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Abstract: The birth-death process is a familiar tool in modelling populations which are subject to demographic
stochasticity. However, many populations are also subject to one or more forms of local ‘catastrophe’ (a term
usually taken to mean any population decrease of size greater than one). Natural disasters, such as epidemics,
and migration to other populations, are all examples of local catastrophes. The birth, death and catastrophe
process is an extension of the birth-death process that incorporates the possibility of reductions in population of
arbitrary size. We will consider a general form of this model, in which the transition rates are allowed to depend
on the current population size in a completely arbitrary matter. The linear case, where the transition rates are
proportional to current population size, has been studied extensively. In particular, extinction probabilities,
the expected time to extinction (persistence time) and the distribution of the population size conditional on
non-extinction (the quasi-stationary distribution) have been evaluated explicitly. However, whilst all of these
characteristics are of interest in the modelling and management of populations, processes with linear rate
coefficients represent only a very limited class of models, and indeed it is difficult to imagine instances where
catastrophe events would occur at a rate proportional to the population size. Our model addresses this difficulty
by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still
be found for persistence times.
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1. INTRODUCTION

Accounting for catastrophic events has become an
important component in stochastic population mod-
elling, particularly in ecological applications, but
also in an array of other fields, including economics,
chemistry and telecommunications. In the context
of population processes, catastrophes are sudden de-
clines in population, typically of a size greater than
a single individual. According to Shaffer (1981)
and others, such catastrophes are one of the primary
sources of variation in the abundance of species.
Mangel and Tier (1993), for example, discuss the
use of birth, death and catastrophe processes in
modelling the number of occupied habitat patches in
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a metapopulation. See Shafer (2001) for a review of
the significance of catastrophes in ecological mod-
elling.

Of primary importance in most applications is the
effect of catastrophes on the persistence of a popu-
lation, and in particular on the expected time to ex-
tinction. Recent work, beginning with Brockwell, et
al. (1982), discusses extinction probabilities, condi-
tions for certain extinction and expected extinction
times, in a variety of different cases. Here, we ex-
amine a general birth, death and catastrophe model
that permits an entirely arbitrary dependence of the
transition rates on the current population size, as
well as an arbitrary (but constant) jump size distri-
bution. Our main result is a theorem giving an ex-
plicit expression for the expected extinction time for



processes that conform to this model. We illustrate
our result with several examples.

2. THE MODEL

Markov chains are the simplest mathematical mod-
els for random phenomena that evolve over time.
Their structure is sufficiently simple that one can
say a great deal about their behaviour, yet, at the
same time, the class of Markov chains is rich
enough to serve in many applications. Markov
chains have proved particularly effective in biologi-
cal contexts. Here we shall assume thatX(t) is the
number in the population at timet, and suppose that
(X(t), t ≥ 0) is a continuous-time Markov chain
taking values inS = {0, 1, . . . }. Let fi(> 0) be
the rate at which the population size changes when
there arei individuals present, and suppose that,
when a change occurs, it is a birth with probabil-
ity a(> 0) or catastrophe of sizek (the removal of
k individuals) with probabilitydk, k ≥ 1. (Simple
death events are to be interpretted as catastrophes of
size 1.) Assume thatdk > 0 for at least onek ≥ 1
and thata +

∑
k≥1 dk = 1. Thus, the process has

transition ratesQ given by

qij =



fi

∑
k≥i dk, j = 0, i ≥ 1,

fidi−j , j = 1, 2, . . . i− 1, i ≥ 2,

−fi, j = i, i ≥ 0,

fia j = i + 1, i ≥ 0,

0, otherwise.
(1)

Notice, in particular, thatq0j = 0, j ≥ 0, and that
qi0 > 0 for at least onei ≥ 1. Thus, the sole absorb-
ing state0, corresponding to population extinction,
is accessible from{1, 2, . . . } (an irreducible class).

The special casefi = ρi, where ρ(> 0) is a
per-capita transition rate, was studied by Brockwell
(1985), Pakes (1987) and Pollett (2001). Brock-
well’s model requires that the rate at which catas-
trophes occur is proportional to the number of in-
dividuals present (as is the birth rate). Such a rela-
tionship would be appropriate, for example, in situ-
ations where each individual in the population trig-
gers catastrophic epidemics at a certain rate. In con-
trast, models of the general form (

Whilst our model is quite general, it does have lim-
itations. Firstly, it is frequently useful to separate
death and catastrophe events, and to assign different
rate functions to births, deaths and catastrophes, as
in Mangel and Tier (1993) (note that in that work,
the state of the process is the number of occupied
patches in a metapopulation). An important special
case, which we are presently studying, hasqij = λi,
for j = i − 1 and i ≥ 1, andqij = ρdi−j , for
j = 1, . . . , i − 1 andi ≥ 2, so that deaths occur at
per-capita rateλ(> 0), while catastrophes occur at

points of Poisson process with rateρ(> 0), indepen-
dent of the population size. Another drawback of
the present model is that the catastrophe size distri-
bution does not depend on the number of individuals
present. For example, it rules out two special cases.
The first, and most important, describes catastrophic
events that affect each and every individual in the
population, and each individual is removed indepen-
dently with some fixed probabilityp. Thus, when
there arei individuals present, the size of a catastro-
phe has a binomialB(i, p) distribution. The second
case is where all catastrophe sizes are equally likely,
so that the catastrophe size has a uniform distribu-
tion on the set{1, 2, . . . , i}; uniform catastrophes
are not so relevant in biological applications. Both
cases have been discussed in previous mathematical
analyses; see, for example, Brockwell, et al. (1982).

A final important aspect of the model relates to ‘to-
tal catastrophes’, events that wipe out the popula-
tion completely. The number of deaths attributed to
a catastrophe is always limited by the current pop-
ulation, since the size of a population can never be
negative. In other words, while a certain severity of
catastrophe might be just enough to wipe out a pop-
ulation, exactly the same effect (extinction) would
be produced by a catastrophe that was, say, twice as
severe. It is a feature of our model that these ‘larger-
than-population-size’ catastrophes still contribute to
the rate of total catastrophes. Notice from (

3. EXTINCTION PROBABILITIES

The probability of extinction does not depend on
the event rates(fi, i ≥ 1), because the jump chain
(the discrete-time chain that records the sequence
of states visited) is the same in all cases. It was
shown by Pakes (1987) that the probability of ex-
tinction αi, starting withi individuals, is 1 for all
i ≥ 1 if and only if the driftD (drift awayfrom 0),
given by

D = a−
∑
i≥1

idi = 1−
∑
i≥1

(i + 1)di,

is less than or equal to 0. Note that the process is
said to besubcritical, critical or supercritical ac-
cording asD < 0, D = 0 or D > 0 (whereD sat-
isfies−∞ ≤ D ≤ 1). In the latter case extinction
is of course still possible, and the extinction proba-
bilities can be expressed in terms of the probability
generating function

d(s) = a +
∑
i≥1

dis
i+1, |s| < 1. (2)

It follows from Theorem 4 of Ezhov and Reshetnyak
(1983) (see also Pakes (1987)) that, whenD > 0,∑

i≥1

(1− αi)si =
Ds

d(s)− s
.


