blocking does not hold. We derive meth-
ods for estimating the blocking probabilities which
specifically account for the dependencies between
neighbouring links. For the network considered
here, namely a ring network with two types of traf-
fic, our method produced relative errors typically
102 of that found using the EFP approximation.

1. INTRODUCTION

We shall be concerned with circuit-switched net-
works of the kind depicted in Figure 1. These
consist of a set of links indexed by j =1,2..., K,
with C} circuits comprising each link j, and a col-
lection of routes R. Each route r € R is a set of
links. Calls using route r are offered at rate v, as
a Poisson stream, and use a;,(> 0) circuits from
link j. R indexes independent Poisson processes.
Calls requesting route r are blocked and lost if,
on any link j, there are fewer than a;, free cir-
cuits. Otherwise, the call is connected and simul-
taneously holds a;, circuits on each link j for the
duration of the call. For simplicity, we shall take
a;jr € {0,1}. Call durations are independent and
identically distributed exponential random vari-
ables with unit mean, and are independent of the
arrival processes.

Let n = (n,., r € R), where n, is the num-
ber of calls in progress using route r, let C =
(Cjy, 3 =1,...,K), and let A = (a4, r €

R, j =1,...,K). Then, the usual model for a
circuit-switched network (see for example [5]) is a
continuous-time Markov chain (n(t), t > 0) tak-
ing values in
S=SC)={neZl : An<C}

and its unique stationary distribution is given by
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Fig 1. A typical circuit-switched network
(5 nodes, 6 links and 5 routes)

The stationary probability that a route-r call is
blocked is then given by
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where e, is the unit vector from S(C) describing
just one call in progress on route r. However, al-
though we have an explicit expression for L, in
terms of ®, the latter can’t (usually) be computed
in polynomial time. To see this, we only need con-
sider the trivial case of a fully-connected network
with all possible one-link routes (that is, [R| = K
and A = I) and with C; = C; clearly |S| = CK.
Thus, for networks with even moderate capacity,
one is forced to use alternative methods, and, ar-
guably the most important of these is the EFP
approximation.

2. THE EFP APPROXIMATION

Kelly [4] proved that there is a unique vector
(B, ...,Bk) € [0,1]¥ satisfying

Bj = E(pjacj)a (1)
pi=@1=B)"' Y apr(1-Ly),  (2)

forj=1,...,K, and

L, = ]_—H(].—Bi)air, reR, (3)
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E(v,C) is Erlang’s Formula for the loss probabil-
ity on a single link with C circuits and Poisson
traffic offered at rate v. The EFP approximation
is obtained by using B; to estimate the probability
that link j is full, and L, to estimate the route-r
blocking probability.

The rationale for the EFP approximation is one
of independent blocking. If links along route r were
blocked independently (they are clearly not) and
if B; were the link-j blocking probability, then L,
would be the route-r blocking probability:

L=1-JJa-B)=1-]]( - B)*.
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Carrying this further, the traffic offered to link j
would be Poisson (at rate p;, say) and the carried
traffic (that which is accepted) on link j would be

Zajryr(]- _LT) (: (1 _Bj)pj) .

The EFP approximation therefore stipulates
that the link blocking probabilities (Bi,...,Bk)
should be consistent with this level of carried traf-
fic:

Bj:E(pj,Cj), ]:1,,K

On combining (1), (2) and (3) we obtain a set of
equations for (By,...,Bk):

11 (1—Bi)),0j).
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The existence of an Erlang Fixed Point, namely
a fixed point of these equations is easy to prove
using the Brouwer fixed point theorem; they de-
fine a continuous mapping from a compact convex
set [0,1]¥ into itself. The uniqueness is consider-
ably more difficult to prove [4]. We note that for
more complex systems, there may be more than
one fixed point (see for example [1]).

The EFP approximation performs particularly
well under two limiting regimes. The first is one
in which the topology of the network is held fixed,
while capacities and arrival rates at the links be-
come large [4]; this has become known as the Kelly
limiting regime, or (somewhat misleadingly) as
the heavy traffic limit. Under the second limit-
ing regime, called diverse routing, the number of
links, and the number of routes which use these
links, become large, while the capacities are held
fixed and the arrival rates on multi-link routes be-
come small. Examples of this are star networks
and fully-connected networks with alternate rout-
ing [2, 3, 6, 9, 11]. If neither regime is operative,
the EFP method can perform badly: in partic-
ular, in highly linear networks and/or networks
with low capacities. Further, adding controls to
the network may cause the method to perform
badly under otherwise favourable regimes. A par-
ticularly useful control is trunk reservation. Here,
traffic streams are assigned priorities and calls are
accepted only if the occupancies of links along
their route are not above a given threshold, the
size of which depends on the type of call. This
widely used control mechanism is typically very
robust to fluctuations in arrival rate and has the
added advantage of eliminating pathological be-
haviour such as bistability [1]. With such a con-
trol operating in a network of reasonable size, the
occupancy of neighbouring links may be highly de-
pendent and the equilibrium distribution will no
longer have a product form, as it does for the cor-
responding uncontrolled network. Modelling de-
pendencies in this context is thus critical. For an
excellent review of the theory of loss networks, and
in particular EFP methods, see Kelly [5].

We shall focus attention on simple, highly lin-
ear networks, since here the EFP approximation
is expected to perform poorly.



3. A SYMMETRIC RING NETWORK

To illustrate our methods, consider a loss network
with K links forming a loop, and each link having
the same capacity C. Such a network is depicted
in Figures 2 and 3. There are two types of traf-
fic: 1-link routes (type-1 traffic) and 2-link routes
comprising pairs of adjacent links (type-2 traffic).
Type-t traffic is offered at rate v; on each type-t
route. If L; is the common loss probability of

Fig 2. A Ring Network (6 nodes)
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Fig 3. One- and two-link traffic using a given link

type-t calls, then it is easy to show that the EFP
approximation is given by

Ll’:B and LQ’L“].—(].—B)2,

where the Erlang Fixed Point B is the unique so-
lution to

B = E(V1 + 2V2(1 - B),C),

where recall that E(v,C) is Erlang’s Formula.
Figure 4 shows the EFP approximation for the
blocking probability of type-1 calls in a network
with C =10, K =10 and v; = va(=v).

In order to assess the accuracy of the EFP ap-
proximation, as well as the improved methods de-
scribed below, we shall need to evaluate the exact
blocking probabilities. This will be done using an
iterative technique based on the equilibrium dis-
tribution, one which has some interest in its own
right.
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Fig 4. EFP approximation for the blocking probability
of type-1 calls (C' = 10, K = 10, v; = vy = arrival rate)

The state space for the ring network is given by
Sk ={n:ni+ni_1,;+n;,+1 <Ci=1,...,K},

where, in a convenient notation, route {K,1} is
denoted by {K, K + 1}; since we shall be varying
K, it will be necessary to make any dependence
on K explicit in our notation. The equilibrium
distribution is given by
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is the normalizing constant for the network with
K links.

Now consider a line network consisting of a se-
ries of K links. This is obtained if the ring is
disconnected at one node. In a similar fashion
we define the normalizing constant Ug for this
network. We also define \Il%’] ) to be the normal-
izing constant for the line network with C; = 1,
Cr, =C,forl < k < K, and Cx, = j. Note
that U9 = Ty Note also that U9 = ¢,
Then, the lIl%’] ) satisfy the following recursion:

i i o B8
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with
min(i,j)
(4.9) _ 81
uo= 3
a=0
o = 1.

This recursion is obtained by considering the num-
ber of one-link and two-link calls on link 1. Con-
sider the contribution to the normalizing constant
made by some fixed configuration of calls. Sup-
pose that this configuration has nis = &, where g3
must lie between 0 and ¢ inclusive. Then we must
have ny < 8 — i. Thus, the contribution from
these two routes for this particular configuration
is exactly
W vy
ny! Bl

We now consider the remaining routes; they use
links {2,..., K} and form a (K —1)-link network.
Since there are 3 calls on route {1, 2}, link 2 only
has C — 3 free circuits, and so the contribution
from the remaining routes is \Ilgg__lﬁ 2

Let us return to the ring network. An expres-
sion for @, in terms of the ¥ is obtained as
follows. Consider links K and 1. By conditioning
on ng1, we can break the ring network into a line
network, and write

¢ nK1
@ _ V2 q:,(c—nth—nKl)
K — 1 - K .
“ MNKg1:
nx1=0

Note that links K and 1 have been chosen as the
reference links here, but of course the recursion
would be the same if any other pair of adjacent
links had been chosen.

The blocking probabilities can now be written in
terms of the normalizing constants. To do this, we
introduce some further notation. Let @g? denote
the normalizing constant for the ring network in
which all the links have capacity C, except for
one link, which has capacity i. Similarly, let @%’] )
be the normalizing constant for the ring network
in which all links except two, have capacity C;
the exceptions have capacities ¢ and j, and are
adjacent. Then, the probability that a one-link
call is accepted (which is also the probability that
a link has free capacity) is given by

3¢
B

and the probability that a two-link call is accepted
is given by
$(C-1,0-1)
K

b ’

where, just as for ®x, we can write

C-1
(C—l) _ V2 K1 (C—TLK1,C—1—TLK1)
LB = I Wi
e nNKi1:
and
C-1
(c-1,0-1) _ vy ! (C—1—ng1,0—1—nk1)
i - Z el UK :
e nNKi1:

These recursions are eagily implemented to obtain
the exact blocking probabilities numerically.
Figure 5 shows the relative error in using the
EFP approximation to estimate the blocking prob-
ability of type-1 calls in a network with C' = 10,
K =10 and v1 = wa(= v). Notice that the ex-
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Fig 5. Relative error in the EFP approximation
for the blocking probability of type-1 calls
(C =10, K =10, v1 = vo = arrival rate)

act blocking probabilities are overestimated for
small values of the arrival rate v and underesti-
mated for larger values, and, that the accuracy
improves as the arrival rate becomes very large.
Notice also that the approximation is most accu-
rate around the point of “critical loading”, namely
when v +2v9 = C; for the parameter values used,
this is when v = 10/3, a point just before the
graph crosses the z-axis. For type-2 calls the trend
is no different.

To illustrate why we might expect the EFP
approximation to perform badly in the present
context, we shall assess the dependence between
two adjacent links. Take links 1 and 2 as refer-
ence links and consider the subnetwork depicted
in Figure 6. We identify three routes: {1}, {2}
and {1,2}. If m, denotes the number of calls on
route 7, then m, is the number of calls occupy-
ing capacity on link 1 but not on link 2, that
is my = ni + ng1, me is the number occupy-
ing capacity on link 2 but not on link 1, that is



Mo = Ng + Neg, and, mio(= n12) is the number of
calls occupying capacity on both links. Figure 7
shows the correlation between links 1 and 2 for the

A two-link subnetwork

\

mi1 =mn1+ngp M2 =n2+n3

Fig 6. Definition of m;, ma and mo
for the symmetric ring network

network with C' = 10, K = 10 and v; = va(= v);
to be precise, we have plotted

Corr (I{m1+m12 <C}s I{m2+m12 <C})

against the arrival rate v.
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Fig 7. Correlation between adjacent links
(C =10, K =10, v1 = vp = arrival rate)

We can estimate the blocking probabilities more
accurately by specifically accounting for the de-
pendencies between adjacent links. Our first ap-
proximation (Approximation I) is obtained by
adapting the method of Pallant [7]. In Pallant’s
method, the network is decomposed into indepen-
dent subnetworks and the stationary distribution

is evaluated for each. For example, if we take our
subnetwork to be the one depicted in Figure 6,
then its state space will be

S = {(m1,mg,m12) : m; + mip < C,i =1,2}
and its stationary distribution will be

(11 + va(1 = B))mmtmeygme

w(m) =&}
( ) m1!m2!m12!

?

where @ is a normalizing constant. We then es-
timate B, the probability that a link adjacent to
the two-link subnetwork is fully occupied, using
the subnetwork itself; set

B= ¥

m:mi+mia=C
C C—m12

= Z Z 7(C' — mig,ma, M12) .

m12=0 m2=0

7T(m1,m2,m12)

These expressions are used iteratively to deter-
mine a fixed point B, and we then set L, = B
and

C
Ly =2L, - Z 7(C —ma2,C — mya, m12).

m12=0

Our second, and more accurate, approximation
(Approximation IT) uses additional knowledge of
the state of a given link in estimating the proba-
bility that the adjacent link is full. We use state-
dependent arrival rates, p, = v1 + va(l — by),
n € {0,1,...,C — 1}, where b, is the probabil-
ity that link K is fully occupied, conditional on
my; = n (b, is also the probability that link 3 is
fully occupied, conditional on ms = n), so that

V;nw (H;n:l(;l pn) (H;ni(;l pn)

@—1
m1!m2!m12!

w(m) =

Once b, is estimated and = determined, we set L
and Lq as for Approximation I. An estimate of b,
is found by assuming that b,, does not depend on
myg. Forn=0,...,C — 1, we set

>m=0P(n —m,C —m,m)

b’l’L == C— )
Z:ano Zrzom (n -m,r, m)

where

n ., NK1 mK—l
Vit (Hszo PS)

p(n1,mk,nK1) = P —
ny N1 Mk:

The dependence of b, on mqs is due to the cyclic
nature of the network, but is expected to be slight
for large networks.



This approximation is exact for the infinite line
network, as shown by Zachary[10] for an equiv-
alent network with vy = 0 (that is, no one-link
traffic). Our expression for b, is the same as that
obtained in his paper for the infinite line network,
although written in a different form.

State-dependent arrival rates such as we have
here are also discussed by Pallant and Taylor [8].

Figures 8 and 9 show the relative error in using
each of the three approximations to estimate the
blocking probability of type-1 and type-2 calls, re-
spectively, in a network with C = 10, K = 10 and
v1 = vo(= v). Notice that, while Approximation I
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Fig 8. Relative error in the estimated blocking probability
of type-1 calls (C' = 10, K = 10, v1 = v = arrival rate)
----- Approx. 1
Approx. II

gives some improvement in accuracy over the EFP
approximation, the improvement obtained using
Approximation II is considerable. Indeed, the
maximum error for Approximation II is of order
10~2 for both types of traffic.
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Fig 9. Relative error in the estimated blocking probability
of type-2 calls (C' = 10, K = 10, v1 = v = arrival rate)
----- Approx. 1
Approx. II

We are presently working on extending our
methods to deal with trunk reservation and net-
works with a more general topology.
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